
Citation: Ye, J.; Bai, Y.; Xu, J.; Huang,

S.; Han, Z.; Wan, W. Public Authentic-

Replica Sampling Mechanism in

Distributed Storage Environments.

Electronics 2024, 13, 4167. https://

doi.org/10.3390/electronics13214167

Academic Editor: Carlo Mastroianni

Received: 19 September 2024

Revised: 17 October 2024

Accepted: 19 October 2024

Published: 23 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Public Authentic-Replica Sampling Mechanism in Distributed
Storage Environments
Jiale Ye 1, Yongmei Bai 2, Jiang Xu 1, Shitao Huang 1, Zhaoyang Han 3 and Wei Wan 4,*

1 School of Computer Science, School of Cyber Science and Engineering, Engineering Research Center of
Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology,
Nanjing 210044, China; 202212490273@nuist.edu.cn (J.Y); 001136@nuist.edu.cn (J.X.);
202312490514@nuist.edu.cn (S.H.)

2 College of Computer Science and Technology, Shanghai University of Finance and Economics,
Shanghai 200433, China; baiyongmei2024@outlook.com

3 School of Software, Shandong University, Jinan 250100, China; nuaahanzy@gmail.com
4 State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China
* Correspondence: wanwei@vip.163.com

Abstract: With the rapid development of wireless communication and big data analysis technologies,
the storage of massive amounts of data relies on third-party trusted storage, such as cloud storage.
However, once data are stored on third-party servers, data owners lose physical control over their
data, making it challenging to ensure data integrity and security. To address this issue, researchers
have proposed integrity auditing mechanisms that allow for the auditing of data integrity on cloud
servers without retrieving all the data. To further enhance the availability of data stored on cloud
servers, multiple replicas of the original data are stored on the server. However, in existing multi-
replica auditing schemes, there is a problem of server fraud, where the server does not actually
store the corresponding data replicas. To tackle this issue, this paper presents a formal definition of
authentic replicas along with a security model for the authentic-replica sampling mechanism. Based
on time-lock puzzles, identity-based encryption (IBE) mechanisms, and succinct proof techniques,
we design an authentic replica auditing mechanism. This mechanism ensures the authenticity of
replicas and can resist outsourcing attacks and generation attacks. Additionally, our schemes replace
the combination of random numbers and replica correspondence tables with Linear Feedback Shift
Registers (LFSRs), optimizing the original client-side generation and uploading of replica parameters
from being linearly related to the number of replicas to a constant level. Furthermore, our schemes
allow for the public recovery of replica parameters, enabling any third party to verify the replicas
through these parameters. As a result, the schemes achieve public verifiability and meet the efficiency
requirements for authentic-replica sampling in multi-cloud environments. This makes our scheme
more suitable for distributed storage environments. The experiments show that our scheme makes
the time for generating copy parameters negligible while also greatly optimizing the time required
for replica generation. As the amount of replica data increases, the time spent does not grow linearly.
Due to the multi-party aggregation design, the verification time is also optimal. Compared to the
latest schemes, the verification time is reduced by approximately 30%.

Keywords: cloud storage; data integrity auditing; data security; data availability; multi-copy storage

1. Introduction

Storage as service [1–3] allows for consumption-based storage facilities to store and
process massive amounts of data through cloud storage. Cloud storage relieves clients of
the burden of storage management [4], simplifying data maintenance and management
and reducing reliance on specialized IT personnel. Additionally, cloud storage facilitates
universal data access across independent geographical locations, enabling users to easily
access and share data regardless of their location. Moreover, cloud storage eliminates the

Electronics 2024, 13, 4167. https://doi.org/10.3390/electronics13214167 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13214167
https://doi.org/10.3390/electronics13214167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13214167
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13214167?type=check_update&version=1

Electronics 2024, 13, 4167 2 of 26

substantial costs associated with purchasing hardware, software, and personnel mainte-
nance [5], providing a cost-effective solution that significantly reduces the total cost of
ownership, enhancing operational efficiency and competitiveness for enterprises. However,
cloud service providers are not entirely trustworthy, and clients need to ensure that their
data stored on the servers are not subject to integrity or other security threats [6–8]. There-
fore, effective mechanisms are needed to ensure data integrity in cloud storage. Integrity
auditing technology is considered an effective means for clients to verify the correctness
of data stored in the cloud. In 2007, Ateniese et al. [9] proposed Provable Data Possession
(PDP), and Jules and Kaliski [10] introduced Proofs of Retrievability (PORs). Both methods
provide clients with guarantees of the integrity and availability of outsourced data. Subse-
quently, more and more experts began researching how to ensure data integrity for clients
in cloud storage. In schemes where clients interact with cloud storage servers [11,12], only
the original data are stored, making it difficult to recover in case of damage to the original
data. However, in multi-replica storage, any damaged data can be correctly recovered
using other replicas [13–15], refs. [16–18], which has been widely applied in industries such
as finance, education, and healthcare, where data availability is critical.

However, in multi-replica schemes, servers may still engage in fraudulent behavior,
i.e., not actually storing all data replicas. This lack of assurance regarding the genuine
storage of data replicas not only leads to the inability to recover damaged data but also
significantly undermines the integrity and availability of the stored data, which is especially
critical in industries involving key business operations. Therefore, there is an urgent need
for a genuine replica sampling mechanism that can resist server fraud to ensure data
security and availability, protecting user interests and trust. Moreover, we specifically
define server fraud as outsourcing attacks and generation attacks [19].

In an outsourcing attack, a malicious server attempts to deceive the verifier into passing
the audit. During the integrity audit challenge, the malicious server, upon receiving a
challenge from the verifier, quickly retrieves the corresponding data from another storage
provider and generates the proof. The malicious server appears to be storing the data
continuously but, in reality, it does not bear the responsibility of storing it. This behavior
allows the malicious server to deceive the client not only about the physical space allocated
to the data but also about its storage capacity, even claiming to store data beyond its limit.
This behavior not only affects data reliability but also imposes significant economic losses
and risks of data leakage for the client. Furthermore, since the data retrieved from external
storage lack security guarantees, the overall security of the data are greatly compromised,
increasing the risk of data leakage and loss, further exacerbating the trust crisis.

Secondly, in a generation attack, the malicious server uses certain algorithms or
predefined methods to quickly and dynamically generate replicas and produce proofs
during a challenge without actually storing real data. This allows the malicious server to
deceive the client, reducing the actual storage space required, thus saving costs, but posing
a serious threat to data security. Therefore, to enhance data integrity and availability,
effective mechanisms must be developed to defend against these fraudulent behaviors and
maintain user trust and interests.

In data integrity auditing schemes, the client and the server, as two interacting entities,
have different evaluation criteria to consider from their respective perspectives [15,20,21].
Existing schemes often focus on different evaluation criteria, attempting to make the
scheme more favorable to either the server or the client. However, considering only one
party’s evaluation criteria will lead to an imbalanced scheme. Therefore, it is necessary
to trade off between the client and the server, meaning that the scheme must consider
how to meet the evaluation criteria of both parties. Armknecht et al. proposed a Mirror
algorithm [22], which shifts the replica generation process to the server, reducing the client’s
computational burden and significantly saving bandwidth resources. At the same time,
the server also benefits from reduced communication transmission, saving bandwidth
resources. Additionally, although the server regains the initiative in replication, it is almost
impossible for it to engage in improper behavior. This scheme is client-friendly while

Electronics 2024, 13, 4167 3 of 26

imposing as little burden as possible on the server. However, this trade-off still faces the
issue of linear storage cost increase with the number of replicas when the client generates
and uploads copy parameters. Moreover, it does not meet the criteria for public verifiability
compared to other schemes. In 2023, the user-friendly scheme [23] satisfies the public
verifiability feature of client generation and uploading of copy parameters under a single
cloud server, where the generation and uploading of copy parameters remain constant as
the number of copies increases and the copy parameters are recoverable.

Although the aforementioned schemes are excellent, they have some obvious limita-
tions. First, these schemes typically rely on a single-cloud storage environment, making
the system vulnerable to single points of failure. If the cloud provider experiences an
outage, data may become inaccessible or be permanently lost. Second, in a single-cloud
environment, the tasks of replica generation [13,19] and storage are all handled by a single
server, which not only increases the computational and storage burden but can also lead to
performance bottlenecks when dealing with large-scale data. Furthermore, single-cloud
schemes are less capable of defending against outsourcing attacks and generation attacks,
where a malicious server can deceive the verifier by using external resources or dynami-
cally generating replicas. In contrast, a multi-cloud environment distributes storage and
processing tasks, improving the system’s security and stability while also reducing veri-
fication overhead. Lastly, the public verifiability of single-cloud schemes is limited; the
verifier must rely on a single cloud service provider, lacking the transparency of multi-party
collaboration. Multi-cloud storage, however, can enhance the reliability of the audit process
through collaboration among different cloud providers. Unfortunately, the above schemes
have not been implemented in a multi-cloud environment, and both public verifiability
and constant-level copy parameter construction will be called into question.

To address the aforementioned challenges, we propose a public authentic-replica
sampling mechanism. This mechanism is a security sampling scheme designed to tackle
data integrity and availability issues in a multi-cloud storage environment. Our primary
goal is to ensure that the data replicas stored on cloud servers genuinely exist and have not
been tampered with, thus maintaining the integrity and availability of the data. To achieve
this goal, we designed an auditing method based on time-lock puzzles, succinct proofs,
and identity-based encryption to ensure the authenticity of replicas. Additionally, recover-
able copy parameters are employed, allowing any third party to verify the data, achieving
public verifiability. Based on this sampling mechanism, we have instantiated a public
authentic-replica sampling scheme. During the designated replica generation process,
by utilizing a Ref-Table and random seeds, we achieve the distributed storage of data
replicas across multiple clouds with negligible overhead while also reducing the burden
on the client. The overall design cleverly allows for proof aggregation, further reducing
verification overhead, resulting in a scheme that is both efficient and secure. The main
contributions can be summarized as follows:

1. To address the issue of servers falsely storing replica data, this paper designs an
authentic-replica sampling mechanism that periodically checks the server’s replica
storage. We formally define the security model for the authentic-replica sampling
mechanism and design a publicly verifiable authentic-replica sampling scheme for
distributed storage environments. Our scheme distributes data replicas across mul-
tiple clouds, ensuring low verification overhead while distributing the pressure of
replica generation. Through security analysis, we demonstrate the security of this
scheme, ensuring that the replicas stored on the server occupy actual storage space.

2. This scheme is based on time-lock puzzles and employs identity-based encryption
mechanisms and succinct proof techniques to ensure the authentic replica. It is
designed to resist generation attacks and outsourcing attacks, avoiding the associated
security threats.

