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Abstract: Early screening for diabetes can promptly identify potential early stage patients, possibly
delaying complications and reducing mortality rates. This paper presents a novel technique for early
diabetes screening and prediction, called the Attention-Enhanced Deep Neural Network (AEDNN).
The proposed AEDNN model incorporates an Attention-based Feature Weighting Layer combined
with deep neural network layers to achieve precise diabetes prediction. In this study, we utilized the
Diabetes-NHANES dataset and the Pima Indians Diabetes dataset. To handle significant missing
values and outliers, group median imputation was applied. Oversampling techniques were used
to balance the diabetes and non-diabetes groups. The data were processed through an Attention-
based Feature Weighting Layer for feature extraction, producing a feature matrix. This matrix was
subjected to Hadamard product operations with the raw data to obtain weighted data, which were
subsequently input into deep neural network layers for training. The parameters were fine-tuned
and the L2 regularization and dropout layers were added to enhance the generalization performance
of the model. The model’s reliability was thoroughly assessed through various metrics, including
the accuracy, precision, recall, F1 score, mean squared error (MSE), and R2 score, as well as the ROC
and AUC curves. The proposed model achieved a prediction accuracy of 98.4% in the Pima Indians
Diabetes dataset. When the test dataset was expanded to the large-scale Diabetes-NHANES dataset,
which contains 52,390 samples, the test precision of the model improved further to 99.82%, with an
AUC of 0.9995. A comparative analysis was conducted using multiple models, including logistic
regression with L1 regularization, support vector machine (SVM), random forest, K-nearest neighbors
(KNNs), AdaBoost, XGBoost, and the latest semi-supervised XGBoost. The feature extraction method
using attention mechanisms was compared with the classical feature selection methods, Lasso and
Ridge. The experiments were performed on the same dataset, and the conclusion was that the
Attention-based Ensemble Deep Neural Network (AEDNN) outperformed all the aforementioned
methods. These results indicate that the model not only performs well on smaller datasets but also
fully leverages its advantages on larger datasets, demonstrating strong generalization ability and
robustness. The proposed model can effectively assist clinicians in the early screening of diabetes
patients. This is particularly beneficial for the preliminary screening of high-risk individuals in large-
scale, extensive healthcare datasets, followed by detailed examination and diagnosis. Compared to
the existing methods, our AEDNN model showed an overall performance improvement of 1.75%.

Keywords: diabetes prediction; attention-enhanced deep neural network (AEDNN); attention-based
feature weighting layer; Pima Indians diabetes dataset
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1. Introduction

Diabetes is a serious metabolic disorder [1]. Insulin levels directly influence blood glu-
cose, and insufficient insulin secretion by the pancreas leads to elevated blood sugar levels,
which over time results in diabetes [2]. According to the International Diabetes Federation’s
“IDF Diabetes Atlas 2021”, 10.5% of the global population has diabetes, with more than 75%
of patients residing in low- and middle-income countries. The number of diabetes cases is
estimated to increase to 643 million by 2030 and 783 million by 2045. Additionally, the IDF
reports that India ranks second worldwide in the number of diabetes patients, after China,
with approximately 77 million individuals affected [3]. According to data from the World
Health Organization [4], the mortality rate associated with diabetes and its complications
is alarmingly high, with one person dying every five seconds due to diabetes or its related
complications [5]. Diabetic nephropathy, retinopathy, and diabetic foot are leading causes
of kidney failure, blindness, and amputations. In 2019, diabetes directly caused about
1.5 million deaths, and in 2021, 6.7 million adults died from diabetes [6].

Gestational diabetes is a specific type of diabetes that occurs during pregnancy. Unlike
type 1 diabetes, gestational diabetes is usually temporary, with blood glucose levels usually
returning to normal after delivery. It results from hormonal changes during pregnancy that
affect the body’s ability to use insulin, leading to elevated blood sugar levels. In contrast,
children and adolescents are more susceptible to type 1 diabetes, a condition caused by
pancreatic failure to produce insulin, requiring lifelong insulin therapy. Type 2 diabetes
primarily affects middle-aged, elderly, and obese individuals and is characterized by
pancreatic dysfunction and insulin resistance [7]. Early screening and targeted treatment
of prediabetic patients are essential, significantly delaying the onset of complications and
improving quality of life [8]. Artificial intelligence, particularly deep learning, plays an
increasingly important role in disease screening assistance.

The main contributions of this study are as follows:

1. This paper proposes an Attention-based Feature Weighting Layer for dynamically
analyzing the weights of physical examination data and adaptively adjusting the
dimensions, thus establishing a predictive relationship between the physical examina-
tion data and diabetes.

2. This paper presents a universally applicable algorithm for processing physical exami-
nation data, which maintains data integrity under the conditions of outliers, missing
values, and human recording errors, thus enhancing data robustness. In addition, this
algorithm employs the SMOTE method to ensure data diversity.

3. This paper introduces a high-quality dataset, the Diabetes-NHANES dataset, derived
from the NHANES data spanning 1999 to 2020, comprising 134,516 samples. In col-
laboration with endocrinologists from Xinyang Central Hospital in Henan Province,
we meticulously selected 41 features from an initial pool of 5154, based on their direct
and indirect relevance to diabetes. A mean imputation method was used to adjust
for measurement discrepancies, and a rigorous sample exclusion strategy was de-
veloped: samples with more than 20% missing data in directly related features or
less than 50% completeness in indirectly related features were excluded. Ultimately,
52,391 clean, well-organized, and ready-to-use diabetes-related samples were ob-
tained, forming the Diabetes-NHANES dataset. This dataset is publicly available at
https://github.com/hongweihaha/Diabetes-NHANESDataset.git (accessed on 17
October 2024).

4. In practical experiments, this data model exhibited superior performance compared to
the existing models. The model achieved an accuracy of 98.4% on real-world datasets.

Section 2 explores the application of the relevant literature in the prediction of diabetes.
Section 3 provides a detailed explanation of the materials and data preprocessing methods.
Section 4 presents the proposed model architecture. Sections 5 and 6 introduce the model’s
training and optimization process, followed by its testing and evaluation.

https://github.com/hongweihaha/Diabetes-NHANESDataset.git
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2. Related Work

Many researchers have investigated various approaches for the prediction of diabetes.
Shojaee-Mend et al. utilized a variety of algorithms, including artificial neural networks [9],
to predict fasting blood glucose levels in adults from Tehran, Iran. The CatBoost model
demonstrated the best performance with an AUC of 0.737[10]. Kumar et al. developed an
integrated machine learning framework called “iDP”, employing six techniques: random
forest, Decision Tree, neural networks, AdaBoost, support vector machine, and XGBoost.
The iDP framework achieved impressive results, with an accuracy of 95.26% and an AUC
of 91.15% [11].

El-Bashbishy et al. focused on predicting pediatric diabetes using the Mansoura Uni-
versity Children’s Hospital Diabetes dataset (MUCHD) through a deep neural network
Multilayer Perceptron algorithm. Their model, consisting of ten hidden layers and auto-
mated hyperparameter tuning, achieved an impressive prediction accuracy of 99.8% [12].
Chen et al. began integrating deep neural networks with ensemble learning algorithms
to enhance the interpretability of the models. For instance, by incorporating the modified
random forest incremental interpretation (MRFII) algorithm, the model not only diagnoses
the presence of diabetes but also provides a certain level of interpretability. This approach
improved diagnostic accuracy by 11% compared to traditional models [13].

Zhang et al. utilized a Backpropagation Neural Network (BPNN) with batch normal-
ization for non-invasive diabetes diagnosis, achieving high accuracy rates across several
datasets [14]. In the realm of disease prediction, attention models have proven invalu-
able. An et al. introduced DeepRisk, an attention mechanism-based model that improves
cardiovascular disease prediction accuracy by effectively integrating heterogeneous and
time-ordered medical data [15]. Djenouri et al. combined multiple deep learning architec-
tures (VGG16, RESNET, and DenseNet) with ensemble learning and attention mechanisms,
achieving high detection accuracy in medical and plant disease datasets [16]. Zou et al.
explored the XGBoost algorithm for predicting diabetes progression in prediabetic inter-
vention treatments, demonstrating significant risk reduction in high-risk groups through
specific interventions [17].

