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Abstract: To protect important data and files, people often use air gap isolation, also known as air
gap separation, to block external threats. However, internal networks may still introduce pollution
due to supply chain contamination, human error, or social engineering. Although internal devices
cannot directly communicate with the outside world. This paper proposes a new technology called
Bit Sufi-Dance that utilizes electricity meters and optical devices to detect exfiltrated data. Most
electricity meters have power indicator mechanical turntables or LED lights which can be indirectly
controlled by the device’s power consumption oscillation. This allows for information encoding and
the extraction of data from the air-gapped computer. It is important to note that this exfiltration
channel does not require any hardware or firmware modifications and cannot be detected by existing
Data Leakage Prevention (DLP) systems. The article discusses its design and implementation
issues while evaluating it using different types of electricity meters. Our experiment demonstrates
that data can be exfiltrated from the air-gap isolated computer through an electricity meter at a
bit rate of 101 b/h. Finally, we assess this security threat and discuss defense mechanisms and
preventive measures.

Keywords: air-gapped; covert channel; electricity meter; exfiltration; optical

1. Introduction

An effective way to prevent network threats is to physically isolate the protected
network, ensuring that the target device has no direct network connection to the public
internet. This method, known as air-gapping, is widely used in highly sensitive envi-
ronments such as military, government, and critical infrastructure systems to safeguard
against unauthorized access and data breaches. However, it has been demonstrated that
even air-gapped networks are not impervious to attacks. Malicious programs can still be
implanted into air-gapped computers through various means, including social engineering,
supply chain contamination, and physical access.

Over the past decade, research has demonstrated that traditional security measures,
such as firewalls and air-gap isolation, are insufficient to prevent destructive behavior by
attackers. Newer, sophisticated techniques have been developed that enable attackers to
bypass these defenses. For example, side-channel attacks exploit physical aspects of the
computing environment, such as power consumption and electromagnetic emissions, to
extract data from systems that are supposedly isolated from networks. The Stuxnet worm
incident is a case in point, where malware was introduced through infected removable
media like USB drives.

Moreover, the actions of computer users, whether intentional or unintentional, can
also compromise security. The use of compromised devices or the installation of untrusted
software can facilitate the breach of network boundaries. Furthermore, the contamination
of software and hardware supply chains poses a significant risk. Vulnerabilities can be
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introduced at any stage of the production and distribution process, which may result in the
dissemination of malicious programs throughout confidential networks. This highlights
the need for a multi-layered approach to security that addresses not only traditional threats
but also the evolving tactics of cyber attackers [1].

1.1. Covert Channel

The concept of covert channel: covert channel refers to the channel that uses the
legitimate functions and resources of the system to transmit information in an unexpected
way without violating the system security policy. This channel is usually difficult to detect
because it does not follow the traditional communication path.

In the context of a covert channel, the roles of the sender and receiver are distinct yet
crucial. The sender is the originator of information, but unlike in overt communication,
they transmit data informally. This is achieved by exploiting certain characteristics or
vulnerabilities within the system. Conversely, the receiver plays a critical role in interpreting
the information that has been covertly transmitted. They do this by analyzing specific
behaviors or outputs of the system that are indicative of the covertly transmitted data.

In a covert channel, the sender is the source of information. However, they transmit
information informally by exploiting certain characteristics or vulnerabilities of the system.
The receiver of the covert channel is responsible for interpreting the information transmitted
by the sender. They achieve this by analyzing the specific behavior or output of the system
that corresponds to the covert channel’s communication.

1.2. Our Contribution

In this paper, we introduce Bit Sufi-Dance, which exfiltrates data from the air gap
network through either a mechanical turntable or the power indicator LED of an electricity
meter. We discuss threat models and provide detailed information on design and imple-
mentation. We test multiple types of electricity meters, including traditional mechanical
and smart models, and evaluate the use of surveillance cameras and smartwatch cameras
as receivers. Our experimental results indicate that Bit Sufi-Dance can achieve a rate of
101 bits per hour.

In summary, we have made the following contributions: we proposed a new method
of using a common electricity meter as a transmitter to exfiltrate data without the need for
special hardware or support components. It can remotely obtain data without approaching
power lines and without personal safety risks.

We verified the existence of this covert channel and revealed the potential risks as-
sociated with using electricity meter power indicators to construct covert channels in the
context of the Internet of Things.

The structure of the remaining parts of this article is as follows: Section 2 discusses
related work, and Section 3 provides channel models. We provided relevant technical
background in Section 4. Section 5 discusses data modulation and communication protocols
respectively, while Section 6 introduces the experimental design and implementation.
Section 7 presents evaluation and analysis, followed by a discussion of defense strategies
in Section 8, and finally our conclusion is presented in Section 9.