3. To address the issue of linear storage cost increase when the client generates and
uploads copy parameters as the number of replicas increases, this paper combines
random seeds and reference tables. This approach ensures that even as the number of

Electronics 2024, 13, 4167 4 of 26

stored replicas grows, the cost for the client to generate and upload copy parameters
remains constant, which greatly reduces the computational overhead on the client side.
Additionally, by using publicly recoverable copy parameters, the scheme achieves
public verifiability. Security analysis demonstrates the scheme’s security.

We organize our paper as follows: We review the preliminaries required in our paper
in Section 2. The system model and security model of the public authentic-replica sampling
mechanism are described in Section 3. In Section 4, we give the detailed construction
of the public authentic-replica sampling scheme and the security analysis. We give the
performance of our scheme in Section 5, and finally the conclusion is in Section 6.

Related Work

Distributed storage systems combine network and storage technologies to allow clients
to store data remotely and provide various services such as archiving, publishing, feder-
ation, and anonymity. As networking technology has evolved, new types of distributed
storage systems have emerged [24]. These systems can be categorized into two main types
of architectures: client–server and peer-to-peer. In a client–server architecture [25], each
entity is either a client or a server with the server responsible for authentication, data
replication, backup, and handling client requests. This architecture is commonly used
in distributed storage systems. In contrast, in a peer-to-peer architecture [25,26], each
participant can be both a client and a server.

In distributed storage systems [27–30], storing data is essentially a data outsourcing
problem for the client. Consequently, ensuring the integrity of the data that has been
outsourced is of critical importance in terms of security in order to ensure the integrity of
outsourced data on cloud servers, Ateniese [9] et al. proposed the Provable Data Possession
(PDP) concept and constructed the PDP scheme, which serves the purpose of verifying
the integrity of remote data by checking whether the server has certain blocks through
Homomorphic Verifiable Tag (HVT) in the form of probability-based sampling. Secure PDP
(S-PDP) is the first sampling mechanism-based PDP, which strongly guarantees the posses-
sion of data with its added robustness but at the cost of huge computation on the client
side. For this reason, Efficient PDP (E-PDP) [31] has been proposed again, which is used
to reduce the computation on the client side, but they all suffer from high communication
cost and a linear relationship between the client’s computation and the replica. In 2013,
Hanser and Slamanig provided a PDP based on the elliptic curve cryptosystem [32], which
enables the same tag to be verified both publicly and privately by identifying the vectors of
each data block, which in turn achieves the public verifiability of the scheme, enabling the
client and third party to audit the data remotely at the same time. In 2013, Chen proposed
algebraic signatures to effectively check data possession in cloud storage [33]. Algebraic
signatures have less computational overhead than homomorphic cryptosystems, which
makes the scheme guarantee data possession while reducing the overhead, but it suffers
from an upper limit on the number of verifications and relies on probabilistic guarantees.
Compared to PDP, Juels and Kaliski [10] proposed the Proofs of Retrievability (PoRs), which
is a form of encrypted Proof of Knowledge (PoK) that ensures the integrity of outsourced
data in untrusted cloud storage while also enabling the recoverability of slightly damaged
data through the use of Forward Error-correcting Codes (FECs), but it has the limitation of
having an upper limit on the number of verifications. Subsequently, Shacham and Waters
achieved data retrievability through coding techniques in 2008 [34], and through homo-
morphic authenticators, they achieved an infinite number of integrity verifications. In 2013,
Yuan and Yu designed a new PoR scheme, which generates polynomials with short strings
as a constant-size polynomial commitment technique through the use of constant-size
polynomials as a proof, which makes the scheme have a communication cost of constant
magnitude. Subsequently, more and more researchers have devoted themselves to this
topic and produced a large number of research results.

However, even PoR schemes that can have a weak recovery capability can only repair
minor damage. If the source data are damaged to a greater extent, the data will not be

Electronics 2024, 13, 4167 5 of 26

recovered, and at the same time, data retrievability will be damaged at the same time.
In order to make up for this shortcoming, many researchers have begun to focus on replica
storage. Replica [35] is used to ensure data availabilit. Basic principles are used in the
server to store different replicas, so that even if the data and more than one replica are
corrupted, the remaining complete replica can restore the damaged data, to a large extent,
to ensure the availability of data. In the specific scheme to realize multiple replicas, the first
thing that researchers think of is to make the replicas directly become additional copies of
data. This approach is simpler to implement, but it does not provide strong proof that the
server is actually storing multiple copies; the server can be challenged without the client
submitting a sufficient number of copies, and it will create copies when challenged, which
in turn achieves the effect of spoofing. Thus, the copies that the client expects the server
to store become difficult to prove. These schemes also do not guarantee the authenticity,
integrity, and availability of the data copies on the server. In 2008, Curtmola et al. made the
first attempt at Multiple-Replica Provable Data Possession (MR-PDP) [36], in which the
client is able to securely confirm that the server stores multiple unique replicas. In addition,
because multiple replicas can be checked in a batch, the overhead of verifying n replicas is
less than that of verifying one replica n times. It succeeds in securely networking [37] and
storing multiple replicas to create uniquely distinguishable copies of data, but MR-PDP
only supports private authentication. In 2009, Bowers et al. proposed a new cloud storage
scheme that is based on PoR and utilizes both within-server redundancy and cross-server
redundancy, allowing for the testing and reallocation of storage resources when failures
are detected. In 2010, Barsoum and Hasan proposed another scheme [36]. There are two
versions: one is at the cost of higher storage overhead on the client and server, and the
other one is with probabilistic detection to reduce client and server overhead. This scheme
is able to delegate the auditing task to a trusted third party using a BLS homomorphic
linear authenticator, but the client must re-encrypt and upload the entire copy to the server.
Subsequently, multi-copy integrity auditing on dynamic data updates was also proposed.
In 2014, Barsoum and Hasan proposed a scheme [38], which supports multi-copy storage
in addition to the dynamic operations on the number of outsourcing.

In 2016, Armknecht et al. proposed the Mirror scheme [22], which is based on the
difficult problem of Linear Feedback Shift Registers (LFSRs) with Rivest, where mirroring
shifts the overhead of building replicas to the cloud servers, which makes the cloud servers
reduce the bandwidth overhead. Subsequently, Guo et al. improved on Mirror [39] in order
to resist the replacement forgery attacks caused by the extensibility of data labels. These
schemes reduce the computation of the client and make the replica generation part realized
by the server; however, these schemes still have the problem that the client has a linear
relationship with the copy parameters, and the client still has a relatively large amount of
computation. At the same time, compared with the previous schemes, it cannot satisfy the
public verifiability characteristic. In 2023, the user-friendly scheme [23] satisfies the public
verifiability feature of client generation and uploading of copy parameters under a single
cloud server, where the generation and uploading of copy parameters remain constant
as the number of copies increases and the copy parameters are recoverable. However,
if all cloud servers store one more layer of copy parameter generation in a multi-cloud
environment, in this environment, the constant and copy parameter generation cannot
be satisfied, and the public verifiability characteristic will be questioned. None of the
existing integrity auditing schemes can resist the two attacks: the generation attack and the
outsourcing attack.

Although existing schemes have made significant efforts in ensuring data integrity and
availability, most are confined to single-cloud environments. In a multi-cloud environment,
these schemes fail to guarantee client-friendliness and cannot achieve public verifiability.
Verification is limited to a single cloud, and whether efficient verification can be achieved
in a multi-cloud setting remains uncertain. In contrast, the scheme proposed in this
paper overcomes these limitations. By adopting techniques such as time-lock puzzles,
succinct proofs, and identity-based encryption, it ensures the authenticity and security

Electronics 2024, 13, 4167 6 of 26

of replicas, effectively resisting outsourcing attacks and generation attacks. In a multi-
cloud environment, our scheme significantly reduces the overhead of replica generation by
combining Ref-Table and random seeds. Additionally, it introduces public verifiability in
the replica verification process, greatly enhancing the security and efficiency of the system.

2. Preliminaries

In this section, we will outline the key techniques used in the solution, including
time-lock puzzles and succinct proofs for hidden order groups.

2.1. Time-Lock Puzzles

A time-lock puzzle is an encryption technique used to unlock data after a specific time.
The basic concept is to encrypt a message so that it can only be decrypted after a set time
delay. Rivest et al. introduced an RSA-based time-lock puzzle to encrypt a message [40];
the puzzle can be solved to reveal the key or message only after a certain amount of time.
Subsequently, Freitag et al. introduced Non-Malleable Time-Lock Puzzles, which not only
require the solver to decrypt after a specified time but also ensure that the puzzle’s solution
cannot be forged. These puzzles often have a wide range of applications in areas such as
electronic auctions, corporate contract signing, etc. [41–43]. Rivest’s time-lock puzzle is
related to the RSA cryptosystem in a way, where Alice has to encrypt the message m for
T seconds, which works as follows.

1. Setup(λ, k, m)→ (N, u, t)

• Generate two large prime numbers p, q at random.
• Calculate the Euler function ϕ(N) = (p− 1)(q− 1) for modes N = pq.
• Determine the number S of modulo N-squared operations that the solver Bob

can perform per second and compute t = T · S.
• Encrypt m with secret key K.
• Randomly select u← Z∗N and encrypt K as CK = K + u2t

mod N.
• For CK, output the time-lock puzzle (N, u, t).

2. Solve(N, u, t)→ (y). When Bob receives the puzzle, without knowing p, q, it can only
be solved for y by t successive squared mode computations.

3. Verify(u, x, y, ϕ(N)) → {0, 1}. Alice knows that ϕ(N), with r = 2t mod ϕ(N), can
obtain the y result quickly and validate the solver Bob’s result y′. If the y = y′, output
1; otherwise, output 0.

2.2. Succinct Proofs for Hidden Order Groups

In succinct proofs for hidden order groups, there are two types of succinct proofs:
one is the succinct proof of exponentiation (POE), and the other is the succinct proof of
knowledge of a discrete-log (POKD).

In POE, given a group G of unknown order, ZN , and prime numbers Primes(λ) in[
0, 2λ

]
, both the prover and the verifier are given the triad (u, w, x), u, w ∈ G, x ∈ Z, and it

takes the prover to convince the verifier that there is a ux = w in the group G. Define
this relationship asRPOE = {((u, w ∈ G, x ∈ Z);⊥) : w = ux ∈ G}, where x can be much
larger than the order of the group G [44].

• RPOE.Prove(u, w, x, N)→ P . The prover receives the verifier’s prime N ← Primes(λ)
and computes the q =

[x
N
]

and the r, x = qN + r, and it sends P ← uq to the verifier.
• RPOE.Veri f y(P , w, x, N) → {0, 1}. The verifier computes r ← x mod N and verifies

that PNur = w holds in the group, returning 1 if it does and 0 otherwise.

