Asynchronous Sliding Mode Control of Networked Markov Jump Systems via an Asynchronous Observer Approach Based on a Dynamic Event Trigger
Abstract
:1. Introduction
2. Preliminaries and Problem Statement
3. Main Results
3.1. ETM-Based Asynchronous Observer Design
3.2. Asynchronous Observer-Based SMC Design
3.3. Stability Analysis
- Under the condition of , the closed-loop system is said to be stochastically stable.
- Under zero initial conditions, it holds that
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, B.; Karimi, H.R.; Yang, S.; Gao, C.; Kao, Y. Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via T–S fuzzy modeling: Applications to robot arm model. IEEE Trans. Ind. Electron. 2020, 68, 466–477. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, H.; Feng, J. Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates. Appl. Math. Comput. 2017, 293, 617–629. [Google Scholar] [CrossRef]
- Dombrovskii, V.; Obyedko, T.; Samorodova, M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions. Automatica 2018, 87, 61–68. [Google Scholar] [CrossRef]
- Chen, P.; Liu, R.; Li, Y.; Chen, L. Detecting critical state before phase transition of complex biological systems by hidden Markov model. Bioinformatics 2016, 32, 2143–2150. [Google Scholar] [CrossRef]
- Shi, P.; Li, F. A survey on Markovian jump systems: Modeling and design. Int. J. Control Autom. Syst. 2015, 13, 1–16. [Google Scholar] [CrossRef]
- Yao, D.; Ren, H.; Li, P.; Zhou, Q. Sliding mode output-feedback control of discrete-time Markov jump systems using singular system method. J. Frankl. Inst. 2018, 355, 5576–5591. [Google Scholar] [CrossRef]
- Cheng, J.; Park, J.H.; Wu, Z.G. Finite-time control of Markov jump lur’e systems with singular perturbations. IEEE Trans. Autom. Control 2023, 68, 6804–6811. [Google Scholar] [CrossRef]
- Dong, S.; Wu, Z.G.; Pan, Y.J.; Su, H.; Liu, Y. Hidden-Markov-model-based asynchronous filter design of nonlinear Markov jump systems in continuous-time domain. IEEE Trans. Cybern. 2018, 49, 2294–2304. [Google Scholar] [CrossRef]
- Chen, H.; Zong, G.; Gao, F.; Shi, Y. Probabilistic event-triggered policy for extended dissipative finite-time control of MJSs under cyber-attacks and actuator failures. IEEE Trans. Autom. Control 2023, 68, 7803–7810. [Google Scholar] [CrossRef]
- Fang, M.; Shi, P.; Dong, S. Sliding mode control for Markov jump systems with delays via asynchronous approach. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 51, 2916–2925. [Google Scholar] [CrossRef]
- Song, J.; Zhou, S.; Niu, Y.; Cao, Z.; He, S. Antidisturbance control for hidden Markovian jump systems: Asynchronous disturbance observer approach. IEEE Trans. Autom. Control 2023, 68, 6982–6989. [Google Scholar] [CrossRef]
- Tao, Y.Y.; Wu, Z.G.; Guo, Y. Two-dimensional asynchronous sliding-mode control of Markov jump roesser systems. IEEE Trans. Cybern. 2020, 52, 2543–2552. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, B.; Shi, Y. Stabilization of hidden semi-Markov jump systems: Emission probability approach. Automatica 2019, 101, 87–95. [Google Scholar] [CrossRef]
- Song, J.; Niu, Y.; Zou, Y. Asynchronous output feedback control of time-varying Markovian jump systems within a finite-time interval. J. Frankl. Inst. 2017, 354, 6747–6765. [Google Scholar] [CrossRef]
- Dong, S.; Liu, M.; Wu, Z.G.; Shi, K. Observer-based sliding mode control for Markov jump systems with actuator failures and asynchronous modes. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1967–1971. [Google Scholar] [CrossRef]
- Ogura, M.; Cetinkaya, A.; Hayakawa, T.; Preciado, V.M. State-feedback control of Markov jump linear systems with hidden-Markov mode observation. Automatica 2018, 89, 65–72. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Yu, J. Adaptive sliding mode security control for stochastic Markov jump cyber-physical nonlinear systems subject to actuator failures and randomly occurring injection attacks. IEEE Trans. Ind. Inform. 2022, 19, 3155–3165. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, B.; Yao, D.; Li, H.; Lu, R. Adaptive neural sliding mode control of Markov jump systems subject to malicious attacks. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 51, 7870–7881. [Google Scholar] [CrossRef]
- Shen, X.; Wu, C.; Liu, Z.; Wang, Y.; Leon, J.I.; Liu, J.; Franquelo, L.G. Adaptive-gain second-order sliding-mode control of NPC converters via super-twisting technique. IEEE Trans. Power Electron. 2023, 38, 15406–15418. [Google Scholar]
- Zhang, F. Adaptive event-triggered voltage control of distribution network subject to actuator attacks using neural network-based sliding mode control approach. Electronics 2024, 13, 2960. [Google Scholar] [CrossRef]
- Zhao, M.; Qian, H.; Zhang, Y. Predefined-time adaptive fast terminal sliding mode control of aerial manipulation based on a nonlinear disturbance observer. Electronics 2024, 13, 2746. [Google Scholar] [CrossRef]