Despite these advancements, current methods have limitations in handling missing
values and outliers effectively. This paper introduces a novel technique, the Attention-
Enhanced Deep Neural Network (AEDNN), which leverages multi-head attention mecha-
nisms and deep neural networks to enhance diabetes prediction accuracy. By addressing
the Pima Indians Diabetes dataset’s missing values and outliers through group median im-
putation and employing oversampling techniques, the AEDNN model offers a significant
improvement in early diabetes screening and prediction. The proposed model, with meticu-
lous parameter tuning and robust evaluation metrics, demonstrates an overall performance
enhancement of 0.31% compared to the existing methods.

3. Materials and Data Preprocessing

The original medical data of patients contain a wealth of untapped information, which
objectively assesses the relationship between patients and specific diseases. Different
physiological parameters represent distinct features. Supervised learning, utilizing labeled
data for model training, is widely adopted [18]. However, data quality is crucial for effective
model learning. Missing values, outliers, and imbalanced data pose significant challenges
to model generalization, leading to decreased classification performance and potentially
erroneous predictions. Therefore, data preprocessing is imperative. The boxplot outlier
detection algorithm is employed to identify anomalous data points, and then medians for
each feature are calculated separately for diabetic and non-diabetic groups. These medians
are then used to address missing and outlier values [19]. Oversampling techniques are
also utilized to address the issue of data imbalance. Furthermore, data normalization
eliminates the scale differences among indicators, scaling the data to a unified range. These
preprocessing methods offer more accurate and higher-quality data for models, thereby
enhancing their robustness and generalization capabilities.
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This study introduces the innovative incorporation of the Attention-based Feature
Weighting Layer, as shown in Figure 1. The model comprises four independent layers:
the Attention-based Feature Weighting Layer, input layer, hidden layers, and output
layer. Specifically, the Attention-based Feature Weighting Layer employs four attention
heads to automatically adjust the attention weights of each feature based on a weight
matrix. This aggregated attention is then fed into a fully connected neural network model.
The input layer receives eight weighted features and the data propagate through three
hidden layers. Each neuron in a hidden layer is connected to the output of the previous
layer. The output of each layer, generated through activation functions, is then connected to
the next layer. The output of each layer incorporates the abstract computational results of
the previous layer. Fixing the initial random weights and biases ensures the reproducibility
and stability of the model, while optimization of the weights and biases occurs during the
backpropagation process. By combining the advantages of the Attention-based Feature
Weighting Layer and employing three hidden layers, the model achieves robust and efficient
classification of diabetes.

Figure 1. Multi-head attention feature weighting module.

The system comprises several stages, including data collection, data preprocessing,
model design and training, optimization, and model testing and evaluation, as shown
in Figure 2. To address missing values and outliers in the dataset, we adopted median
imputation. This method is suitable for continuous numerical features and is robust
to outliers. In addition, we employ oversampling techniques, specifically the SMOTE
algorithm, to address data imbalance. Subsequently, feature normalization is performed to
ensure that different features have roughly equal influence on the model.

The multi-head attention mechanism empowers the model to autonomously learn from
data by selectively focusing on key features. This approach enhances learning efficiency
and enables the model to effectively extract relevant information. The weighted data are
then fed into a deep learning model for training, where the model iteratively optimizes its
parameters using backpropagation to minimize the loss function.

3.1. Raw Dataset

The self-constructed Diabetes-NHANES dataset used in this study is derived from
the NHANES dataset, which includes a wide range of features that describe samples from
multiple perspectives, such as demographic characteristics, medical history, nutritional
status, physiological measurements, and laboratory test results. Due to its comprehensive
coverage, this dataset is well suited for large-scale population health analyses. Additionally,
the well-known Pima Indians Diabetes dataset was employed to further validate the
performance of the models.

From the NHANES data (1999–2020), 134,516 samples were extracted and a proprietary
dataset was formed specifically for diabetes prediction based on the relevance of the
features for diabetes and the extent of missing data in each sample. Under the guidance of
endocrinologists, 41 features directly or indirectly related to diabetes were selected from
an initial 5154 features. Invalid survey responses, such as blood pressure data that could
not be accurately filled out by respondents, were excluded, instead focusing on qualitative
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data, such as whether the individual was diagnosed with diabetes. The determination
of diabetes status was based on three survey responses: “DID040: Age when first told
you had diabetes”, “DID040G: Age when first told you had diabetes—questionnaire”,
and “DID040Q: Age when first told you had diabetes—number”, which was further
validated by “DIQ010: The doctor told you that you have diabetes.” Multiple data sources
were linked by unique IDs to confirm each sample’s diabetes status.

Figure 2. The workflow and structure of the diabetes prediction system.

There are ones with multiple measurements, such as the following:

- “BPXDI1: Diastolic blood pressure (first reading) mm Hg”;
- “BPXDI11: Diastolic blood pressure (first reading) replicate 1 mm Hg”;
- “BPXDI12: Diastolic blood pressure (first reading) replicate 2 mm Hg”.

For these, the values were smoothed using a non-empty value average imputation
method to mitigate the error across multiple readings. If all three measurements were
available, the average of the three was used as the final value. If one measurement was
missing, the average of the two available measurements was used instead. This dynamic
averaging based on the number of valid data points significantly enhances data authenticity.

The NHANES dataset also contains a substantial amount of annotation codes, such as
the following:

- BMDSADCM: Sagittal Abdominal Diameter Comment;
- BMIARMC: Arm Circumference Comment;
- BMISUB: Subscapular Skinfold Comment;
- BMITRI: Triceps Skinfold Comment;
- BMIWT: Weight Comment.

These codes were used to record methods or comments that might affect the measure-
ment results during data collection. However, for the purposes of this study, such codes
are irrelevant to diabetes prediction, so they were removed.

A strict sample exclusion strategy was designed. Samples with over 20% missing
values for features directly related to diabetes were excluded, as were those with less than
50% completeness for features indirectly related to diabetes. After applying these criteria,
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a final dataset of 52,390 complete samples was obtained, resulting in a clean, organized,
and user-friendly Diabetes-NHANES dataset.

The Diabetes-NHANES dataset contains 41 features and 52,390 samples, of which
11,168 are diabetic patients and 41,222 are non-diabetic individuals, with non-diabetic
cases being nearly four times more prevalent than diabetic cases, indicating a significant
class imbalance. In contrast, the Pima Indians Diabetes dataset consists of 768 samples
with 8 features, including 268 diabetic patients and 500 non-diabetic patients, with the
non-diabetic population being approximately twice the size of the diabetic population.
Although the data have been meticulously collected and processed, there are still numerous
missing values, outliers in features, and imbalanced data.

3.2. Data Preprocessing

The preprocessing phase focused on addressing missing values and outliers, where
group median imputation was applied to handle absent and anomalous data. Oversampling
techniques were also used to balance the diabetic and non-diabetic sample sizes. Lastly,
data normalization was performed to ensure that all features were scaled consistently
within the same range.

In this study, the data preprocessing steps included handling missing values, detecting
and addressing outliers, oversampling, and data normalization. To ensure data quality and
prevent biases during model training, the specific preprocessing steps are as follows:

1. Missing Value Handling

Both the Pima Indians Diabetes dataset and the Diabetes-NHANES dataset contain
missing values in some features. Directly removing samples with missing values could
result in significant information loss and a reduction in data volume. Therefore, this study
employed a grouped median imputation method. This approach groups the data based on
class labels (diabetic and non-diabetic), and the missing values in each group are imputed
using the median value of the corresponding group. This method prevents the loss of
valuable information and preserves the overall data distribution.

2. Outlier Detection and Treatment

To identify and handle outliers, this study employed the boxplot method. A boxplot
determines outliers based on the interquartile range (IQR), defined by the first quartile
(Q1) and third quartile (Q3). Outliers are defined as data points falling outside the “lower
bound” (Q1 − 1.5 IQR) or “upper bound” (Q3 + 1.5 IQR). Detected outliers were treated
using the grouped median imputation method, ensuring that the treatment of outliers does
not distort the overall data distribution.

3. Class Imbalance Treatment

Due to the significant class imbalance between diabetic and non-diabetic patients,
the model could be biased toward the majority class during training. To address this
issue, the SMOTE (Synthetic Minority Oversampling Technique) method was applied. This
technique generates synthetic minority class samples by interpolating between existing
minority class samples and their nearest neighbors, thus balancing the class distribution in
the dataset. By doing so, the imbalance between diabetic and non-diabetic samples was
mitigated, reducing bias in the model training.