POE can be adapted to provide POKD, given a group G of unknown order, and the
generator g, ZN and prime numbers Primes(λ) in [0, 2λ]. Define this relationship as
RPOKD = {(w ∈ G, x ∈ Z) : w = gx ∈ G}.
• RPOKD.Prove(w, x, N)→ P . The prover receives the verifier’s prime N ← Primes(λ),

computes the q ∈ Z and the r, x = qN + r, and sends pair (P ← gN , r) to the verifier.

Electronics 2024, 13, 4167 7 of 26

• RPOKD.Veri f y
(
(P ← gN , r), w, N

)
→ {0, 1}. The verifier verifies that PNur = w and

r ∈ [N] holds in the group, returning 1 if it does and 0 otherwise.

3. Syetem Model and Security Model of Public Authentic-Replica Sampling Mechanism

In this section, we will introduce the specific content of the public authentic-replica
sampling mechanism, including the formal definition, system model, and security model.

3.1. Notations

In Table 1, we introduce the main notations of our scheme.

Table 1. Notations.

Notation Description

λ Security parameter
k Safety factor
G1 Multiplicative cyclic group
GT Multiplicative cyclic group
p Multiplicative cyclic group G1 of order
e Bilinear pair
Sl Cloud server

SlRep Collection of replicas stored in Sl
f Pseudorandom sequence
φ Pseudorandom function
π Pseudorandom sequence
Hi Hash function
C Client

N Total number of replicas stored on all
cloud servers

N RSA’s model
T Ref-Table
mi Coded data block
σi The tag corresponding to the mi data block

m(Sl ,j)
i

The j-th replica about data block mi is stored in
the Sl

iβ̇ Challenged data blocks
jε Challenged replicas

C1 Collection of challenged data blocks
Chal Challenged collections
R̃Sl

Proof of replica generated by Sl
M̃Sl

Proof of data generated by Sl
F Original encoding file

CSl Sl Generated ciphertext
n Number of blocks in the original coded file cut

name Unique identifier for source code files
NSl Unique identifier for Sl

3.2. Overview of Our System Model

The system model of our scheme is represented in Figure 1. It contains four kinds of
entities: several cloud servers (CSs), a client (C), a cloud organizer (CO), and a third-party
auditor (TPA).

• Client: The client, as the data owner, has a significant volume of data that needs to be
stored on a cloud server.

• CS: CS is a cloud server that provides enough storage space for the client and is always
ready to take on challenges.

• CO: The CO is used to aggregate all the proofs generated in the CS and sends the
results of this aggregated proof to the TPA.

• TPA: The TPA accepts the client’s delegation to check the integrity of the data.

Electronics 2024, 13, 4167 8 of 26

Figure 1. System model of public authentic-replica sampling mechansim.

The system works as follows.

1. Request Store: The client initiates the data outsourcing process by sending a formal
request to the cloud storage (CS). The client sends the already encrypted and encoded
data to the CS, requesting the storage of these data.

2. Data Access: Upon receiving the request, the cloud storage evaluates it to ensure it
can meet the client’s needs. Once it confirms its ability to fulfill the request, the cloud
storage accepts the request and asks the client to provide the necessary parameters
for storing their data.

3. Ref-Table: The client prepares a Ref-Table that details the requirements for the dis-
tribution of data replicas. This table specifies which specific data (or data blocks)
should be stored in which cloud storage providers to ensure redundancy and fault
tolerance. The client sends this table to the cloud operator (CO). Upon receiving the
Ref-Table, the CO must relay the corresponding information to each cloud provider.
Once all clouds are aware of their necessary information based on the Ref-Table, they
will respond to the messages, which will ultimately be verified by the client. For the
client, data storage can only be considered distributed across multiple clouds after a
successful verification process.

4. Auditing Delegation: After the client ensures that its data are stored in a multi-cloud
environment, it delegates the responsibility of data verification to a third-party auditor
(TPA). The TPA acts as an independent entity to verify the integrity of the client’s data
in the multi-cloud storage.

5. Challenges: The TPA randomly selects challenges and sends them to each cloud stor-
age. Specific data integrity challenges are directed to each cloud storage. These chal-
lenges are designed to verify whether the data are stored correctly and
remain intact.

6. Proof: Each cloud storage, upon receiving the challenge, needs to generate an audit
proof for its data and its replicas by utilizing the necessary parameters from the
Ref-Table in conjunction with the received challenge. Each cloud storage submits its
proof to the CO, which then uses an aggregation algorithm to combine all proofs into
a single proof. This proof represents the collective data integrity status of all relevant
cloud storages.

7. Auditing Result: After receiving the proofs, the TPA uses its verification algorithm
to validate the responses from the cloud storage. Once the verification is complete,

Electronics 2024, 13, 4167 9 of 26

the TPA returns the results to the client, indicating whether the data integrity has been
maintained across the multi-cloud environment.

3.3. The Formal Definition of Public Authentic-Replica Sampling Mechanism

Definition 1. The public authentic-replica sampling mechanism contains the following seven
algorithms: Setup, KeyGen, Store, Table, Replicate, Challenge and Verify.

1. Setup(λ, k)→ pp: Input the security parameter λ, k to generate the public parameter pp.
2. KeyGen(pp) → {(skc, pkc), (skSl , pkSl)}: Input the public parameter pp to generate the

public–private key pair (skc, pkc) for the client, and for each server Sl , generate the public–
private key pair (skSl , pkSl); thus, generate all the server public–private key pair records as
((skSl , pkSl)).

3. Store(F, name, skc, pkc, pp) → ({σi}, Γ, T): Input source coded file F, source coded file
unique identifier name, client private–public key pair (skc, pkc) and public parameter pp,
preprocessing for the source coded file F, output the tag σi corresponding to the data block mi,
the file tag Γ and the server Ref-Table T .

4. Table
(
{Sl}, {IDSl}, c, IDc, pp, T

)
→ {0, 1}: The client decides on the replica allocation,

inputs the Ref-Table T , encrypts and transmits the number of replicas required to be stored by
the corresponding cloud server, and the corresponding server decrypts them, encrypts them
again, and hands them over to the client for verification. Only after the client has verified is
the Ref-Table made public.

5. Replicate
(
F,N , ξ, skSl , pp, T , NSl

)
→ {m(Sl ,j)

i }: Each server Sl is required to execute this
Replicate with input source encoding file F, replica number N random seed ξ sent by the
client, Ref-Table T , and the server’s own secret key skSl , the public parameter pp, the server’s

own unique identifier NSl . Generate the replicas that the server should store by itself {m(Sl ,j)
i }.

6. Challenge
(
{ChalSl}, mi, σi, {m

(Rep)
i }, pp

)
→ (P): Each server Sl will be challenged with

its respective corresponding challenge ChalSl , the challenge data block, the tag corresponding
to the data block, the corresponding replica stored by that server and the public parameters.
For the challenge, the proofs are output, and finally the proofs from the server are handed over
to the TPA for aggregation, and the TPA hands over the aggregated proof P to the client.

7. Veri f y
(
Chal, P, pkc, pksl , pp

)
→ {0, 1}: After receiving the final proof P, the client verifies

it using its own public key. If the verification is successful, it outputs 1; otherwise, it outputs 0.

3.4. Serurity Model

To achieve the security goal, consider a game between an adversaryA and a simulation
environment E where the environment E acts as an honest client, an honest verifier, and a
partially honest server:

1. Environment E runs KeyGen to generate the key pair (skc, pkc) and gives pkc to the
adversary.

2. Adversary A selects the encoded file F while interacting with environment E to store
the encoded file with the store random oracle. Environment E performs the Store
algorithm and returns the {σi} to adversary A.

3. Environment E executes the Table algorithm and returns the Ref-Table TA to the
adversary A.

4. The adversary A runs Replicate to generate and store the TA replicas{m(A,j)
i } gener-

ated by file F, while the environment E itself honestly generates and stores N - TA

replicas {m(E,j)
i }.

5. For any encoded file F block for which the adversary A has performed a store query,
the adversary A executes the Challenge algorithm to generate proofs for its own
stored replica, while the environment E executes the Challenge algorithm to generate
honest proofs for all remaining replicas. Both the proof of the adversary A and the
honest proof generated by environment E is handed over to environment E to execute

Electronics 2024, 13, 4167 10 of 26

the Verify algorithm for verification. After each execution of the protocol, environment
E hands over the results of each verification to adversary A.

6. Adversary A selects the file obtained from the return of some store random oracle
and outputs a description of the storage service provider.

For a cheating server Sc, we say that a cheating server is ϵ-admissible if the cheating server
is able to complete integrity verification convincingly with probability no less than ϵ, where

Pr

 m(Sc ,j)
i ← Sc.Replicate(TSc)
∧ PSc ← Sc.Challenge(TSc ,Fi)
∧ Veri f y(Psc ∪ Ptrust) = 1

∣∣∣∣∣∣∣ Condition

 ≥ ϵ (1)

where the condition is

Condition =

(skc, pkc)← KeyGen(pp),
oracle← Sc(F)
TSc ← Table
m(Trust,j)

i ← Replicate(N − TSc)
Fi ∈ oracle
Ptrust ← Challenge(N − TSc ,Fi)

(2)

Definition 2 (Authentic Replica). We introduce the authentic-replica property, which allows
the prover P to commit to storing n distinct replicas of the data D, all of which have actual storage
space, and for the prover to be able to give a proof that convinces the verifier.

We formalize two challenges: outsourcing attacks and generation attacks. An authentic-replica
sampling mechanism design scheme that can overcome both attacks will distinguish itself from other
integrity design schemes.

Given a multi-copy integrity auditing algorithm PoS, an honest server provider SP, a malicious
adversaryA, an honest verifier V , and specific data D, assume that the adversaryA has the following
data storage capacity:

• The adversary A is only able to truthfully physically store the number of copies of n1.
• The adversary A is able to interact with an honest server provider SP where SP has unlimited

storage space.

1. The honest verifier V generates n copies (n > n1) by means of the PoS algorithm, which are
handed over to the adversary A for storage. (Here, in order to ensure that these n copies are
real, they are generated by an honest verifier.)

2. Honest validator V for generating a series of challenges ci to hand over to the adversary A.
3. The adversary A generates a series of proofs for these challenges πi.
4. An honest verifier V verifies a series of challenges generated by an adversary A and gives the

verification results.
5. If there is P[V .PosVeri f y(πi) = 1|πi = A.PosProve(ci)] > 1− ξ, then adversary A

wins the game; otherwise, adversary A loses.

If no adversary can win the game with non-negligible probability, the scheme is
characterized by the authentic-replica property.

Definition 3 (Extractability). If any probabilistic polynomial-time (PPT) adversary plays the
aforementioned game and manages to successfully output an Sc, that achieves ϵ-admissible. It can be
demonstrated that an extraction algorithm exists which, with overwhelming probability, can recover
the challenged data block.