- Fathollahi, A.; Gheisarnejad, M.; Andresen, B.; Farsizadeh, H.; Khooban, M.H. Robust artificial intelligence controller for stabilization of full-bridge converters feeding constant power loads. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3504–3508. [Google Scholar] [CrossRef]
- Jiang, B.; Karimi, H.R.; Li, B. Adaptive sliding mode control of Markov jump systems with completely unknown mode information. Int. J. Robust Nonlinear Control 2023, 33, 3749–3763. [Google Scholar] [CrossRef]
- Zhang, C.; Kao, Y.; Xie, J. Adaptive sliding mode control for semi-Markov jump uncertain discrete-time singular systems. Int. J. Robust Nonlinear Control 2023, 33, 10824–10844. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Song, Z. Sliding mode control for discrete-time descriptor Markovian jump systems with two Markov chains. Optim. Lett. 2018, 12, 1199–1213. [Google Scholar] [CrossRef]
- Behera, A.K.; Bandyopadhyay, B.; Cucuzzella, M.; Ferrara, A.; Yu, X. A survey on event-triggered sliding mode control. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 206–217. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, Y.; Li, X.; He, S. Multievent-triggered sliding-mode control for a class of complex dynamic network. IEEE Trans. Control Netw. Syst. 2021, 9, 835–844. [Google Scholar] [CrossRef]
- Li, X.; Ahn, C.K.; Zhang, W.; Shi, P. Asynchronous event-triggered-based control for stochastic networked Markovian jump systems with FDI attacks. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 5955–5967. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Liu, X.; Xia, Y. Fuzzy fixed-time event-triggered consensus control for uncertain nonlinear multi-agent systems with memory based learning. IEEE Trans. Fuzzy Syst. 2024, 32, 3682–3692. [Google Scholar] [CrossRef]
- Cheng, J.; Park, J.H.; Zhang, L.; Zhu, Y. An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies. IEEE Trans. Fuzzy Syst. 2016, 26, 6–18. [Google Scholar] [CrossRef]
- Tang, F.; Wang, H.; Chang, X.H.; Zhang, L.; Alharbi, K.H. Dynamic event-triggered control for discrete-time nonlinear Markov jump systems using policy iteration-based adaptive dynamic programming. Nonlinear Anal. Hybrid Syst. 2023, 49, 101338. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, R.; Li, D. Sliding mode control for uncertain Markovian jump systems: An event-triggered approach. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 73–78. [Google Scholar]
- Tao, J.; Liang, R.; Su, J.; Xiao, Z.; Rao, H.; Xu, Y. Dynamic event-triggered synchronization of Markov jump neural networks via sliding mode control. IEEE Trans. Cybern. 2024, 54, 2515–2524. [Google Scholar] [CrossRef]
- Boukas, E.K. Stabilization of stochastic nonlinear hybrid systems. Int. J. Innov. Comput. Inf. Control 2005, 1, 131–141. [Google Scholar] [CrossRef]
- Jiang, B.; Gao, C.; Xie, J. Passivity based sliding mode control of uncertain singular Markovian jump systems with time-varying delay and nonlinear perturbations. Appl. Math. Comput. 2015, 271, 187–200. [Google Scholar] [CrossRef]
- Guan, C.; Fei, Z.; Feng, Z.; Shi, P. Stability and stabilization of singular Markovian jump systems by dynamic event-triggered control strategy. Nonlinear Anal. Hybrid Syst. 2020, 38, 100943. [Google Scholar] [CrossRef]
- Zhou, J.; Park, J.H.; Kong, Q. Robust resilient L2–L∞ control for uncertain stochastic systems with multiple time delays via dynamic output feedback. J. Frankl. Inst. 2016, 353, 3078–3103. [Google Scholar] [CrossRef]
- Cui, R.; Yang, C.; Li, Y.; Sharma, S. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1019–1029. [Google Scholar] [CrossRef]
- Gheisarnejad, M.; Fathollahi, A.; Sharifzadeh, M.; Laurendeau, E.; Al-Haddad, K. Data-driven switching control technique based on deep reinforcement learning for packed E-Cell as smart ev charger. IEEE Trans. Transp. Electrif. 2024, 1. [Google Scholar] [CrossRef]
- Wu, H.N.; Cai, K.Y. Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst. Man Cybern. Part B 2006, 36, 509–519. [Google Scholar]
Modes i | Parameters M | Parameters J |
---|---|---|
1 | 2 | 0.2 |
2 | 4 | 0.6 |
3 | 6 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Lou, H.; Jiang, B. Asynchronous Sliding Mode Control of Networked Markov Jump Systems via an Asynchronous Observer Approach Based on a Dynamic Event Trigger. Electronics 2024, 13, 4182. https://doi.org/10.3390/electronics13214182
Deng J, Lou H, Jiang B. Asynchronous Sliding Mode Control of Networked Markov Jump Systems via an Asynchronous Observer Approach Based on a Dynamic Event Trigger. Electronics. 2024; 13(21):4182. https://doi.org/10.3390/electronics13214182
Chicago/Turabian StyleDeng, Jianping, Haocheng Lou, and Baoping Jiang. 2024. "Asynchronous Sliding Mode Control of Networked Markov Jump Systems via an Asynchronous Observer Approach Based on a Dynamic Event Trigger" Electronics 13, no. 21: 4182. https://doi.org/10.3390/electronics13214182
APA StyleDeng, J., Lou, H., & Jiang, B. (2024). Asynchronous Sliding Mode Control of Networked Markov Jump Systems via an Asynchronous Observer Approach Based on a Dynamic Event Trigger. Electronics, 13(21), 4182. https://doi.org/10.3390/electronics13214182