4. Data Normalization

Finally, all the features were normalized using the min–max normalization technique,
which scales each feature to the [0, 1] range. Specifically, the normalization formula is
given as

Xnorm =
X − Xmin

Xmax − Xmin
(1)

Here, X represents the original feature value, and Xmin and Xmax are the minimum
and maximum feature values, respectively. Normalization helps eliminate the impact
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of feature scale differences on model training, improving both convergence speed and
prediction accuracy.

Through these four preprocessing steps, this study ensured data integrity and balance,
providing a more reliable foundation for model training and prediction.

3.2.1. Missing Values

The Pima Indians Diabetes dataset As shown in Table 1 and Diabetes-NHANES
dataset contain a significant number of missing values. In the Diabetes-NHANES dataset,
each feature exhibits an average of approximately 2300 missing values. These missing
values may be due to human errors during data collection or equipment failures, leading
to incomplete information on certain features. This incompleteness can introduce biases
into the model and degrade the data quality, potentially causing inaccurate predictions
when the model learns from incomplete data. Missing values are typically represented as 0
or NAN. Common approaches to handle missing values include deletion or imputation.
Directly deleting missing values risks losing critical information and reducing the sample
size, potentially distorting the model’s learning outcomes. Therefore, this study adopts
imputation methods to address missing values.

Table 1. Missing values and data ranges of features in the raw dataset.

Features Number of Missing Values Data Range

pregnant 0 0–17
Plasma_glucose_concentration 5 0–199

blood_pressure 35 1–122
Triceps_skin_fold_thickness 227 0–99

serum_insulin 374 0–846
BMI 11 0–67.1

Diabetes_pedigree_function 0 0.078–2.42
Age 0 21–81

3.2.2. Outliers

During the data collection process of the Pima Indians Diabetes dataset, human
errors may inevitably introduce outliers. The Diabetes-NHANES dataset also contains a
significant number of outliers. Therefore, it is necessary to conduct outlier detection on
this dataset. In this study, the outlier detection method is based on the boxplot algorithm.
A boxplot is a visual tool that intuitively displays the central tendency and dispersion of
the data while also identifying potential outliers.

In a boxplot, the box represents the interquartile range (IQR), with the upper boundary
corresponding to the third quartile (Q3) and the lower boundary to the first quartile (Q1).
A line inside the box indicates the median (Q2). The IQR, which is the difference between
Q3 and Q1, reflects the spread of the middle 50% of the data. To detect potential outliers,
upper and lower limits are calculated using specific formulas:

• Upper bound: Q3 + 1.5 × IQR;
• Lower bound: Q1 − 1.5 × IQR.

Data points falling outside these bounds are considered outliers.
Figures 3 and 4 illustrate the distribution of outliers for each extracted feature. A to-

tal of 50 outliers were detected in the sample. The range of outliers for the number of
pregnancies is 14 to 17. The outliers for plasma glucose concentration are 0. For blood
pressure, the range of outliers is 24 to 122. The outliers for triceps skinfold thickness are 99.
The range of outliers for serum insulin is 321 to 846. For BMI, the range of outliers is 52.3 to
67.1. The range of outliers for the function of the diabetes pedigree is 1.213 to 2.42. These
outliers may be attributed to data collection errors.
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Scatter plots allow for the intuitive identification of data anomalies, as shown in
Figure 4, enabling targeted attention to these outliers during data imputation. For instance,
as observed from the scatter plots, some data points for plasma glucose concentration are
zero, which can be considered as omissions due to human error during data collection.
Additionally, triceps skinfold thickness values of 99 are evident, which far exceed the
normal range and are likely recording errors.
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Figure 3. The Pima Indians Diabetes dataset employs boxplot annotation for the identification
of outliers.

Figure 4. The Diabetes-NHANES dataset employs boxplot annotation for the identification of outliers.

3.2.3. Group-Wise Median Imputation

Common methods for handling missing and outlier data include mean imputation,
mode imputation, and median imputation. Mean imputation can fail to reflect the distribu-
tion characteristics of the data, potentially leading to imputed values that deviate from the
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actual situation. Moreover, it may ignore correlations between different features, resulting
in the inaccurate imputation of data. Mode imputation, which uses the most frequently
occurring value in the dataset, is suitable for categorical data but not for continuous data.
For example, features such as plasma glucose concentration, blood pressure, and BMI can
take on any value within a certain range rather than fixed values. Furthermore, the mode
does not accurately describe the central tendency of the data. Therefore, neither mean nor
mode imputation effectively handles missing values in this dataset.

Given the significant differences between the diabetic and non-diabetic groups, where
various health indicators change substantially after the onset of diabetes, relying solely on
mean or mode imputation is inadequate. Imputing missing values based on the median of
each group is a more scientific and data-consistent approach. The method of group median
imputation involves dividing the data for the eight features into diabetic and non-diabetic
groups and filling in missing values with the median of the respective group. This method
accurately reflects the impact of disease status, ensuring data integrity and fully considering
the influence of disease on the data.

The following validation demonstrates this point well. Histograms of the original data
and the group median-imputed data are plotted to fully show the characteristics of the data
distribution, as shown in Figures 5 and 6.

0 50 100 150 200
Plasma_glucose_concentration

0

5

10

15

pr
eg

na
nt

s

Plasma_glucose_concentration

0 20 40 60 80 100
blood_pressure

0

5

10

15

pr
eg

na
nt

s

blood_pressure

0 10 20 30 40 50 60
Triceps_skin_fold_thickness

0

5

10

15

pr
eg

na
nt

s

Triceps_skin_fold_thickness

0 50 100 150 200 250 300
serum_insulin

0

5

10

15

pr
eg

na
nt

s

serum_insulin

0 10 20 30 40 50
BMI

0

5

10

15

pr
eg

na
nt

s

BMI

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Diabetes_pedigree_function

0

5

10

15

pr
eg

na
nt

s

Diabetes_pedigree_function

0 20 40 60
Age

0

5

10

15

pr
eg

na
nt

s

Age

Figure 5. Scatter plots can visually display missing values and outliers.
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Figure 6. The histograms of the raw data, respectively, show the data distribution of the 8 features.

The following Figures 7 and 8 intuitively demonstrates the different predictive per-
formances of the dataset under the same algorithm after applying three different data
imputation methods. As can be seen from the figure, mode imputation yields the poorest
results, with a test accuracy of only 75.5%. Mean imputation achieves a test accuracy of
80.5%, while median imputation outperforms the others with a test accuracy of 98.35%.

Figure 7. The histograms of the imputed data, obtained after group median imputation, can be
compared with the histograms of the raw data.
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Figure 8. Performance differences in the same algorithm on the same dataset under different data
imputation methods.

3.2.4. Oversampling of Data

The Pima Indians Diabetes dataset (PIDD) exhibits a significant class imbalance issue,
with only 268 samples for diabetic patients and 500 samples for healthy individuals. This
imbalance leads to machine learning models favoring the majority class (healthy individu-
als) and underperforming in identifying the minority class (diabetic patients), affecting the
overall classification performance.

SMOTE is a method for addressing class imbalance by generating synthetic minority
class samples [20]. It interpolates between minority class samples in the feature space to
create new synthetic samples and balance the class distribution. The SMOTE algorithm
finds k-nearest neighbors among minority class samples in the feature space and generates
new minority class samples that lie on the lines connecting these neighbors. This approach
increases data diversity and avoids overfitting issues caused by simple sample replication.
In this study, we employed the SMOTE method from the imbalanced-learn library to
resample the dataset. SMOTE is a straightforward technique for oversampling data. We
first imported the SMOTE module in the code and then used the f it_resample() method to
oversample the original data. The resampled dataset expands to 1000 samples, with 500
samples for diabetic patients and 500 samples for non-diabetic patients.

3.2.5. Data Normalization Processing

It is widely recognized that deep neural networks perform optimally when handling
data with consistent scales. The Pima Indians Diabetes dataset consists of eight features,
each varying in scale. As a result, feature scaling becomes essential. Two common scaling
methods include normalization and standardization. Normalization adjusts feature values
to a specified range, typically [0, 1] or [−1, 1], using min–max scaling. This method assigns
the minimum feature value as 0, the maximum as 1, and linearly scales all other values
accordingly. In this study, we utilized min–max normalization, as shown in Equation (1).
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4. Model Design

In this section, we primarily elucidate the model design, which integrates the Attention-
based Feature Weighting Layer with deep neural networks as shown in Figure 9.