Definition 4 (Storage allocation). For any rational adversary can successfully output a service
provider in the above game that is ϵ-acceptable and satisfies authentic-replica (η), specifically, that
allocates replica storage for only an extreme η ratio of the source data, where 0 < η < 1, with a

Electronics 2024, 13, 4167 11 of 26

negligible probability of acceptance by the verifier, then we say that the protocol is (η, ϵ)-storage
allocation satisfying.

Definition 5 (Detectability). If the probability of detecting the corruption of all stored data is no
less than ψ when the corrupted fraction of the source data is ζ0 and the corrupted fraction of each
replica is ζ j, then we say that the protocol is (ζ0, ζ1, · · · , ζt, ψ) detectable.

Definition 6. If the q-DABDHE problem is hard, then the Ref-Table transmission process is secure
under our scheme.

Definition 7 (Outsourcing attack). Upon receiving the challenge c, adversary A quickly obtains
the corresponding data D from another storage provider P∗ and produces a proof, thus giving the
illusion that adversary A itself actually stores the data D.

Definition 8 (Generation attack). If adversary A is able to identify the data D that it needs to
store, A can lock that data D, allowing A to regenerate D on demand. On receiving a challenge c,
A generates data D on demand and then generates a proof from that newly generated data D, thus
giving the illusion that adversary A itself actually stores the data D.

4. Our Proposed Scheme

In this section, we have provided specific implementation steps for the public authentic-
replica sampling scheme and demonstrated its security through security analysis.

4.1. Construction of the Public Authentic-Replica Sampling Scheme

The scheme is as follows:

• Setup(λ, k)→ pp
KGC generates an RSA modulus N = q0 · q1, q0 = 2q′0 + 1, q1 = 2q′1 + 1, q0, q1 contain-
ing large prime numbers known only to C. The unique cyclic group QRN of order
q′0q′1 ∈ Z∗N , obtains u0 from Z∗N , where gcd(u0 ± 1, N) = 1, and obtains the gener-
ating element u = u2

0 of the group. Choose the multiplicative cyclic group G1,GT ,
with prime p, the order of G1, g, the generator of G1, and e : G1 ×G1 → GT . Choose
the following hash function, two pseudorandom sequences, and a pseudorandom
function to randomly select α, β1, β2, β3 ∈ Zp, and compute mpk = (g1, g2, g3, g4) =

(gα, gβ1 , gβ2 , gβ3), msk = (α, β1, β2, β3).

H0:{0, 1}∗ → Zp

H1:{0, 1}∗ → QRN

H2:{1, 2, · · · , n} → {0, 1}κ

H3:{0, 1}∗ → Prm(2λ)

H4:{0, 1}∗ → Prm(2λ)

f :Zp × {1, 2, · · · , n} → Zp

φ:Zp ×Zp → Zp

π:Zp × {1, 2, · · · , n} → Zp

(3)

Obtain public parameters pp, where
pp = {N, u,G1,GT , g, {Hi}, f , φ, π, mpk}, i ∈ [0, 4].

Electronics 2024, 13, 4167 12 of 26

• KeyGen(pp, msk, mpk)→ ((skc, pkc), {sks, pks})
C puts his identity IDc ∈ {0, 1}∗ to KGC; KGC takes C’s identity, master key, and pub-
lic parameters as input and randomly selects three random numbers r1, r2, r3 ∈ Zp

to compute C’s partial private key skpc, skpc =

(
r1, g

(β1−r1)
(α−IDc) , r2, g

(β2−r2)
(α−IDc) , r3, g

(β3−r3)
(α−IDc)

)
.

Similarly, for each server Sl , its partial private key is also calculated based on its identity

IDSl , skpSl =

rSl
1 , g

(
β1−r

Sl
1

)
(

α−IDSl

)
, rSl

2 , g

(
β2−r

Sl
2

)
(

α−IDSl

)
, rSl

3 , g

(
β3−r

Sl
3

)
(

α−IDSl

)
. C picks a large prime num-

ber α and calculates α′ = α−1 mod q′0q′1; skc = (skc1 = α′, skpc),
pkc = (pkc1 = α, IDc). For each store on Sl, choose βSl1, βSl2 ∈ Zp as the private key
(skSl1, skSl2) and compute the public key (gβSl1 , gβSl2). Sl has skSl =

((
skSl1, skSl2

)
, skpSl

)
,

pkSl =
(

pkSl1, pkSl2, IDSl

)
• Store(F, name, skc, pkc, pp)→ ({σi}, Γ, T)

γ = H4(skc1||name)
γ′ = γ−1 mod q′0q′1
γ̂ = γ · pkc1 mod q′0q′1

(4)

Calculate the file tag Γ = (γ , γ′), calculate to obtain the tag corresponding to data
block mi, σi = (H1(name | i)) γ′ ·mi

skc1 . Given a Ref-Table T , T denotes the delegated
replica servers and their delegated replicas:

T =
(

S1Rep , S2Rep , S3Rep , ..., SkRep

)T
=

1, 2, 4
3, 5
...
...

 (5)

for a total of N replicas and k servers

k

∑
i=1

SiRep = N (6)

• Table.Enr({Sl}, {IDSl}, c, IDc, pp, T)→ {0, 1}. For each server Sl , l ∈ [1, k], the num-
ber of replicas commissioned as well as the original encoded file need to be stored
according to T . By using IBE, client C will ensure that the Ref-Table is known to the
individual service providers.

– C.Enr
(
TSl , IDSl , s, pp

)
→ CTSl . Client C chooses a random number s ∈ Zp,

Hsig : {0, 1}∗ → G1. Calculate CTSl = (C1,C2,C3 C4), (C1,C2,C3) =(
(g1g−IDSl)s, e(g, g)s, e(g4, g)s · TSl

)
, and C4 = e(g2, g)s · e(g3, g)sw, where

w = Hsig(C1,C2,C3).

– C.Dec
(

CTSl , skpSl
, pp

)
→ TSl . When the server receives the ciphertext of the

Ref-Table, it decrypts the plaintext of the Ref-Table based on a portion of its own
partial private key and obtains its own Ref-Table that it should need to store.

Electronics 2024, 13, 4167 13 of 26

TSl =
C3

e(C1, g

(
β3−r

sl
3

)
(

α−IDSl

))
·Cg

(
β3−r

sl
3

)
(

α−IDSl

)
2

=
e(g4, g)s · TSl

e

g
(

α−IDSl

)
·s, g

β3−r
Sl
3

α−IDSl

 · e(g, g)s·rSl
3

(7)

And the server needs to convince the client that it already knows which copies it
needs to store and for which purpose. It also needs to encrypt the transmission of
its own results:

– S.Enr
(
TSl , IDc, s, pp

)
→ CTSl ;

– S.Dec
(
CTSl , skpc , pp

)
→ TSl .

After both the client and the server have confirmed completion, if the Ref-Table
was accepted correctly, output 1 and expose the Ref-Table T ; otherwise, output 0.

• Replicate(F,N , ξ, skSl , pp, T , Sl , pkc)→ {m(Sl ,j)
i }

For each replica j ∈ [1,N] ∩ SlRep , obtain the random seed ξ and compute
rSl ,j = fξ(H0(name||j||NSl))

ṙSl ,j =
skSl 2−rSl ,j

H0(name||rSl ,j)
− skSl1

RSl ,j = grSl ,j

(8)

Then, each data block mi is encrypted to generate a replica m(Sl ,j)
i based on an RSA

time-lock puzzle. µSl ,i,j = µ
∏θ∈ϑi

H2(θ||RSl ,j)

Sl ,i−1,j , µ = µSl ,0,j

m(Sl ,j)
i = mi · µSl ,i,j

(9)

where ϑi

ϑi =

{
[i, i + δ] i ∈ [1, n− δ]

[1, n]− [i, i + δ] i ∈ [n− δ + 1, n]
(10)

• Challenge
(

Chal, mi, σi, {m
(Sl ,j)
i }, pp

)
→ P

– Challenge
(

ChalSl , mi, σi, {m
(Sl ,j)
i }, pp

)
→ PSl

TPA randomly selects two values rs1, rs2 ∈ Zq, where rs1 is the random seed of
the π and rs2 is the random seed of the ϕ. Together with the c challenge block
numbers to be checked, the TPA sends Chal = ({c, cp}, rs1, rs2); C searches the
Ref-Table T and sends the challenge ChalSl to the corresponding Sl .
Upon receiving ChalSl , the server Sl responds to the query block mi and its

corresponding tag σi as well as the copy m(Sl ,j)
i as follows:

1. Sl generates its own challenge set; after accepting the challenge, ChalSl gener-

ates the challenge set CSl =
(
C1, CSl2

)
=
(
{
(

iβ̇, vβ̇

)
},{jε}

)
, i = π

(
rs1, β̇

)
,

vβ̇ = ϕ
(
rs2, β̇

)
, jε = π(rs1, ε), β̇ ∈ [1, c], ε ∈ [1, cp]∩ SlRep, C = (C1, C2 = ∑k

l=1 CSl2)

Electronics 2024, 13, 4167 14 of 26

2. Sl computes data proofs M̃Sl , tag proofs σ̃Sl and replica proofs R̃Sl , where
jε ∈ ([1, cp] ∩ SlRep).

M̃Sl = ∏(iβ̇ ,νβ̇)∈C1
m

νβ̇

iβ̇

σ̃Sl = ∏(iβ̇ ,νβ̇)∈C1
σ

νβ̇

iβ̇

R̃Sl = ∏(iβ̇ ,νβ̇)∈C1

(
∏jε m(Sl ,jε)

i

)vβ̇

(11)

3. Sl generates itself honestly and correctly generates copies of the proof USl
USl =

R̃Sl

M̃Sl

|[1,cp]∩SlRep
|

ṽSl = ∑(iβ̇ ,vβ̇)∈C1

(
vβ̇ ∑jε∈([1,cp]∩SlRep)

(
∏k̇∈[1,iβ̇]

∏θ∈ϑk̇
H2(θ∥RSl ,jε)

)) (12)

– Aggressive({PSl}, T , pp)→ Pagg

1. CO verifies all the σ̃Sl , and if successful, it aggregates all the proofs of Sl .
Since all the σ̃Sl are challenged for the same chunks of data, it stands to
reason that all of the σ̃Sl would have the same result.

σ̃ = σSl , l ∈ [1, k]
U = ∏k

l=1 USl

v̂ = ∑k
l=1 vSl

τ ← H3({vi}i∈c, u)
ω ← [ṽ/n]
Ω = uω

M̃ = ∏k
l=1 M̃Sl

R̄ = ∏k
l=1 R̃Sl

(13)

2. Give the aggregated proof P =
(

M̃, σ̃, R̃, U, Ω
)

to V, and let V validate the
integrity verification of the file F and the copy.