2. Related Word

Typically, there are five types of covert channels used to bridge air gaps: electromag-
netic, electrical, acoustic, thermal, and optical covert channels.

2.1. Electromagnetic, Electrical, Acoustic, and Thermal

In electromagnetic covert channels, researchers utilize the electromagnetic waves
emitted by a computer’s built-in hardware or peripheral hardware devices related to the
computer to exfiltrate data. In 2016, Guri et al. implemented USBee [2], which utilizes
an unmodified USB device connected to a computer as an RF transmitter and uses GNU
Radio to build a receiver and demodulator for evaluating the transmitter’s capability of
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transmitting data at 20 to 80 bytes per second (BPS). In 2018, Guri et al. implemented
ODINI [3], which controls the low-frequency magnetic field emitted by infected computers
by adjusting the load on the CPU core. They used HMR2300 (Honeywell) magnetic sensors
to receive signals and successfully exfiltrated them from the air gap Faraday cage system at
a bit rate of 1-40 bits per second. In 2021, Burton et al. utilized the influence of physical
driving devices on wireless channels to exfiltrate signals [4]. The receiver collected CSI data
from surrounding Wi-Fi traffic in the environment and then performed frequency analysis
on CSI amplitude for decoding and recovering the original message.

In 2018, Guri et al. implemented PowerHammer [5], a method of isolating computer
data through power line leakage air gaps, in a concealed power channel. In 2022, Wang et al.
implemented GhostTalk [6], which injects and eavesdrops on voice commands that cannot
be heard by human ears through a power line side channel—i.e., a modified charging cable
connected to the power line. Götte et al. proposed a broadcasting channel based on grid
frequency modulation [7].

In acoustic covert channels, Guri et al. implemented DiskFiltration [8], a method of
exfiltrating data from a speakerless computer through covert acoustic signals emitted by
its hard drive (HDD). In 2023, Yang et al. achieved SingATACK [9], where researchers
manipulated the noise generated in the switch mode power supply of the device, enabling
remote control of existing speech recognition systems over a distance of up to 23 m through
transmission via the power grid. Xia et al. implemented NUIT [10] and introduced a new
type of air gap channel called Near Ultrasonic Invisible Trojan, which can remotely control
voice control systems.

In the thermal covert channel, Mirsky et al. implemented HVACKer [11] and proposed
a new adversarial model that injects data through the thermal channel of a covert air
conditioning system. Guri et al. implemented BitWhisper [12], a method of bridging
air gaps between adjacent infected computers by using their heat emissions and built-in
thermal sensors to create a covert bidirectional communication channel.

2.2. Optical Channel

Over the years, various types of concealed channels have been proposed to overcome
the air gap isolation barrier. In 2018, Guri et al. covertly exfiltrated sensitive data from an
air gap network by utilizing a row of state LEDs on network devices such as LAN switches
and routers [13]. In 2019, Guri also discovered that encoding information using keyboard
LEDs (uppercase lock, number lock, and scroll lock) could result in data leakage from
isolated computers [14]. In 2023, Nassi et al. introduced optical cryptanalysis as a new form
of side channel attack that extracts keys by measuring the light emitted by device power
LEDs using photodiodes and analyzing fine fluctuations in light intensity during password
operations [15]. Additionally, in 2024, it was found that encryption calculations performed
by CPUs can affect device power consumption and consequently alter the brightness of
device power LEDs. Based on this principle, researchers implemented a novel method
for recovering device keys through the analysis of video clips featuring device power
LEDs [16].

This paper explores optical gap-based covert channels and extends the threat model
to include exfiltrate channels such as surveillance cameras and smartwatches carried by
individuals. Traditional electromechanical meters, as well as modern smart meters, were
evaluated, in addition to testing optical sensors as receivers.

3. Air Gap Covert Channel Model
3.1. General Model of Covert Channels

The target host is assumed to be located in a physically isolated network, with no
communication with external networks such as the Internet, as shown in Figure 1. Spe-
cific functional software or hardware can be implanted into the target host using social
engineering or supply chain pollution. Subsequently, sensitive information can be col-
lected according to the designer’s intention, and covert communication channels can be
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established with the outside world through media such as electromagnetic waves, power
consumption fluctuations, and sound waves. Finally, the receiver obtains sensitive informa-
tion within the target machine.
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Figure 1. Model of air-gapped network connection using covert channels.