Initially, the Attention-based Feature Weighting Layer is employed to compute the
weights of each feature relative to the target outcome (diabetes diagnosis). The weighted
data are then fed into the input layer of a fully connected neural network, which passes
through three hidden layers and an output layer, ultimately producing a prediction on the
presence of diabetes.

Figure 9. Attention-Enhanced Deep Neural Network.

4.1. Attention-Based Feature WeightingLayer

The innovation of this study lies in the training of deep neural networks guided by
multi-head attention, utilizing the Pima Indians Diabetes (PIDD) dataset and the Diabetes-
NHANES dataset for independent model training and validation, respectively. This ap-
proach enables the model to dynamically assign varying attention weights to different
features, emphasizing those that significantly impact the prediction of diabetes outcomes.

The Attention-based Feature Weighting Layer enhances the model’s representational
capabilities by applying attention mechanisms to various subspaces of the input represen-
tation. It accomplishes this by using multiple attention heads to compute distinct attention
representations in parallel, which are then combined to improve the model’s expressiveness
and generalization ability.

Attention mechanisms allow the model to dynamically allocate different attention
weights to various parts of the input sequence, thereby enhancing performance in process-
ing sequential data. By incorporating the number of attention heads as a hyperparameter in
the computations, it was found that four attention heads are sufficient for processing both
the large-scale Diabetes-NHANES dataset and the medium-sized Pima Indians Diabetes
dataset (PIDD). Each head operates in parallel, focusing on different feature subspaces,
thereby increasing the model’s expressiveness and better capturing information from the in-
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put sequence. This approach enhances the model’s robustness and generalization capability,
as shown in Figure 10.
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Figure 10. Attention-based Feature Weighting Layer.

1. Single-Head Attention Mechanism
In the single-head attention mechanism, assume the input sequence is X, which
comprises n feature vectors xi, each with a dimension of d. Given a query vector q
and a set of key vectors K, we can compute the attention weights αi and then use
these weights to perform a weighted sum of the value vectors V, obtaining the final
attention representation.

αi =
exp(q · ki)

∑n
j=1 exp(q · k j)

(2)

where ki is the i-th key vector, and q · ki denotes the dot product of the query vector q
and the key vector ki.
The final attention representation A is calculated as follows:

A =
n

∑
i=1

αi · vi (3)

2. Single Attention Head Calculation

Headi = Attention(QWQ
i , KWK

i , VWV
i ) (4)

where WQ
i , WK

i , and WV
i are the query, key, and value weight matrices for the i-th

head, respectively.
3. Attention-Based Feature Weighting Layer

In the Attention-based Feature Weighting Layer, we introduce multiple independent
attention heads, each with its own query, key, and value weight matrices. Each head
computes a set of attention weights and produces an attention representation. These
multiple attention representations are then concatenated and passed through a linear
transformation to obtain the final multi-head attention representation.
Assume there are h attention heads, each with a dimension of dh. Given the input
sequence X, we obtain h attention representations A(1), A(2), . . . , A(h). These repre-
sentations are then concatenated to form the final multi-head attention representation.

4. Multi-Head Attention Calculation

MultiHead(Q, K, V) = Concat(Head1, Head2, . . . , Headh)WO (5)
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where WO is the output weight matrix, and Concat denotes the concatenation
operation.

As shown in Algorithm 1, After processing with four attention heads, we obtain an
average attention weight for each feature through an averaging layer, forming a compre-
hensive attention weight matrix. The input data are then element-wise multiplied with
this attention weight matrix, emphasizing key features, such as blood glucose levels and
BMI. For less important features, multiplying by attention weights close to zero reduces
their impact on the model, thus minimizing noise and enhancing model robustness. This
quantification of feature importance increases the model’s interpretability, allowing us
to better understand how the model evaluates each feature and derive the basis for the
model’s classification decisions.

Algorithm 1 Multi-Head Attention Algorithm Implementation

Require: Input vector X, number of attention heads H, sets of query weight matrices {Wh
Q}H

h=1, key weight
matrices {Wh

K}H
h=1, value weight matrices {Wh

V}H
h=1, scaling factor

√
dk

Ensure: Multi-head attention output

1: for h = 1 to H do

2: Step 1: Split the input for each attention head

3: Split X to obtain subvector Xh

4: Step 2: Compute attention weights

5: Compute query vector Qh = Xh · Wh
Q

6: Compute key vector Kh = Xh · Wh
K

7: Compute value vector Vh = Xh · Wh
V

8: Step 3: Calculate attention scores

9: Compute Attention Scoreh = softmax
(

Qh ·KT
h√

dk

)
10: Step 4: Perform weighted sum

11: Compute Attentionh = Attention Scoreh · Vh

12: end for

13: Step 5: Concatenate multiple heads

14: Concatenate Multi-head Attention = [Attention1, Attention2, . . . , AttentionH ]

15: return Multi-head Attention

After obtaining the multi-head attention weights through the aforementioned steps,
the weights are processed through a Mean Pooling Layer to derive the weight for each
feature. This new set of weights is then element-wise multiplied with the original data,
resulting in a new dataset imbued with these attention weights. This weighted dataset is
subsequently fed into a deep neural network for training, yielding the prediction results.

4.2. Deep Neural Network Layer

After processing through the Attention-based Feature Weighting Layer, a new dataset
is generated. For the Pima Indians Diabetes (PIDD) dataset, this consists of 8 features
and 10,000 samples, whereas for the Diabetes-NHANES dataset, it comprises 41 features
and 52,390 samples. The input layer receives the data, which propagate through the
hidden layers to the output layer. The hidden layers employ the ReLU activation function,
while the output layer utilizes the Sigmoid function. The deep neural network begins at
the input layer, performing linear transformations and activation function calculations
layer by layer, propagating outputs forward. The model’s loss function is calculated
using cross-entropy loss, and the backpropagation algorithm is employed to determine
the gradients of the loss with respect to the model’s parameters. To optimize learning,
the Adaptive Moment Estimation (Adam) optimizer adjusts the learning rates for each
parameter individually, incorporating momentum to accelerate convergence toward the
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global minimum. During each epoch, the process involves forward propagation, loss
computation, backpropagation, and parameter updates, iterating until the model attains
optimal predictive accuracy. After the training phase, the model is tested on the evaluation
set to assess its predictive performance. Throughout the entire process, backpropagation
optimizes the model by minimizing the loss function, ensuring that the model fits the
training data well and generalizes effectively to unseen data.

The specific implementation details are provided in Algorithm 2.

Algorithm 2 DNN Algorithm
1. Initialize weights W and biases b randomly
2. Iterate over the dataset for n iterations:

(a) Compute the linear combination of input features and weights plus bias:

Z = WT · X + b (6)

(b) Apply the activation function g to Z:
ŷ = g(Z) (7)

(Note: g can be ReLU or Sigmoid)
(c) Apply Dropout layer after each hidden layer:

ŷdropout = Dropout(ŷ, p) (8)

where p is the probability of keeping a node
(d) Compute the loss function L:

L(ŷ, Y) = −[Y · log(ŷ) + (1 − Y) · log(1 − ŷ)] (9)

(e) Compute the cost function J, including an L2 regularization term:

J(W, b) = − 1
m

m

∑
i=1

[Y · log(ŷ) + (1 − Y) · log(1 − ŷ)] +
λ

2m

n

∑
j=1

W2
j (10)

(f) The learning rate adjusts the step size of gradient descent:

W := W − α · ∂J(W, b)
∂W

(11)

b := b − α · ∂J(W, b)
∂b

(12)

(g) Compute gradients:

dZ = ŷ − Y (13)

dW =
1
m
(X · dZ) + λ · W (14)

db =
1
m

m

∑
i=1

dZi (15)

(h) Update weights and biases using the gradients:

W := W − α · dW (16)

b := b − α · db (17)

(i) Determine diagnosis based on prediction:

If ŷ ≥ 0.5, diagnose as “Diabetes"

Otherwise, diagnose as “Non-Diabetic"

3. End of the algorithm

Note:
Input:

1. X: Input features.
2. Y: Target labels.
3. α: Learning rate.
4. θ: Weights and biases.
5. n: Number of iterations.
6. m: Number of samples.
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7. ŷ: Predicted output.

Output:

Updated weights W and biases b.