• Veri f y
(
Chal, P, pkc, pksl , pp

)
→ {0, 1}

1. The verifier recovers for each replica the corresponding RSl ,j

RSl ,j = pk−1
Sl1
· (pkSl2 · g

−rSl ,j)
1

H0(name||rSl ,j) (14)

2. Generation of necessary parameters
ν̃ =

k̇

∑
l=1

∑
(iβ̇ ,vβ̇)∈C1

vβ̇ · ∑
jε∈([1,cp]∩SlRep

)

(∏
k̇∈[1,iβ̇]

∏
θ∈ϑk̇

H2(θ||RSl,jε
))

τ ← H3

(
{vi}(iβ̇ ,vβ̇)∈C1

, u
)

w← ν̃ mod τ

(15)

3. Verify

U=Ωτ · uw

R̃=M̃ ·U

σ̃γ=

 ∏
(iβ̇ ,vβ̇)∈C1

H1(name||iβ̇)
vi

pkc1

· M̃γ

(16)

Electronics 2024, 13, 4167 15 of 26

4.2. Security Analysis

Theorem 1. The proof can pass final validation if all participants honestly follow the specified process.

Proof. Proof 1: U = Ωτ · uw

U =
k

∏
l=1

USl =
k

∏
l=1

R̃Sl

M̃Sl

∣∣∣[1,cp]∩SlRep

∣∣∣
=

k

∏
l=1

R̃Sl

∏(iβ̇ ,νβ̇)∈C1
(m

νβ̇

iβ̇
)

∣∣∣[1,cp]∩SlRep

∣∣∣

=
k

∏
l=1

∏(iβ̇ ,vβ̇)∈C1

(
∏jε∈

(
[1,cp]∩SlRep

) m
(SlRep

,jε)

iβ̇

)νβ̇

∏(iβ̇ ,vβ̇)∈C1

(
m

νβ̇

iβ̇

)∣∣∣[1,cp]∩SlRep

∣∣∣

=
k

∏
l=1

∏(iβ̇ ,νβ̇)∈C1

(
∏jε∈

(
[1,cp]∩SlRep

)(miβ̇
· µSl ,iβ̇ ,jε

))νβ̇

∏(iβ̇ ,νβ̇)∈C1

(
m

νβ̇

iβ̇

)∣∣∣[1,cp]∩SlRep

∣∣∣

=
k

∏
l=1

∏
(iβ̇ ,νβ̇)∈C1

 ∏
jε∈
(
[1,cp]∩SlRep

)
(

µSl ,iβ̇ ,jε

)
νβ̇

= µṽ

= Ωτ · uw

Proof 2: R̃ = M̃ ·U

R̃ =
k

∏
l=1

R̃Sl

=
k

∏
l=1

∏
(iβ̇ ,νβ̇)∈C1

 ∏
jε∈
(
[1,cp]∩SlRep

)m(Sl ,jε)
iβ̇

νβ̇

=
k

∏
l=1

∏
(iβ̇ ,vβ̇)∈C1

 ∏
jε∈
(
[1,cp]∩SlRep

)miβ̇
· µSl ,iβ̇ ,jε

νβ̇

= M̃ ·
k

∏
l=1

µνSl = M̃ · µṽ = M̃ ·U

Electronics 2024, 13, 4167 16 of 26

Proof 3: σ̃γ̂ =
(

∏(iβ ,νβ)∈C1
H1(name||iβ)

vi
)pkc
· M̃γ

σ̃γ̂ =

 ∏
(iβ ,νβ)∈C1

(
σ

νβ

iβ

)γ̂

=

 ∏
(iβ̇ ,νβ̇)∈C1

(
(H1(name||iβ̇))

γ′ ·mskc1
iβ̇

)νβ̇

γ̂

=

 ∏
(iβ̇ ,vβ̇)∈C1

H1(name||iβ̇)
vβ̇

pkc1

· M̃γ

Theorem 2. The protocol ensures extractability under the RSA assumption in the random ora-
cle model.

Proof. First, we assume the existence of an adversaryA capable of breaking the extractabil-
ity of the protocol. We then construct a verifier B that interacts with adversaryA, leveraging
the assumption that A can indeed compromise extractability.

• Preliminary stage: Specify the large prime y ← Z∗N and α to generate the RSA
instance (N, α, y).

• Setup stage: B calculates a = y2 mod N and sends (N, α) to the adversaryA. Meanwhile,
B itself calculates γ = H4(α

′||name), α′ = α−1modq′0q′1 and with γ′ = γ−1mod q′0q′1 as
the key.

• Query phase: Adversary A adaptively queries B in this phase with the only restriction
that A can never query individual blocks with the same index i. B honestly responds
as follows:

1. When B receives a query for σi, if there is no record for σi in B’s record ta-

ble, it generates θi
R← QRN as σi and returns it to A. It also records in the

record table (mi, i, θi, σi).
2. When B receives a query for σi, it returns σi directly if there is already a record

for σi in B’s record table.
3. When B receives a query for H1(name||i), if there is no record for H1(name||i) in

B’s record table, generate H1(name||i) =
(

θi
mi

α

)γ
as H1(name||i) and return it

to A. It also records (name, i, H1(name||i)) in the record table.
4. When B receives a query for H1(name||i), return it toA if there is already a record

for H1(name||i) in B’s record table.

• Challenge Phase: B generates a challenge set for the data block and data copy to
be challenged: CA = (C1, CA2) = ({(iβ̇, vβ̇}, {jε}), i = π

(
rs1, β̇

)
, vβ̇ = ϕ

(
rs2, β̇

)
,

jε = π(rs1, ε), β̇ ∈ [1, c], ε ∈ [1, cp] ∩ARep. And give A the challenge set CA.
• Forge phase: Based on the challenge given by B, A generates its own proof

P∗A = (M̃∗A, σ̃∗A, R̃∗A, U∗A). At the same time, we have other honest provers for generating
proofs of their own challenged data blocks and data replicas:
{Por}other = {(M̃or, σ̃or, R̃or, Ũor)}. Also, record a special honest prover that is chal-
lenged in the same way as adversary A. We record the proof generated by this special
honest prover as Puni = (M̃uni, σ̃uni, R̃uni, Ũuni). We determine, by assumption, that
P∗A + {Por}other is able to pass the verification after undergoing aggregation. At the
same time, based on the correctness of the protocol, we are able to obtain that the final
proof generated as a result of the aggregation by {Por}other + Puni must also be able
to pass validation given that we have the assumption that the adversary A is able to

Electronics 2024, 13, 4167 17 of 26

similarly pass validation. Then, comparing the adversary A and the special honesty
prover uni, both of the following should hold:

σ̃uniγ̂ =

 ∏
(iβ̇ ,vβ̇)∈C1

H1(name||iβ̇)
vβ̇

α

· M̃γ
uni

σ̃∗Aγ̂ =

 ∏
(iβ̇ ,vβ̇)∈C1

H1(name||iβ̇)
vβ̇

α

· M̃∗Aγ

So there we have it: (
σ̃uni
σ̃∗A

)γ̂

=
M̃γ

uni

M̃∗γA
simplifying gives the following: (

σ̃uni
σ̃∗A

)α

=
M̃uni

M̃∗A

Let x = σ̃uni
σ̃∗A

and y = aΦ(m,v) = M̃uni
M̃∗A

; then, we have xα = y2∗Φ(m,v). Since α is a large

prime, gcd(α, 2 ·Φ(m, v)) = 1. Therefore, we obtain b0, b1 according to the extended
Euclidean principle such that (b0 · α + b1 · (2 ·Φ(m, v))) = gcd(α, 2 ·Φ(m, v)) = 1.
and generates the solution for the RSA instance:

y
1
α = yb0 xb1

Second, we assume that adversary A has ϵ-admissible, i.e., adversary A can pass the
ϵ part of the challenge. We set the ratio of recovered files to ρ and compute
ω = 1/2λ + (ρn)|C1|/(n− |C1|+ 1)|C1|. We have that ϵ − ω is non-negligible, so A is
able to perform a number of interactions before recovering the encoded file of the ρ ratio.

Eventually, it is possible to complete the recovery of the entire file through a number
of coded files recovered according to the ρ ratio.

Theorem 3. If the replica generation algorithm based on time-locked puzzles is time-consuming for
the prover, the proposed protocol guarantees storage allocation, which is an authentic-replica feature.

Proof. Through the Replicate algorithm, we are able to find that for each replica, the time
of generating the replica depends on the time when the generation of µSl ,i,j is finished,
and its generation time can be determined by ϑi, which is simplified according to (9). µSl ,i,j
is based on the variable δ. Therefore, we define the time of replica generation as Tcp(δ).
At the same time, we assume that each adversary Ai did not keep all the replicas, but the
only ratio of the replicas kept is ϱ. Therefore, for the adversary Ai, the only data actually
stored by the adversary Ai is the original encoded data and the ϱ radio of the replicas
that should have been stored for each copy, that is, |F|(1 + ρ · |SA|), and upon receiving a
challenge to a block of data from |C1|, adversary Ai usually needs to compute the missing
portion, i.e., the (1− ϱ) radio of each replica. We therefore assume that the time used by
adversary Ai to compute the missing copies (1− ϱ)|C1| in its storage is TAmin . To achieve
this, we only need to set the forced time for copy generation to exceed the time at which
the adversary is able to compute the missing copy, i.e., Tcp(δ) > TAmin . This is because
when the adversary Ai tries to recover the missing block, the time for the adversary Ai to
generate the copy block is greater than TAmin according to the limitations of the algorithm.
In such a case, it is guaranteed that the adversary Ai is not able to obtain a copy between
the receipt of the challenge and the generation of the replica proof, and an honest verifier
can clearly notice that the adversary Ai does not store a full storage replica. At the same

Electronics 2024, 13, 4167 18 of 26

time, in distributed environments, it is common to set Tcp(δ) to have a significant difference
with TAmin , so that the verifier can obviously feel the difference between the honest prover
and the adversary Ai, which is able to resist outsourcing attacks and generation attacks.

We are given the premise that the time for adversary Ai to recover the (1− ϱ) ratio
replica at the time of receiving the challenge is at least TAmin , which is equivalent to
adversary Ai being able to recover the (1− ϱ) ratio replica in at most TAmin time. If the
ratio of copies to be recovered is less than (1− ϱ), then it is possible for adversary Ai to
complete the challenge without being suspected by the verifier. To achieve this, we need to
be able to generalize and obtain the probability that the adversary will defeat the scheme
in the worst case.

Given all challenge data blocks |C1|, the adversary Ai still keeps only replicas of the ϱ
ratio, and the probability that one of the challenge blocks received by the adversary Ai is in
the replica retained by itself is Pr. Pr is the probability that out of all the challenge-selected
|C1| blocks, at least one of the selected challenge blocks is in a copy block that is actually
kept by the adversary Ai:

Pr =
C|C1|

ϱn + C|C1|−1
ϱn + · · ·+ CQ|C1|+1

ϱn

C|C1|
n

We have the number of challenged blocks |C1| << n. For ease of computation, we
give the reasonable assumption that |C1| < ϱn/2. Thus, for a > b, we have Ca

ϱn > Cb
ϱn.