3.2. Bit Sufi-Dance Model

The Bit Sufi-Dance model, similar to other forms of general air gap covert communica-
tion, comprises of two distinct components. Firstly, there is the transmitter, also referred to
as the meter, which is directly linked to the air gap organization. This transmitter serves as
the key element in relaying information across the air gap. Secondly, there is the receiver,
which can be either a camera or a smartwatch, depending on the specific setup and needs.
This receiver is entirely controlled by the intended recipient of the transmitted data. The
entire system, shown in Figure 2, operates seamlessly to facilitate covert communication
across the air gap, ensuring secure and reliable data transfer between the transmitter and
the receiver.
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Figure 2. Bit Sufi-Dance work scenario and data flow diagram.

3.2.1. Signal Transmitter

A transmitter is an electricity meter used in air gap isolation equipment, which is a
device connected in series on single-phase or three-phase power lines to measure and record
the power and energy consumption of equipment, as shown in Figure 3. First, the computer
needs to be infected with specific software or hardware, and then the software collects
desired data from the computer (such as credit card numbers, encryption keys, various
passwords, documents, etc.). When certain preset conditions are met (such as specific
content of interest or a certain time point), data is filtered out through available covert
channels. The signal is generated by changing the speed of the mechanical turntable of the
meter or altering the flashing frequency of the power indicator LED through oscillation in
computer equipment’s power consumption.
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3.2.2. Signal Receiver

A receiver is a line of sight between the light source (electricity meter) and the camera.
In this model, there are several types of devices that can be used to receive optical signals
from electricity meters, including cameras that communicate with electricity meters, surveil-
lance closed-circuit TVs or IP cameras located outside buildings, etc. Even smartwatches or
wearable cameras held by internal personnel (such as smartwatches) can serve as receivers,
a situation known as “evil maid” [17], and the threat scenario is illustrated in Figure 4. In
this article, the method of establishing optical covert channels between electricity meters
and optical equipment is studied. Since the data exfiltrated through the electricity meter
has been encoded, the receiver first records a video of the meter, and then decodes the
video to recover sensitive information.
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4. Technical Background

Electricity meters are essential equipment in every household or office, typically
located outdoors. The meter’s turntable or LED can display the user’s electricity usage,
facilitating potential data exfiltration. The paper examines the technical requirements for
data exfiltration through electricity meters.

4.1. Electricity Meter and Power Status

The development history of electricity meters as devices for measuring power con-
sumption can be traced back to the late 19th and early 20th centuries [18]. Starting from
the initial electromechanical measurement based on electromagnetic induction principles,
they have evolved into electronic instruments for measurement and currently intelligent
measurement. With the application of electronic technology, the accuracy and reliability of
electricity meters have been significantly improved.
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Electromechanical energy meters have been the most traditional and widely used
energy meters for a century. They measure active energy in kWh by calculating the number
of revolutions of the conductive metal disk, with its rotational speed being directly propor-
tional to the power passing through it [19]. When electrical equipment uses electricity, AC
current passes through the coil of the meter to generate AC magnetic flux. The alternating
magnetic flux then passes through an aluminum sheet, causing vortices on it. These vortices
experience force in a magnetic field, resulting in torque (active torque) on the aluminum
sheet. Torque is proportional to power consumed by load; higher power and greater torque
make aluminum discs rotate faster. Therefore, monitoring the speed of the metal disk
makes it possible to monitor power consumption.

The structure of a typical single-phase electricity meter is shown in Figure 5 [20]. Its
basic design includes voltage coils, rotors, current coils, aluminum turntables, and digital
display modules. However, the moving components of electromechanical systems will
vary over time, temperature, and conditions [21]. External dirt, dust, and humidity can also
cause the mechanical gears to wear out, ultimately leading to a decrease in measurement
accuracy. Therefore, electromechanical energy meters are gradually being replaced by
electronic instrument energy meters.
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Figure 5. Schematic diagram of mechanical energy meter structure.

Smart meters are typically based on digital micro technology (DMT), which differen-
tiates them from electronic digital meters due to their additional functions and features.
In addition to conventional power measurement and automatic meter reading (AMR),
they also enable bidirectional communication between the meter and the base station,
allowing for load analysis, prepayment, remote disconnection, and multiple electricity
pricing billing. This enhances customer service and ensures a reliable power supply [22].
The structure is depicted in Figure 6 [23]. With the advancement of society and technology,
mechanical meters are gradually being replaced by digital and smart meters that offer more
powerful functions, convenient usage, and accurate power consumption measurement.
The adoption rate in user households and public places has been increasing year by year,
and was projected to reach 61% in the UK by the end of 2023 [24].