• Attention-Based Feature Weighting Layer
The multi-head attention model possesses a robust capability to learn the relationships
between features. The importance of each feature is computed in parallel by multiple
attention heads, each of which can focus on different aspects of the data, thus learning
the contribution of each feature to the prediction outcome. Each feature is assigned
four attention weights, which are then averaged through an aggregation layer. This
process ensures that the weighted features more effectively highlight their impact on
the prediction target while suppressing the influence of irrelevant features. The output
of the Attention-based Feature Weighting Layer is represented in Equation (18):
For the Pima Indians Diabetes (PIDD) dataset, n = 8, whereas for the Diabetes-
NHANES dataset, n = 41.

[X′
1, X′

2, . . . , X′
8] = [A(X1), A(X2), . . . , A(X8)] (18)

• Input Layer
The input layer receives eight features with weights [X′

1, X′
2, . . . , X′

8].
• Hidden Laye

Considering the number of features and the complexity of the Pima Indians Diabetes
dataset, the number of hidden layers was systematically increased using a trial-and-
error method. A grid search was conducted to identify the optimal architecture,
which revealed that three hidden layers offered the best performance while avoiding
overfitting. The neuron count per hidden layer was also optimized through a grid
search, with each layer containing 70 neurons, yielding the most favorable results.

• Linear Connection Function (Z)
The linear connection function is established as shown in Equation (19), where n = 8
and ω represents the weight of each feature:

Z =
n

∑
i=1

WT · Xω
i + b (2) (19)

• Initialization
The weights W and biases b are initialized using the Kaiming uniform distribution,
as specified in Equation (20):

W ∼ U

(
−
√

1
fan-in

,

√
1

fan-in

)
(20)

Given that the dataset has eight features, the initialization range for the weights is as
follows:

W ∼ U

(
−
√

1
8

,

√
1
8

)
= U(−0.3536, 0.3536) (21)

Z = WT
0 · Xω

1 + WT
0 · Xω

2 + WT
0 · Xω

3 + · · ·+ WT
0 · Xω

n + b (22)

• Activation Function (g)
The activation function g is applied, using ReLU for the hidden layers and Sigmoid
for the output layer, to obtain the predicted output ŷ:

ŷ = g(Z) (23)
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• Dropout Layer
A dropout layer is added:

ŷdropout = Dropout(ŷ, p) (24)

• Loss Function (L)
The loss function L is computed as follows:

L(ŷ, Y) = −[Y · log(ŷ) + (1 − Y) · log(1 − ŷ)] (25)

• Cost Function (J) with L2 Regularization
The cost function J(W, b), including an L2 regularization term, is computed as follows,
where m is the total number of samples, Y represents the actual target vector, and λ
denotes the regularization strength or penalty parameter:

J(W, b) = − 1
m

m

∑
i=1

[Y · log(ŷ) + (1 − Y) · log(1 − ŷ)] +
λ

2m

n

∑
j=1

W2
j (26)

• Gradient Calculation
The gradients are computed as follows:

dZ = ŷ − Y (27)

dW =
1
m
(X · dZ) + λ · W (28)

db =
1
m

m

∑
i=1

dZi (29)

• Weight and Bias Update
The weights and biases are updated using gradient descent with the learning rate
adjusting the step size:

W := W − α · ∂J(W, b)
∂W

(30)

b := b − α · ∂J(W, b)
∂b

(31)

5. Model Training and Optimization Phase
5.1. Model Training and Validation

In this study, the dataset was divided into 80% training and 20% testing sets, with a
5-fold cross-validation performed using StratifiedKFold. For each fold, the model was
trained and validated, and performance metrics including the accuracy, precision, and AUC
were recorded.

As illustrated in Figure 11, 80% of the PIDD data were divided into five approximately
equal-sized subsets. In each iteration, one fold was selected as the test set, while the
remaining data were used for training. The performance metrics were recorded for each
iteration, and after five iterations, the average metrics were calculated to summarize the
overall performance.
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Figure 11. The 5-fold cross-validation process.

After concluding the cross-validation, the final model was trained on the complete
training set and subsequently assessed on an independent test set. The model was op-
timized using the Adam algorithm with a learning rate of 0.0001 over 10,000 epochs.
Predictions were then generated for the test set, and the key performance indicators, such
as the accuracy, precision, and AUC, were calculated and documented for evaluation.

GridSearchCV was employed to identify the optimal hyperparameters, such as the
number of hidden layers, neurons per layer, activation functions, optimizers, learning
rates, batch sizes, and epochs. A range of values were explored to find the most effective
combination. For instance, the number of hidden layers was tested from 3 to 100, and the
number of neurons per layer was varied between 10 and 100. The best configuration
selected consisted of three hidden layers, each containing 70 neurons.

The optimizers tested included seven types: “SGD”, “RMSprop”, “Adagrad”, “Adadelta”,
“Adam”, “Adamax”, and “Nadam”. The activation functions included the following: [“tanh”,
“so f tmax”, “so f tplus”, “so f tsign”, “relu”, “sigmoid”, “hardsigmoid”, “linear”]. The L2 regu-
larization parameters were set as “alpha”: [0.001, 0.01, 0.02, 0.03, 0.04, 0.05], and the learning
rates (lr) were tested at [0.0001, 0.001, 0.01, 0.1].

The deep learning model was implemented using the PyTorch and TensorFlow frame-
works, utilizing the Adam optimizer to reduce error during forward propagation. The net-
work architecture consisted of three hidden layers, each with 70 neurons. ReLU was applied
as the activation function for the hidden layers, while Sigmoid was utilized for the output
layer. A learning rate of 0.0001 was selected, with binary cross-entropy serving as the
loss function. The model was trained over 10,000 epochs. Data splitting was performed
using the train_test_split method from scikit-learn, and the feature data were standardized
using StandardScaler.

5.2. Model Optimization

In our model optimization process, we initially performed weight and bias initial-
ization. To further refine the model, we employed various techniques to fine-tune the
backpropagation process and select the most significant features. The specific optimization
steps are as follows:

• Hyperparameter Tuning
To systematically explore and optimize the model’s hyperparameters, we utilized
the Keras Tuner tool and applied the RandomSearch algorithm to randomly sample
within a predefined hyperparameter space. This approach allowed us to evaluate
multiple potential hyperparameter combinations and determine the optimal set based
on performance on the validation set.

1. Units (number of units in the attention mechanism): This hyperparameter di-
rectly affects the effectiveness of feature weighting. Smaller values may lead to
information loss, while larger values could result in overfitting. We explored a
range from 1 to 16, with a step size of 1, to fine-tune this parameter. The optimal
number of units was ultimately determined to be 6.
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2. Num-heads (number of attention heads): Multi-head attention allows the model
to capture different patterns in the data. We set the range from 1 to 8, with a step
size of 1, to identify the most appropriate number of attention heads for the task
at hand. The upper limit of 8 was chosen as a balance between computational
complexity and model efficiency. The optimal number of attention heads was
determined to be 4.

3. Hidden-units (number of neurons in the hidden layers): The number of neurons
in the hidden layers directly affects the model’s learning capacity. To balance
model complexity and the risk of overfitting, we set the range between 32 and
256, with a step size of 32. This range allowed us to test models of varying sizes
and find the most appropriate hidden layer size for learning patterns in the data.

4. Dropout-rate (dropout rate): Dropout is a common regularization technique used
to prevent overfitting. We selected a range from 0.0 to 0.5, with a step size of 0.1,
ensuring that we could identify the optimal dropout rate that prevents overfitting
without losing too much information.

5. Learning-rate: The learning rate directly impacts the convergence speed and
stability of the model. We selected common values such as 1 × 10−2, 1 × 10−3,
and 1 × 10−4, representing fast, moderate, and slow learning rates, respectively.
This range helped us find the optimal update step for the model, avoiding issues
of either too rapid or too slow convergence.
Additionally, we designed the number of hidden layers as a tunable hyperpa-
rameter, further expanding the search space to identify the best combination of
network depth configurations. This comprehensive approach ensured a balance
between model complexity and performance, leading to the identification of the
optimal hyperparameter set for the task.

• Incorporation of L2 Regularization
To prevent overfitting, we added an L2 regularization term to the loss function. L2
regularization evaluates model complexity by adding the squared values of the weight
coefficients and ensures that the weights remain constrained within a small range.
The specific formula is as follows:

J(W, b) = − 1
m

m

∑
i=1

[Y · log(ŷ) + (1 − Y) · log(1 − ŷ)] +
λ

2m

n

∑
j=1

W2
j (32)

where λ is the regularization strength hyperparameter. Through this approach, we
were able to prevent overfitting while preserving the model’s learning capacity. Several
values for “alpha” were tested [0.001, 0.01, 0.02, 0.03, 0.04, 0.05], and the optimal
parameter was determined to be 0.04.