Pr =
C|C1|

ϱn + C|C1|−1
ϱn + · · ·+ CQ|C1|+1

ϱn

C|C1|
n

≤ (1− ϱ|C1|)
C|C1|

ϱn

C|C1|
n

= (1− ϱ|C1|)
ϱn(ϱn− 1) · · · (ϱn− |C1|+ 1)

n(n− 1) · · · (n− |C1|+ 1)

= ϱ
n
n

ϱ
n− 1

ϱ

n− 1
· · · ϱ

n− |C1|−1
ϱ

n− |C1|+ 1
(1− ϱ)|C1|

≤ ϱ|C1||C1|(1− ϱ)

Each Sl is storing all the source data blocks, so the probability that any one Sl alone
can pass the tapping scheme is at most ϱ|C1||C1|(1− ϱ). Note that each Sl is independent of
each other, so we are able to conclude that the probability that all Sl are breached is at most

(ϱ|C1||C1|(1− ϱ))
k
.

Theorem 4. The proposed protocol is (ζ0, ζ1, · · · , ζN , ψ) detectable. Specifically, each Sl has(
ζ0, {ζ jε}, ψSl

)
detectable, where ψSl = 1−∏jε∈

(
[1,cp]∩SlRep

)(1− ζ jε)
|C1|, and (ζ0, ζ1, · · · , ζN)

is the corruption rate of the copy.

Proof. Consider a data file with a corruption rate of ζ0 and N replicas, each with a
corruption rate of ζi, i ∈ [1,N], with a corruption detectability rate of not less than
1−∏jε∈[0,cp]

(
1− ζ jε

)|C1|.
A questioned data block or replica block is considered complete only if it is selected

with probability 1− ζ jε from the complete portion, where jε ∈
(
[1, cp] ∩ SlRep

)
, and then,

(1− ζ jε)
|C1| represents the probability that all challenged blocks are deemed well preserved,

applying to both the data file and its replicas. In this scenario, corruption of both the data
and the replicas remains undetectable. In addition, a challenge replica is specified in each
Sl such that the probability of non-detectability is ∏jε∈([1,cp]∩SlRep

(1− ζ jε)
|C1|. Therefore,

the probability of being undetectable is ∏jε∈[0,cp]
(
1− ζ jε

)|C1| in all the challenge copies

Electronics 2024, 13, 4167 19 of 26

throughout the protocol and for this reason, our protocol is detectable with a probability at
least 1−∏jε∈[0,cp]

(
1− ζ jε

)|C1|.

Theorem 5. If the q− DABDHE problem is difficult, then Replicate(F,N , ξ, sks, pp, T , Sl) in
which Sl is given to C is then safe.

Proof. Let us assume that there is an adversary A capable of attacking the program. Given

a problem instance g0, gaq+2
0 , g, ga, g(a2), . . . , g(aq),Z on a bilinear pairing group PG and an

honest entity B:

• Setup: For B, choose three polynomials of order q, F1(x), F2(x), F3(x) at random from
Zp[x]. Then, compute

g1 = ga, h1 = gF1(a), h2 = gF2(a), h3 = gF3(a)

Then, there is a private–public key pair (α = a, g1), (β̇1 = F1(a), h1), (β̇2 = F2(a), h2),
(β̇3 = F3(a), h3)

• Query 1. Adversary A asks for ID’s private key, B computes dID and gives dID to
adversaryA. AdversaryA asks for the decryption result of CT, and B computes the de-

cryption result and gives it to adversaryA. dID = (F1(ID), g
F1(a)−F1(ID)

x−ID , F2(ID), g
F2(a)−F2(ID)

x−ID ,

F3(ID), g
F3(a)−F3(ID)

x−ID).
• Challenge: The adversary A outputs two equal-length messages m0, m1 ∈ GT, and the

challenge identity ID∗ ∈ {0, 1}n. Let dID =
(
d∗1, d∗2, d∗3, d∗4, d∗5, d∗6

)
be a private key

corresponding to ID∗. B randomly selects c ∈ {0, 1} and computes the ciphertext
CT∗ =

(
C∗1,C∗2,C∗3,C∗4

)
, where C∗1 = gaq+2

0 − (ID∗)q + 2,C∗2 = Z · e
(

g0, ∏
q
i=0 g fiai

)
,

C∗3 = e(C∗1, d∗6) · (C∗2)d∗5 · mc,C∗4 = e(C∗1, d∗2(d
∗
4)

w∗) · (C∗2)d∗1+d∗3w∗ , where

w∗ = H(C∗1,C∗2,C∗3), and fi represents the coefficients of xi in the polynomial xq+2−(ID∗)q+2

x−ID∗ .
• Query 2. Adversary A asks ID ̸= ID∗ for the private key with respect to the decryp-

tion result of the ciphertext CT ̸= CT∗, and B computes dID = (F1(ID), g
F1(a)−F1(ID)

x−ID ,

F2(ID), g
F2(a)−F2(ID)

x−ID , F3(ID), g
F3(a)−F3(ID)

x−ID) and the corresponding decryption result.
We let z be a random and non-zero integer, Z = e(g0, g)aq+1 · e(g, g)z. Challenge
ciphertexts C∗1 = gs(α−ID∗), C∗2 = e(g, g)s+z, C∗3 = e(g, g)zd∗3 · e(h3, g)s ·mc.

By randomness, adversaryA can only obtain d∗5 from a decryption query to (ID∗, CT).
B can make CT = (C1,C2,C3,C4), C1 = (g1gID∗)s′ , C2 = e(g, g)s′′ , w = H(C1,C2,C3).
If s′ = s′′, then B can output C3

e(C1,d∗6)·C
d∗5
2

= C3
e(h3,g)s′ , and the adversary cannot obtain d∗5

from it. If s′ ̸= s′′, then the ciphertext is wrong and B can reject it outright.
Since a, F1(x), F2(x), F3(x), logg(g0) are all random, the encryption scheme is random-

ized. Then,

• If (C1,C2,C3) =
(
C∗1 ,C∗2 ,C∗3

)
and H(C1,C2,C3) = w = w∗, in order for the incorrect

ciphertext to be verified, it would need to be C4 = C∗4 . However, the ciphertext is a
challenge ciphertext and is not interrogated.

• Else, H(C1,C2,C3) = w ̸= w∗. In order to make the ciphertext go through, the ad-

versary needs to compute to obtain C4. But in C4 = e(C1, d∗2(d
∗
4)

w) ·Cd∗1+d∗3 w
2 , since

d∗1 + d∗3w and d∗1 + d∗3w∗ are random and independent, the adversary has no advantage
to generate a verifiable C4. The probability of the first C4 adaptive selection is 1

p and

the second is 1
p−1 . Thus, qd decrypted queries with a probability of at most qd

p−qd
. Plus,

the probability of guessing at least c correctly is 1/2. Thus, the probability that the
adversary succeeds is at most 1/2 + qd

p−qd
.

Electronics 2024, 13, 4167 20 of 26

5. Performance of Our Scheme

To evaluate performance, we compare the property analysis and experimental results
of the proposed protocol with those of the schemes by Armknecht et al. [22], Guo et al. [39],
and Shen et al. [23]. All three protocols support proof of data replication.

5.1. Property Analysis

The performance analysis is shown in Table 2. Armknecht et al. [22] and Guo et al. [39]
require a large amount of precomputation of private copy parameters to generate replicas
on the client side due to the use of secret and public LFSRs, which leads to the fact that these
two protocols only support private authentication. Secondly, the user-friendly solution [23]
to the above two problems proposes a new replica structure that is publicly verifiable.
However, the new replica structure in Shen et al. [23] does not satisfy the requirements of
a distributed environment, cannot satisfy public verifiability in distributed environment,
does not have authentic-replica characteristics, and does not have the problem of resisting
disaster environments. Therefore, we propose a new public authentic-replica sampling
mechanism in distributed storage environments, which ensures a low amount of prepara-
tion work for replica generation. It also ensures that under the same number of replicas,
each server can generate replicas faster, and the authentication expenditure is independent
of the number of replicas. At the same time, it can resist outsourcing attacks and generation
attacks, and it can achieve public verifiability in distributed storage environments.

Table 2. Comparison of properties.

Protocols Armknecht et al. [22] Guo et al. [39] Shen et al. [39] Our

Storage allocation × × ✓ ✓
Efficient preparation for replication × × ✓ ✓

Public verifiability × × ✓ ✓
Verification time high high low low

Disaster recovery capability low low low high
Resist generation attacks, outsourcing attacks × × × ✓

Support multi-cloud × × × ✓

5.2. Communication Overhead

The communication overhead for different schemes is shown in Table 3, where λ∗

denotes the length of the public LSFR. In this comparison, the other schemes are subjected
to multiple experiments according to the k-cloud environment, and the results show that
we achieve the transmission of Ref-Tables and random numbers through a small amount of
additional overhead, which must be borne to ensure the security of the scheme.

Table 3. Comparison of communication.

Scheme Armknecht et al. [22] Guo et al. [39] Shen et al. [23] Ours

Copy parameters Nλ∗(|Zq′0 |+ |Zq′1
|+

2λ∗|Z|)
Nλ∗(|Zq′0 |+ |Zq′1

|+
2λ∗|Z|)

|Zp|+ |Z| |Zp|+ |Z|

Data uploading 2n[k]|Z∗N | 2n[k]|Z∗N | 2[k](n|Z∗N |+ |Zq′0q′1
|)

((2n + 1)k|Z∗N |
+2k|Zq′0q′1

|
Proof responding 2|Z∗N | 2|Z∗N | 5|Z∗N | 6|Z∗N |

5.3. Experimental Performance

In the experiments, the test file size was 100 MB, the RSA mode size was set to 3072 bits,
the experiments were performed on Ubuntu 20.04.4 LTS, the computer was configured
with an Intel i5 CPU running VMware Fusion 13.0.0, and the programs were executed with
Python 3.8.

Electronics 2024, 13, 4167 21 of 26

A numerical comparison of the computational costs is shown in Table 4, where
P denotes power taking on Z, M is multiplication on groups, R denotes PRF, V is the
inverse operation, λ is the length of the secret LFSR, δ is the tunable parameter when gen-
erating the replicas, and |C1| and |C2| are the number of all challenge blocks and replicas,
respectively. Several operations with negligible computational overhead, such as hashing
and modulo addition, are ignored in the comparison. To ensure that the single replica
generation time is consistent in the experiments, we set the adjustable parameter to 8 in
both the Shen et al. [23] scheme and our scheme.

Table 4. Comparsion of computation.