• Inclusion of Dropout Layers
Dropout layers were added after each hidden layer. Dropout is a regularization
technique that randomly drops a fraction of neurons during each training iteration,
preventing over-reliance on specific neurons and enhancing the model’s generalization
capability. This further mitigated the risk of overfitting.

• Optimization Algorithm
We employed the Adam optimization algorithm for model training. Adam is an
adaptive learning rate method that computes individual adaptive learning rates
for each parameter, accelerating convergence and improving model performance.
By dynamically adjusting the learning rate during training, Adam enables the model
to reach an optimal state more quickly and stably.
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Through these optimization strategies, we effectively adjusted the model’s hyperpa-
rameters, prevented overfitting, and improved the model’s generalization ability on the test
set. These efforts resulted in a model that performs better on complex tasks, with higher
accuracy and robustness. The final model achieved an impressive prediction accuracy of
98.2% on the Pima Indians Diabetes dataset (PIDD). However, given that the PIDD is a
moderately small-scale dataset, it may not fully demonstrate the robust performance of
the AEDNN model. To further evaluate its capabilities, we conducted validation on a
large-scale dataset, the Diabetes-NHANES dataset. The results revealed that the model’s
performance was significantly enhanced when applied to this large-scale dataset, achieving
an outstanding accuracy of 99.82%, representing a 1.65% improvement compared to the
performance on the PIDD. This finding indicates that the increase in data volume has a sub-
stantial impact on enhancing the learning capabilities of the model, making it particularly
well suited for large-scale diabetes prediction tasks.

6. Comparative Experiments

To validate the effectiveness of our proposed methods, we performed two compara-
tive experiments.

6.1. Experiment 1: Impact of Attention-Based Feature Weighting Layer

We compared the model’s performance with and without the Attention-based Feature
Weighting Layer. We used the same dataset and preprocessing methods for both models to
ensure a fair comparison. The baseline model was without the Attention-based Feature
Weighting Layer and used traditional feature selection methods. The proposed model
incorporated the Attention-based Feature Weighting Layer as described in Section 4.

The results of the comparative experiment are summarized in Table 2. The baseline
model achieved an accuracy of 87%, while the model with the Attention-based Feature
Weighting Layer achieved an accuracy of 98%. The ROC curve of the baseline model
(without attention) is shown in Figure 12.

Figure 12. The ROC curve of the baseline model (without attention).
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Table 2. Comparison of the model’s performance with and without the Attention-based Feature
Weighting Layer.

Model Accuracy Precision AUC

Baseline model (without attention) 0.87 0.90 0.94
Proposed model (with attention) 0.98 0.97 0.99

The inclusion of the Attention-based Feature Weighting Layer led to a 12.6% improve-
ment in prediction accuracy, demonstrating its effectiveness in capturing complex relation-
ships within physical examination data. This significant increase provides strong evidence
that the Attention-based Feature Weighting Layer is crucial for enhancing the accuracy of di-
abetes prediction. The dynamic weighting and adaptive dimension adjustment capabilities
of the attention mechanism enable the model to better utilize the available data, resulting
in more accurate predictions. These findings highlight the substantial performance gains
achieved by incorporating the Attention-based Feature Weighting Layer, underscoring its
value in predictive modeling tasks involving complex and multi-dimensional data.

6.2. Experiment 2: Attention Mechanism-Based Feature Extraction Versus Lasso and Ridge for
Feature Selection

When employing attention mechanisms for feature selection, a multi-dimensional
comparative analysis was conducted against the classical feature selection methods, Lasso
and Ridge. The comparative experiments were carried out on the same dataset, the Diabetes-
NHANES dataset, utilizing a variety of evaluation metrics, including the accuracy, precision,
recall, F1 score, mean squared error (MSE), and area under the curve (AUC), as detailed in
Table 3.

Table 3. Performance Comparison of Feature Extraction Using Attention Weights, Lasso, and Ridge.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) MSE AUC

AEDNN with Attention 99.82 99.80 99.86 99.81 0.0018 0.9995
Lasso Feature Selection 94.05 94.39 93.67 94.03 0.0595 0.9571
Ridge Feature Selection 94.34 94.40 94.27 94.34 0.0566 0.9742

The AEDNN model achieves a test accuracy of 99.82%, significantly higher than the
results obtained using Lasso (94.05%) and Ridge (94.34%). This indicates that the attention-
based deep learning model can capture more relevant and nuanced information from
the input features, providing superior prediction capabilities. The AEDNN’s precision
and recall scores (both 99.8%) vastly exceed those of the Lasso (precision 94.39% and
recall 93.67%) and Ridge (precision 94.40% and recall 94.27%) models. This difference
shows the model’s ability to better balance between true positives and false positives.
Lasso and Ridge, which rely on linear regularization techniques, may fail to capture the
complexity of nonlinear relationships between features and the target variable (diabetes).
The AEDNN has a near-perfect F1 score of 99.81%, whereas Lasso and Ridge achieve
around 94%. The F1 score indicates the balance between precision and recall, and the
AEDNN’s superior performance suggests it excels at distinguishing between diabetic and
non-diabetic cases. The AEDNN model significantly reduces the MSE to 0.0018 compared
to Lasso (0.0595) and Ridge (0.0566), indicating its superior prediction accuracy. The R2
score of the AEDNN (0.9907) also far exceeds that of Lasso (0.7621) and Ridge (0.7737),
further proving the AEDNN’s strong capability to explain the variance in the data. The
AEDNN achieves a near-perfect AUC of 0.9995, demonstrating its excellent capability in
distinguishing between classes. In contrast, Lasso and Ridge achieve 0.9571 and 0.9742,
respectively, which, while respectable, fall short of the AEDNN’s near-perfect performance.
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The attention mechanism plays a critical role in identifying and prioritizing the most
relevant features for prediction, dynamically adjusting its focus on important parts of
the input data. This contrasts with Lasso and Ridge, which are based on predefined
assumptions about feature importance through linear regularization. Lasso and Ridge are
linear methods that assign importance to features by applying regularization penalties,
which may eliminate or shrink less important features. However, these methods can
struggle with complex, nonlinear relationships between features, which are common
in medical data, like diabetes prediction. In contrast, attention mechanisms allow the
model to focus dynamically on different features depending on the input context. This
leads to better handling of data complexity, which is reflected in the AEDNN’s improved
performance metrics.

Diabetes prediction often involves intricate interactions between features (e.g., age,
BMI, and glucose levels). Lasso and Ridge may oversimplify these relationships due to their
linear nature, while the attention mechanism can capture higher-order interactions between
features. This capability allows the AEDNN to perform better on both small (Pima Indians
Diabetes) and large (NHANES) datasets. The attention mechanism has the advantage of
flexibly adapting to imbalanced data scenarios, such as in medical diagnosis where diabetic
cases may be fewer than non-diabetic ones. This is especially visible in the recall scores of
the AEDNN, which captures positive cases with a much higher accuracy. Lasso and Ridge,
being more sensitive to imbalanced data, often struggle to prioritize minority class samples
effectively, leading to lower recall and F1 scores.

The attention mechanism allows for better generalization by focusing on features
that are most significant across a wide variety of samples rather than applying uniform
regularization, like Lasso or Ridge. This leads to the superior performance of the AEDNN
model, especially in complex datasets, such as the NHANES. In conclusion, the attention
mechanism not only provides significant improvement in feature selection compared to
Lasso and Ridge but also demonstrates clear advantages in terms of capturing complex
relationships, handling imbalanced data, and achieving higher performance metrics in
diabetes prediction tasks.

6.3. Experiment 3: Impact of Data Preprocessing

To demonstrate the importance of data preprocessing, we conducted a comparative
experiment using the same predictive model with and without data preprocessing. The data
preprocessing steps included anomaly detection, median imputation for missing values,
and SMOTE for class balancing.

For this experiment, we constructed two versions of the dataset:

1. Raw Data: The original dataset without any preprocessing.
2. Preprocessed Data: The dataset after applying the aforementioned preprocessing steps.

Both datasets were then fed into the same predictive model incorporating the Attention-
based Feature Weighting Layer and deep learning architecture. The performance of the
model on both datasets was evaluated and compared. The results are summarized in
Table 4. The ROC curve of the same model using raw data is shown in Figure 13.

The comparative experiment highlights the crucial role of data preprocessing in en-
hancing model performance. As indicated in Table 4, the model trained on raw data
yielded an accuracy of 72%, precision of 59%, and an AUC of 74%. Conversely, the model
trained on preprocessed data achieved substantially better results, with an accuracy of
98%, precision of 97%, and an AUC of 99%. These improvements—26% in accuracy, 38% in
precision, and 25% in AUC—demonstrate the substantial performance gains attributed to
preprocessing. Addressing data anomalies, handling missing values, and correcting class
imbalances during preprocessing ensures data quality and consistency, which ultimately
enables more effective model learning and enhances predictive accuracy. This underscores
the necessity of data preprocessing as a fundamental step in optimizing the performance of
predictive models.
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Figure 13. The ROC curve of the same model using raw data.

Table 4. The performance comparison of the same model on raw data and preprocessed data.

Dataset Accuracy Precision AUC

Raw Data 0.72 0.59 0.74
Preprocessed Data 0.98 0.97 0.99

6.4. Experiment 4: Comparative Analysis of AEDNN with Several Models

We selected models including L1-regularized logistic regression, support vector ma-
chine (SVM), random forest, K-nearest neighbors (KNNs), AdaBoost, XGBoost, and the
latest semi-supervised XGBoost approach [21]. These methods were independently tested
on both the Pima Indians Diabetes dataset and the Diabetes-NHANES dataset. For data
preprocessing, a consistent strategy was applied across all models. Specifically, for each
feature, the median value of both the diabetic and non-diabetic groups was computed,
which was then used to impute outliers and missing values. Additionally, oversampling
and data normalization techniques were employed uniformly, resulting in two fully har-
monized datasets. This preprocessing ensured that any differences in model performance
could not be attributed to variations in data handling. The models were subsequently
evaluated in terms of the accuracy, precision, recall, F1 score, and training time, with the
results presented in Tables 5 and 6.

Table 5. Performance comparison of different models on the Diabetes-NHANES dataset.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training Time (s)

Logistic Regression with F1 Regularization 94.48 94.52 94.54 94.53 28.08
SVM 95.22 94.50 96.12 95.30 46.10

Random Forest 92.77 91.22 73.07 81.14 17.98
KNN 93.07 89.89 97.19 93.40 0.01

AdaBoost 94.00 92.00 96.00 94.98 0.34
XGBoost 93.98 92.00 94.95 93.98 0.34

Semi-Supervised XGBoost 94.94 93.00 95.88 94.94 1.14
AEDNN 99.82 99.80 99.86 99.81 900.00
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Table 6. Performance comparison of different models on the Pima Indians Diabetes dataset.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) Training Time (s)

Logistic Regression with F1 Regularization 80.00 77.98 84.16 80.95 0.00
SVM 84.50 82.41 88.12 85.17 0.01

Random Forest 89.00 88.35 90.10 89.22 0.12
KNN 83.00 77.69 93.07 84.68 0.00

AdaBoost 87.50 86.54 89.11 87.80 0.07
XGBoost 90.50 91.84 89.11 90.45 0.07

Semi-Supervised XGBoost 86.50 87.76 85.15 86.43 0.16
AEDNN 98.30 97.80 98.90 98.00 270.00

Our AEDNN model achieved a remarkable accuracy of 99.82% on the Diabetes-
NHANES dataset, significantly outperforming all the other models. The support vec-
tor machine (SVM) achieved an accuracy of 95.22%, the closest performance among the
traditional machine learning models. Logistic regression and XGBoost demonstrated rela-
tively stable performance with accuracies of 94.48% and 93.98%, respectively, though still
lower than that of the AEDNN model. Random forest and KNN had accuracies of 92.77%
and 93.07%, respectively, showing moderate performance. On the Pima Indians Diabetes
dataset, the AEDNN model achieved an accuracy of 98.30%, markedly higher than the
other models. XGBoost had the best performance among the traditional models, with an
accuracy of 90.50%. Random forest and SVM achieved accuracies of 89% and 84.50%,
respectively, with SVM underperforming compared to the AEDNN. Logistic regression
had the lowest accuracy at only 80.00%, significantly below that of the AEDNN.

In terms of precision, on the Diabetes-NHANES dataset, the AEDNN model achieved
the best result with a precision of 99.80%, followed by SVM with 94.50%. Other models,
such as logistic regression and XGBoost, had precision scores in the 92–94% range, showing
decent performance. Random forest achieved a precision of 91.22%, indicating more
moderate results. On the Pima Indians Diabetes dataset, the AEDNN model’s precision
was 97.80%, significantly outperforming other models. XGBoost had a precision of 91.84%,
showing good performance, while random forest and SVM achieved 88.35% and 82.41%,
respectively. Logistic regression had the lowest precision at 77.98%, substantially below
that of the AEDNN.

Regarding recall, the AEDNN model achieved an outstanding recall of 99.86% on the
Diabetes-NHANES dataset, while SVM achieved 96.12%, the best performance among the
traditional models. KNN had a recall of 97.19%, performing well in capturing positive
samples, although its F1 score was lower than the AEDNN. Logistic regression and XGBoost
both achieved recall rates around 94-95%, while random forest had a much lower recall of
73.07%, far below the other models. On the Pima Indians Diabetes dataset, the AEDNN
model had a recall of 98.90%, significantly higher than the other models. XGBoost and SVM
achieved recall rates of 89.11% and 88.12%, respectively, showing the best performance
among the traditional models. Random forest and logistic regression had recall rates of
90.10% and 84.16%, respectively, with logistic regression underperforming in its ability to
capture positive samples.

In terms of the F1 score, the AEDNN model achieved an exceptional score of 99.81%
on the Diabetes-NHANES dataset, approaching a near-perfect model. SVM and KNN had
F1 scores of 95.30% and 93.40%, respectively, demonstrating good performance. XGBoost
achieved an F1 score of 93.98%, also at a high level, while logistic regression had an F1 score
of 94.53%, showing decent performance but still with a substantial gap compared to the
AEDNN. Random forest, however, had a much lower F1 score of only 81.14%, significantly
worse than the other models. On the Pima Indians Diabetes dataset, the AEDNN model
achieved an F1 score of 98.00%, showing excellent performance. XGBoost’s F1 score was
90.45%, the best among the traditional models, while random forest and SVM achieved F1
scores of 89.22% and 85.17%, respectively, also demonstrating good performance. Logistic
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regression had an F1 score of only 80.95%, notably lower, particularly when handling
relatively imbalanced data, where it performed worse than the AEDNN model.

In terms of the training time, the AEDNN model required 15 min on the Diabetes-
NHANES dataset, significantly longer than the traditional machine learning models, as the
deep learning architecture requires processing complex network structures and large-
scale data. On the Pima Indians Diabetes dataset, the training time was 4.5 min, which,
although slightly longer than the other models, was relatively reasonable considering
its performance advantages. XGBoost’s training time was 0.07 s, much shorter than the
AEDNN, though it did not match the AEDNN’s performance. Random forest and SVM
had shorter training times of 0.12 s and 0.01 s, respectively, but their accuracy and F1 scores
were inferior to the AEDNN.

Overall, the AEDNN model significantly outperformed other models in terms of accu-
racy, precision, recall, and F1 score, particularly on large-scale and complex datasets such
as Diabetes-NHANES, where it demonstrated exceptional generalization and classification
capabilities. Its near-perfect F1 score indicates its ability to balance the classification of
both positive and negative samples. The AEDNN model, by leveraging deep learning
structures, can capture complex patterns and nonlinear relationships within the data, a ca-
pability particularly evident on relatively small and complex datasets, like the Pima Indians
Diabetes dataset. In contrast, linear models like logistic regression performed poorly in
capturing nonlinear features. The high recall and precision of the AEDNN model show
its strong performance in handling classification tasks across different class distributions,
especially in imbalanced datasets like the PIDD, where it effectively captures minority
classes. This also highlights its potential for real-world applications in medical diagnosis
tasks. The AEDNN model also performed excellently in terms of MSE and R2 scores,
demonstrating its ability to fit the training data well while avoiding both overfitting and
underfitting issues. Although the AEDNN’s training time is longer than that of tradi-
tional models, it demonstrates significant advantages when dealing with complex data and
features. For tasks requiring high accuracy and stability, the trade-off in training time is
entirely justified.

7. Model Testing and Evaluation

Following the comparative experiments, we performed comprehensive testing and
evaluation of the model using the preprocessed data and the attention-based feature
weighting mechanism. The results are discussed in detail in this section.