Scheme Armknecht et al. [22] Guo et al. [39] Our

Copy parameter generation 2N (λ(λ∗ − λ)M + λ∗P) 2N (λ(λ∗ − λ)M + λ∗P) 0

Tag generation nP n(2P + M + R) 2nP + nM + V

Replica generation 2Nλ∗((n− λ∗)(P + M) + M) 2tλ∗((n− λ∗)(P + M) + M) N ((n + 1)P
+n(1 + δ)M + |C1|)

Proof generation 2|C1||P + (2 + |C2|)|C1|M 2|C1||P + (2 + |C2|)|C1|M 3|C1|P + (3 + |C2|)|C1|M

Proof Verification |C1|(|C2|+ 1)P+
(|C1|+ |C2|+ |C1||C2|+ λn)M

|C1|(|C2|+ 1)P
+(|C1|+ |C2|+ |C1||C2|+ λn)M

+|C1|(M + R)

(|C1|+ 3|C2|)P
+(|C2|+ (δ + 1)|C1|)M

We demonstrate that the authentic-replica sampling scheme is effective in five ways:
the overhead time of copy parameters, the time of generating data tags, the time of gen-
erating the same number of replicas, the time of generating proofs and verifying the
proofs of the challenge blocks, and the total time of the different replicas and challenged
blocks. We compare this paper scheme with those of Guo et al. [39], Armknecht et al. [22],
Gritti et al. [45] and Shen et al. [23].

We demonstrate the time required to generate copy parameters for different numbers
of replicas. To maintain consistency with the subsequent experiments, we limit the number
of replicas to 20 or fewer. As shown in Figure 2a, the copy parameters in our scheme are
simply the random seeds sent by the client to each cloud storage node and the Ref-Table.
Thus, the transmission time is extremely short and can be almost neglected. This indicates
that the overhead of generating copy parameters in our scheme is independent of the
number of replicas, presenting a very low constant overhead.

(a) (b)

Figure 2. The time cost of copy parameters generation (a) between our scheme and Mirror [22],
IMP-Mirror [39], Friendly-PoRR [23] and time cost of tags generation (b) between our scheme and
Mirror [22], IMP-Mirror [39], Friendly-PoRR [23], P-PoRR [45].

Electronics 2024, 13, 4167 22 of 26

We demonstrate the time consumed to generate the corresponding tags for different
data blocks. As shown in Figure 2b, the tag generation time in our scheme is not the fastest.
This is because the tags we set need to ensure the final tags can be aggregated. Additionally,
to ensure higher security, especially to resist outsourcing attacks and generation attacks,
we made a compromise in the tag generation time. Constructing more secure tags requires
additional computation time, which leads to an increase in time overhead. However, this
overhead is justified, as the extra time is invested to enhance the security and robustness of
the overall scheme, better protecting data integrity.

We demonstrate the time overhead required for generating replicas for different sizes
of replica data when the data block size is fixed at 8 KB Figure 3a. We know that all the
necessary parameters for generating replicas, such as random numbers and the Ref-Table,
have already been obtained before replica generation. Therefore, in our scheme, after dis-
tributing the delegated replica data across different clouds, the replica generation time is
significantly accelerated. In contrast, in the schemes proposed by Armknecht et al. [22],
Guo et al. [39], and Shen et al. [23] for single-cloud storage, the replica generation time
increases linearly with the number of replicas. Additionally, we randomly constructed the
Ref-Table to calculate the time for replica generation in a multi-cloud environment; see
Figure 3b. Although the time overhead is not ideal, it demonstrates that our scheme can
handle different delegation numbers for different clouds based on the Ref-Table.

(a) (b)

Figure 3. The time cost of copy parameters generation with uniformly distributed Ref-Table (a) and
random Ref-Table (b) between our scheme and Mirror [22], IMP-Mirror [39], Friendly-PoRR [23].

We demonstrate the time overhead required for generating proofs for different num-
bers of challenged blocks. In comparison with the schemes of Armknecht et al. [22],
Guo et al. [39], and Shen et al. [23] in a single-cloud environment, as shown in Figure 4a,
by eliminating communication delays and using the same delegated replicas, our approach
generates proofs more efficiently. In contrast to a single-cloud environment, when each
cloud is challenged, it only needs to generate proofs for the challenged blocks correspond-
ing to the replicas it stores. Since the number of replicas is distributed across different
clouds, the challenges are also spread out, accelerating the proof generation process.

In Figure 4b, compared to the schemes of Armknecht et al. [22], Guo et al. [39],
Gritti et al. [45] and Shen et al. [23], our solution aggregates all servers belonging to the
same cloud in the authentication phase with a unique identifier for that cloud. At the
same time, the extension to all clouds will enable batch authentication in multi-cloud
environments, which will lead to a reduction in authentication time.

Electronics 2024, 13, 4167 23 of 26

(a) (b)

Figure 4. Time cost of proofs generation (a) between our scheme and Mirror [22], IMP-Mirror [39],
Friendly-PoRR [23] and time cost of verify time (b) with different numbers of challenged blocks
between our scheme and Mirror [22], IMP-Mirror [39], Friendly-PoRR [23], P-PoRR [45].

We present the total time overhead required for different numbers of replicas and
different challenged blocks under the condition of maintaining 20 data blocks, each sized
8 KB, across various schemes. As shown in Figure 5, the efficiency advantage of our scheme
is clearly demonstrated. Regardless of the scenario, our scheme consistently achieves the
optimal overall time efficiency.

Figure 5. The total time with between our scheme and Mirror [22], IMP-Mirror [39], Friendly-
PoRR [23].

The proposed scheme demonstrates excellent performance under various parameter
settings, making it adaptable to environments with large files, multiple replicas, and multi-
cloud storage. Furthermore, its resistance to outsourcing attacks and generation attacks,
combined with a constant-level user computation overhead, makes it suitable for most

Electronics 2024, 13, 4167 24 of 26

multi-cloud environments. Examples include its application in cloud storage systems for
electronic medical records, electronic evidence, and e-commerce systems.

6. Conclusions

In this paper, we propose a public authentic-replica sampling mechanism in a dis-
tributed storage environment, give a formal definition of authentic-replica, and at the same
time give a security model of the authentic-replica sampling mechanism. Based on the
time-locking puzzle, we design an authentic-replica auditing mechanism using an identity
encryption mechanism and succinct proof technique, which enables the scheme to satisfy
the authentic-replica characteristics and resist outsourcing attacks and generation attacks.
In addition, the scheme achieves the cost of generating and uploading copy parameters
by the client to be at a constant level even if the number of stored replicas grows through
the combination of random numbers and Ref-Table, which ensures the server will store
data with a smaller bandwidth, and at the same time, guarantees the publicly verifiable
characteristic through the publicly recoverable copy parameters. The experimental results
show that the scheme is secure, acceptably efficient, and reasonable. The experiments show
that our scheme makes the time required to generate copy parameters negligible while
significantly optimizing the time required for replica generation. As the amount of replica
data increases, the time spent does not grow linearly. Additionally, due to the multi-party
aggregation design, the verification time is also optimal. Compared to the latest schemes,
the verification time is reduced by approximately 30%. We will expand the functionality of
data migration as the future direction of this paper, aiming to dynamically migrate user
data in distributed storage while maintaining low costs. Ensuring that clients are convinced
the new physical space can meet their needs will be a key issue we need to focus on and
resolve moving forward.

Author Contributions: Conceptualization, J.Y.; methodology, J.Y.; validation, J.Y. and Y.B.; resources,
J.X.; writing—original draft preparation, J.Y.; writing—review and editing, J.Y. and S.H.; visualization,
J.Y.; supervision, Z.H.; funding acquisition, W.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China grant
number 62072249. This work was also supported by the National Natural Science Foundation of China
(62032025, 62172258), and the Shenzhen Science and Technology Program (JCYJ20210324134810028).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Wei Wan was employed by the company State Grid ZaoZhuang
Power Supply Company. The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Xue, K.; Li, S.; Hong, J.; Xue, Y.; Yu, N.; Hong, P. Two-cloud secure database for numeric-related SQL range queries with privacy

preserving. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1596–1608. [CrossRef]
2. Majumdar, A.; Biswas, A.; Majumder, A.; Sood, S.K.; Baishnab, K.L. A novel DNA-inspired encryption strategy for concealing

cloud storage. Front. Comput. Sci. 2021, 15, 1–18. [CrossRef]
3. Noor, T.H.; Sheng, Q.Z.; Zeadally, S.; Yu, J. Trust management of services in cloud environments: Obstacles and solutions. ACM

Comput. Surv. (CSUR) 2013, 46, 1–30. [CrossRef]
4. Mansouri, Y.; Toosi, A.N.; Buyya, R. Data storage management in cloud environments: Taxonomy, survey, and future directions.

ACM Comput. Surv. (CSUR) 2017, 50, 1–51. [CrossRef]
5. Khan, A.A.; Zakarya, M. Energy, performance and cost efficient cloud datacentres: A survey. Comput. Sci. Rev. 2021, 40, 100390.

[CrossRef]
6. Li, Y.; Yu, Y.; Min, G.; Susilo, W.; Ni, J.; Choo, K.K.R. Fuzzy identity-based data integrity auditing for reliable cloud storage

systems. IEEE Trans. Dependable Secur. Comput. 2017, 16, 72–83. [CrossRef]
7. Wei, J.; Chen, X.; Wang, J.; Huang, X.; Susilo, W. Securing fine-grained data sharing and erasure in outsourced storage systems.

IEEE Trans. Parallel Distrib. Syst. 2022, 34, 552–566. [CrossRef]
8. Zhang, Y.; Yu, J.; Hao, R.; Wang, C.; Ren, K. Enabling efficient user revocation in identity-based cloud storage auditing for shared

big data. IEEE Trans. Dependable Secur. Comput. 2018, 17, 608–619. [CrossRef]

http://doi.org/10.1109/TIFS.2017.2675864
http://dx.doi.org/10.1007/s11704-019-9015-2
http://dx.doi.org/10.1145/2522968.2522980
http://dx.doi.org/10.1145/3136623
http://dx.doi.org/10.1016/j.cosrev.2021.100390
http://dx.doi.org/10.1109/TDSC.2017.2662216
http://dx.doi.org/10.1109/TPDS.2022.3225274
http://dx.doi.org/10.1109/TDSC.2018.2829880

Electronics 2024, 13, 4167 25 of 26

9. Xu, J.; Wang, C.; Jia, X. A survey of blockchain consensus protocols. ACM Comput. Surv. 2023, 55, 1–35. [CrossRef]
10. Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv.

Tutor. 2020, 22, 1432–1465. [CrossRef]
11. Majumdar, S.; Chawla, G.S.; Alimohammadifar, A.; Madi, T.; Jarraya, Y.; Pourzandi, M.; Wang, L.; Debbabi, M. ProSAS: Proactive

security auditing system for clouds. IEEE Trans. Dependable Secur. Comput. 2021, 19, 2517–2534. [CrossRef]
12. He, D.; Kumar, N.; Zeadally, S.; Wang, H. Certificateless provable data possession scheme for cloud-based smart grid data

management systems. IEEE Trans. Ind. Inform. 2017, 14, 1232–1241. [CrossRef]
13. Miao, Y.; Huang, Q.; Xiao, M.; Susilo, W. Blockchain assisted multi-copy provable data possession with faults localization in

multi-cloud storage. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3663–3676. [CrossRef]
14. Gudeme, J.R.; Pasupuleti, S.K.; Kandukuri, R. Certificateless multi-replica public integrity auditing scheme for dynamic shared

data in cloud storage. Comput. Secur. 2021, 103, 102176. [CrossRef]
15. Zhao, Y.; Qu, Y.; Xiang, Y.; Uddin, M.P.; Peng, D.; Gao, L. A comprehensive survey on edge data integrity verification:

Fundamentals and future trends. ACM Comput. Surv. 2024, 57, 1–34. [CrossRef]
16. Yu, H.; Yang, Z.; Waqas, M.; Tu, S.; Han, Z.; Halim, Z.; Sinnott, R.O.; Parampalli, U. Efficient dynamic multi-replica auditing for

the cloud with geographic location. Future Gener. Comput. Syst. 2021, 125, 285–298. [CrossRef]
17. Garg, N.; Bawa, S.; Kumar, N. An efficient data integrity auditing protocol for cloud computing. Future Gener. Comput. Syst. 2020,

109, 306–316. [CrossRef]
18. Zhou, L.; Fu, A.; Mu, Y.; Wang, H.; Yu, S.; Sun, Y. Multicopy provable data possession scheme supporting data dynamics for

cloud-based electronic medical record system. Inf. Sci. 2021, 545, 254–276. [CrossRef]
19. Benisi, N.Z.; Aminian, M.; Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appl. 2020,

162, 102656. [CrossRef]
20. Susilo, W.; Li, Y.; Guo, F.; Lai, J.; Wu, G. Public cloud data auditing revisited: Removing the tradeoff between proof size and

storage cost. In Proceedings of the European Symposium on Research in Computer Security, Copenhagen, Denmark, 26–30
September 2022; pp. 65–85.

21. Sellami, Y.; Imine, Y.; Gallais, A. A verifiable data integrity scheme for distributed data sharing in fog computing architecture.
Future Gener. Comput. Syst. 2024, 150, 64–77. [CrossRef]

22. Armknecht, F.; Barman, L.; Bohli, J.M.; Karame, G.O. Mirror: Enabling proofs of data replication and retrievability in the cloud. In
Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 1051–1068.

23. Shen, J.; Chen, X.; Huang, X.; Xiang, Y. Public Proofs of Data Replication and Retrievability with User-friendly Replication. IEEE
Trans. Dependable Secur. Comput. 2023, 31, 2057–2067. [CrossRef]

24. Ren, Y.; Leng, Y.; Cheng, Y.; Wang, J. Secure data storage based on blockchain and coding in edge computing. Math. Biosci. Eng
2019, 16, 1874–1892. [CrossRef] [PubMed]

25. Sookhak, M.; Gani, A.; Talebian, H.; Akhunzada, A.; Khan, S.U.; Buyya, R.; Zomaya, A.Y. Remote data auditing in cloud
computing environments: A survey, taxonomy, and open issues. ACM Comput. Surv. (CSUR) 2015, 47, 1–34. [CrossRef]

26. Daniel, E.; Tschorsch, F. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun.
Surv. Tutor. 2022, 24, 31–52. [CrossRef]

27. Yu, H.; Chen, Y.; Yang, Z.; Chen, Y.; Yu, S. EDCOMA: Enabling Efficient Double Compressed Auditing for Blockchain-Based
Decentralized Storage. IEEE Trans. Serv. Comput. 2024, 17, 2273–2286. [CrossRef]

28. Zhou, M.; Yang, Z.; Yu, H.; Yu, S. VDFChain: Secure and verifiable decentralized federated learning via committee-based
blockchain. J. Netw. Comput. Appl. 2024, 223, 103814. [CrossRef]

29. Wang, X.; Yu, H.; Chen, Y.; Sinnott, R.O.; Yang, Z. PrVFL: Pruning-Aware Verifiable Federated Learning for Heterogeneous Edge
Computing. IEEE Trans. Mob. Comput. 2024, 1–18.. [CrossRef]

30. Ren, Y.; Lv, Z.; Xiong, N.N.; Wang, J. HCNCT: A cross-chain interaction scheme for the blockchain-based metaverse. ACM Trans.
Multimed. Comput. Commun. Appl. 2024, 20, 1–23. [CrossRef]

31. Du, Y.; Duan, H.; Zhou, A.; Wang, C.; Au, M.H.; Wang, Q. Enabling secure and efficient decentralized storage auditing with
blockchain. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3038–3054. [CrossRef]

32. Li, Y.; Yu, Y.; Chen, R.; Du, X.; Guizani, M. IntegrityChain: Provable data possession for decentralized storage. IEEE J. Sel. Areas
Commun. 2020, 38, 1205–1217. [CrossRef]

33. Yang, Y.; Chen, Y.; Chen, F.; Chen, J. An efficient identity-based provable data possession protocol with compressed cloud storage.
IEEE Trans. Inf. Forensics Secur. 2022, 17, 1359–1371. [CrossRef]

34. Tian, G.; Hu, Y.; Wei, J.; Liu, Z.; Huang, X.; Chen, X.; Susilo, W. Blockchain-based secure deduplication and shared auditing in
decentralized storage. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3941–3954. [CrossRef]

35. Ren, Y.; Leng, Y.; Qi, J.; Sharma, P.K.; Wang, J.; Almakhadmeh, Z.; Tolba, A. Multiple cloud storage mechanism based on
blockchain in smart homes. Future Gener. Comput. Syst. 2021, 115, 304–313. [CrossRef]

36. Tang, J.; Cui, Y.; Li, Q.; Ren, K.; Liu, J.; Buyya, R. Ensuring security and privacy preservation for cloud data services. ACM
Comput. Surv. (CSUR) 2016, 49, 1–39. [CrossRef]

37. Sun, L.; Wang, Y.; Ren, Y.; Xia, F. Path signature-based xai-enabled network time series classification. Sci. China Inf. Sci. 2024,
67, 170305. [CrossRef]

http://dx.doi.org/10.1145/3579845
http://dx.doi.org/10.1109/COMST.2020.2969706
http://dx.doi.org/10.1109/TDSC.2021.3062204
http://dx.doi.org/10.1109/TII.2017.2761806
http://dx.doi.org/10.1109/TIFS.2022.3211642
http://dx.doi.org/10.1016/j.cose.2020.102176
http://dx.doi.org/10.1145/3680277
http://dx.doi.org/10.1016/j.future.2021.05.039
http://dx.doi.org/10.1016/j.future.2020.03.032
http://dx.doi.org/10.1016/j.ins.2020.08.031
http://dx.doi.org/10.1016/j.jnca.2020.102656
http://dx.doi.org/10.1016/j.future.2023.08.016
http://dx.doi.org/10.1109/TDSC.2023.3299627
http://dx.doi.org/10.3934/mbe.2019091
http://www.ncbi.nlm.nih.gov/pubmed/31137190
http://dx.doi.org/10.1145/2764465
http://dx.doi.org/10.1109/COMST.2022.3143147
http://dx.doi.org/10.1109/TSC.2024.3417337
http://dx.doi.org/10.1016/j.jnca.2023.103814
http://dx.doi.org/10.1109/TMC.2024.3450542
http://dx.doi.org/10.1145/3594542
http://dx.doi.org/10.1109/TDSC.2021.3081826
http://dx.doi.org/10.1109/JSAC.2020.2986664
http://dx.doi.org/10.1109/TIFS.2022.3159152
http://dx.doi.org/10.1109/TDSC.2021.3114160
http://dx.doi.org/10.1016/j.future.2020.09.019
http://dx.doi.org/10.1145/2906153
http://dx.doi.org/10.1007/s11432-023-3978-y

Electronics 2024, 13, 4167 26 of 26

38. Barsoum, A.F.; Hasan, M.A. Provable multicopy dynamic data possession in cloud computing systems. IEEE Trans. Inf. Forensics
Secur. 2014, 10, 485–497. [CrossRef]

39. Guo, W.; Qin, S.; Lu, J.; Gao, F.; Jin, Z.; Wen, Q. Improved proofs of retrievability and replication for data availability in cloud
storage. Comput. J. 2020, 63, 1216–1230. [CrossRef]

40. Zhang, C.; Li, X.; Au, M.H. epost: Practical and client-friendly proof of storage-time. IEEE Trans. Inf. Forensics Secur. 2023,
18, 1052–1063. [CrossRef]

41. Boneh, D.; Bonneau, J.; Bünz, B.; Fisch, B. Verifiable delay functions. In Proceedings of the Annual International Cryptology
Conference, Santa Barbara, CA, USA, 9–23 August 2018; pp. 757–788.

42. Liu, Y.; Wang, Q.; Yiu, S.M. Towards practical homomorphic time-lock puzzles: Applicability and verifiability. In Proceedings of
the European Symposium on Research in Computer Security, Copenhagen, Denmark, 26–30 September 2022; pp. 424–443.

43. Katz, J.; Loss, J.; Xu, J. On the security of time-lock puzzles and timed commitments. In Proceedings of the Theory of
Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA, 16–19 November 2020; Proceedings, Part III 18;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 390–413.

44. Boneh, D.; Bünz, B.; Fisch, B. Batching techniques for accumulators with applications to IOPs and stateless blockchains. In
Proceedings of the Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 18–22 August 2019; Proceedings, Part I 39; Springer Berlin/Heidelberg, Germany, 2019; pp. 561–586.

45. Gritti, C. Publicly verifiable proofs of data replication and retrievability for cloud storage. In Proceedings of the 2020 International
Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020; pp. 431–436.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2014.2384391
http://dx.doi.org/10.1093/comjnl/bxz151
http://dx.doi.org/10.1109/TIFS.2022.3233780

	Introduction
	Preliminaries
	Time-Lock Puzzles
	Succinct Proofs for Hidden Order Groups

	Syetem Model and Security Model of Public Authentic-Replica Sampling Mechanism
	Notations
	Overview of Our System Model
	The Formal Definition of Public Authentic-Replica Sampling Mechanism
	Serurity Model

	Our Proposed Scheme
	Construction of the Public Authentic-Replica Sampling Scheme
	Security Analysis

	Performance of Our Scheme
	Property Analysis
	Communication Overhead
	Experimental Performance

	Conclusions
	References