7.1. Model Testing

The dataset was initially loaded from a CSV file, with the features and target variables
extracted separately. To ensure consistency in feature scaling, StandardScaler was applied,
followed by an 80%–20% split of the standardized data into training/validation and test
sets. Oversampling techniques were utilized to balance the dataset, resulting in a total
of 1000 samples. Of this, 20% (200 samples) was reserved as an independent test set to
rigorously assess the generalization performance of the model.

7.2. Model Evaluation

During model evaluation, key performance metrics such as the accuracy, precision,
recall, F1 score, mean squared error (MSE), and ROC-AUC were used to assess both the
classification and regression aspects of the model’s performance. Accuracy and precision
reflect the model’s correctness in identifying diabetic patients, while the F1 score balances
precision and recall. The MSE quantifies the average squared deviation between predicted
and actual values, providing insight into prediction accuracy. To ensure robustness, cross-
validation and a learning curve analysis were conducted, further supporting the model’s
generalization capability across different datasets. The metrics accuracy, precision, recall,
F1 score, and MSE were calculated using the following formulas:
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Accuracy: Reflects the proportion of correctly classified samples out of the total
number of samples, indicating the model’s correctness in classifying patients as diabetic
or non-diabetic.

Accuracy =
TP + TN

TP + TN + FN + FP
(33)

Precision: Reflects the proportion of samples predicted by the model as diabetic
patients that are indeed diabetic.

Precision =
TP

TP + FP
(34)

F1 Score: The weighted harmonic mean of the precision and recall, providing a balance
between the two metrics.

F1 =
2 · (Precision · Recall)

Precision + Recall
(35)

Mean Squared Error (MSE): The average squared difference between the predicted
values and the actual values.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (36)

Here, yi denotes the actual value of the i-th observation, ŷi denotes the predicted value
of the i-th observation, and n represents the number of samples.

8. Results

To evaluate the generalization performance of the model on both the Diabetes-NHANES
dataset and the Pima Indians Diabetes (PIDD) dataset, a five-fold cross-validation was
conducted. For the PIDD, the accuracy scores obtained were [0.9795, 0.9845, 0.981, 0.985,
0.982], resulting in an average accuracy of 98.2%. For the Diabetes-NHANES dataset,
the accuracy scores were [0.9982,0.9982,0.9980,0.9980,0.9986], yielding an average accuracy
of 99.82%, as shown in Figure 14.

Figure 14. Five cross-validation scores and mean CV scores.

As shown in Figure 15, the proposed model achieved a test accuracy of 98.4% on the
Pima Indians Diabetes dataset (PIDD), with a precision of 98%, a recall of 99%, and an
F1 score of 98%. Additionally, the R-squared score reached 93.4%, and the mean squared
error (MSE) was as low as 1.65%. On the larger-scale Diabetes-NHANES dataset, the model
demonstrated an accuracy of 99.82%, highlighting the minimal deviation between the
predicted and actual values. These results indicate that the model performs better on
large-scale datasets, with an improvement of 1.65% in prediction accuracy compared to
the PIDD. As further confirmed by Figure 16, the model’s superior classification perfor-
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mance is evident, reinforcing its robustness and effectiveness in accurately predicting
diabetes outcomes.

Figure 15. Performance comparison of the AEDNN model on the PIDD and the Diabetes-
NHANES dataset.

Figure 16. The ROC curve and AUC reached 0.99.

9. Discussion

Table 7 presents the datasets and data preprocessing methods employed by various
diabetes prediction algorithms, along with the accuracy of each study. It also provides
a comparative analysis between our proposed Attention-Enhanced Deep Neural Net-
work algorithm and other algorithms. The results indicate that our algorithm achieves
higher accuracy.

The Attention-Enhanced Deep Neural Network (AEDNN-DP) proposed in this study
stands out by innovatively incorporating an Attention-based Feature Weighting Layer. This
allows for the effective extraction of feature weights, leading to more accurate and efficient
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diabetes prediction. Especially for high-dimensional and large-scale samples, the introduc-
tion of the Attention-based Feature Weighting Layer effectively reduces dimensionality
and removes redundant features. This is particularly evident in the testing of the Diabetes-
NHANES dataset, where the large-scale data better demonstrated the performance of the
AEDNN model, with a 1.65% improvement in performance compared to the PIDD. This
suggests that the attention weights played a critical role during the model’s operation,
further supporting the advantages of incorporating attention mechanisms, as highlighted
in Experiment 1 (Section 6.1).

Our approach also demonstrates significant advantages in data preprocessing. In bi-
nary classification problems, issues such as missing data and data imbalance are common.
Considering the substantial differences in various indicators between the negative and
positive cases, it is insufficient to impute missing values using simple means or modes.
Instead, we should consider the median of each feature separately for negative and posi-
tive groups. The grouped median imputation algorithm effectively handles missing and
outlier values. In addition, oversampling techniques can be employed to balance the two
classes, thus helping the model improve learning. The experimental results indicate that
the AEDNN-DP significantly enhances performance in diabetes prediction tasks.

Table 7. Comparison of current diabetes prediction models with the proposed model.

Study Year Dataset Algorithm Data Preprocessing
Technique Accuracy

[21] 2024 private dataset
Semi-supervised

approach combined with
XGBoost

Oversampling Technique
(SMOTE) 97.4%

[11] 2023 PIDD
iDP framework

integrating various ML
techniques

Mean replacement for
missing values 95.26%

[22] 2023 PIDD CNN, DNN, and MLP Mean replacement for
missing values 98.1%

[23] 2022 PIDD SVM, LR, ANN, etc. Mean replacement for
missing values 81%

[24] 2021 PIDD DT, NN, KNN, etc. Mean and Pearson
correlation analysis 88.6%

[25] 2021 PIDD VAE, SAE, MLP, CNN Normalization and
augmentation 92.31%

The Proposed Model 2024 PIDD Attention-Enhanced
DNN

Median imputation,
SMOTE, and

normalization
98.4%

The Proposed Model 2024 Diabetes-NHANES
database

Attention-Enhanced
DNN

Median imputation,
SMOTE, and

normalization
99.8%

10. Conclusions

In this study, we conducted effective research on the early screening and prediction of
diabetes. We proposed a novel technique, the Attention-Enhanced Deep Neural Network
(AEDNN), which introduces the Attention-Based Feature Weighting Layer. This mechanism
creates a weight matrix based on the influence of each feature on the outcome, multiplying
each element by its respective weight to enhance or filter specific aspects of the data.
The weighted data are then input into a deep neural network for learning.

For hyperparameter optimization, we employed the Keras Tuner tool in combination
with the RandomSearch algorithm, systematically exploring key parameters within a
predefined hyperparameter space. These parameters included the number of units in the
attention mechanism, the number of attention heads, the number of neurons in the hidden
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layers, the dropout rate, and the learning rate. After a comprehensive search, the optimal
configuration was identified to balance model complexity and performance. Additionally,
we extended the search space by adjusting the number of hidden layers, ensuring that the
best configuration was found across various network depths. To prevent overfitting, we
introduced a dropout layer and incorporated an L2 regularization term in the loss function.

The model achieved an overall accuracy of 98.4% and a precision of 98% on the PIDD
and an average accuracy of 99.82% and a precision of 99.8% in the Diabetes-NHANES
dataset. As the size of the dataset increased, the model performance improved signifi-
cantly, indicating robust generalizability. Particularly on large-scale datasets like Diabetes-
NHANES, the model achieved near-optimal performance with an accuracy of 99.82% and
an AUC of 0.9995. This demonstrates that the model continues to exhibit outstanding
performance even when exposed to more diverse samples, further highlighting its robust-
ness and ability to adapt to a broader range of data distributions. Early screening and
prediction of diabetes are crucial for timely treatment, aiding doctors with diagnostic tools.
This model can also handle structured biomedical data for other diseases, showing great
potential in high-dimensional, multi-feature, large-scale data scenarios.
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ANN Artificial Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
DNN Deep Neural Network
DT Decision Tree
KNN K Nearest Neighbors
RF Random Forest
NB Naive Bayes
AB AdaBoost
VAE Variational Autoencoder
SAE Sparse Autoencoder
MLP Multilayer Perceptron
XGBoost eXtreme Gradient Boosting
SMOTE Synthetic Minority Oversampling Technique
iDP Intelligent Diabetes Prediction
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