The power status control of a smart meter is achieved through the use of LEDs (Light
Emitting Diodes), which are semiconductor light sources that emit light when charges pass
through them. LEDs are commonly used as activity indicators in various electronic devices.
The wavelength of the emitted light, represented by its color, is determined by the materials
used in the semiconductor components of the LEDs. Typically, aluminum gallium indium
phosphide (AlGaInP) is utilized for red, orange, and yellow LEDs. In a common smart
meter, the indicator light is red. The LED of the device can be controlled by connecting it to
the GPIO pin on the device’s PCB (printed circuit board), as shown in Figure 7.
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4.2. Computer Power Consumption

The power consumption of a computer mainly includes the total power consump-
tion of internal hardware, such as the CPU, graphics card, motherboard, sound card, and
network card, as well as peripheral devices like keyboards and displays. For desktop
computers, the power generally ranges between 120 W and 600 W, while for laptops it is
around 40 to 230 W. The power consumption of a computer is primarily determined by its
internal hardware components with the CPU and GPU accounting for a significant propor-
tion of energy usage. Mainstream CPUs typically consume approximately 30–250 W [25]
of power, while GPUs can range from tens of watts to 1000 watts in terms of their energy
consumption [26].

However, not all computers are equipped with independent graphics cards; many
use integrated display modules instead [27]. Generally speaking, high-performance multi-
core processors tend to have higher power requirements compared to low-end single-core
processors which consume relatively less power. Additionally, using resource-intensive
software or multitasking can also impact CPU power consumption. The Figure 8 illustrates
a comparison of total power consumption among several computer brands under both low
load and high load conditions.
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4.3. Camera

Currently, cameras are widely used and ubiquitous in various environments such as
television, surveillance, smart homes, smartwatches, and more. In consumer cameras, an
imaging tube called a camera was initially used; however, it was later replaced by a new
semiconductor known as a charge-coupled device (CCD), and now complementary metal-
oxide-semiconductor (CMOS) image sensors are commonly employed. The transition to
CCD technology has significantly improved the performance of cameras. Figure 9 [28]
illustrates the basic block diagram of a camera which consists of an optical unit, image
sensor, electronic circuitry, viewfinder, and recording device. The image sensor can be
either CMOS or CCD-based while the fundamental camera circuit includes circuits for
brightness signal processing, color separation processing, and color signal processing.
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4.4. Video Encoding

Digital video is composed of frame sequences sampled in both spatial and temporal
domains, and direct representation requires a large amount of storage space, necessitating
the encoding of video content. Video encoding refers to the process of compressing video
content to achieve high transmission and storage efficiency. The most widely used video
coding standard currently is H.264 Advanced Video Coding (AVC), which can encode
videos into bitstreams for storage and transmission. It has been proposed for 15 years,
and so far, most hardware manufacturers support H.264 AVC [29]. The encoder converts
the video to a compressed format, and the decoder restores the compressed video to
an uncompressed format. Together, they form the term encoder/decoder, as shown in
Figures 10 and 11 illustrates a typical video encoder structure. It consists of four parts:
prediction frame encoding unit, transformation encoding unit, data quantization, and
entropy encoding unit.
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4.4.1. Entropy Encoding

A lossless encoding method that compresses video data to the Shannon limit, but due
to Shannon limitations, it can only achieve a moderate compression ratio.

4.4.2. Lossy Encoding

Removes redundant and less important information from video data. Lossy compres-
sion of videos is usually more effective because the human visual system can tolerate the
loss of details.

4.4.3. Video Decoding Library

The FFmpeg [30] software library can be used to decode videos. It is a cross-platform
computer vision and machine learning software library licensed under LGPL or GPL (open
source), capable of running on Linux, Windows, Android, and Mac OS operating systems.
It integrates functions such as image processing, feature detection and description, video
analysis, and image segmentation, making it very convenient for performing video and
image processing.

5. Bit Sufi-Dance Communication Technology

In this section, we describe the theoretical and communication aspects of the proposed
Bit Sufi-Dance air gap channel, analyze it, and discuss the imaging receiver.

5.1. Mechanical Turntable Transmission

Traditional electricity meters have been widely used since the late 19th century. In most
traditional electricity meters, a conductive metal turntable made of copper or aluminum is
connected to a mechanical display through a gear mechanism. The energy consumption
is measured by calculating the number of revolutions of the conductive metal turntable,
with a unit of kWh. The unit of measurement for the induction type electric energy meter
with a rotating aluminum turntable is r/kWh, which represents the number of cycles the
turntable rotates for every 1 kWh of electrical energy consumed by the appliance.

To enable users to check the normal working condition of the electricity meter, a small
area on the outer edge of the conductive metal turntable will be coated with black pigment
as a mark, as shown in the Figure 12. As the turntable rotates, the black color mark will
periodically appear, indicating the power consumption of the air gap isolation device
through the metal turntable of the electricity meter. This provides a physical foundation
for establishing a Bit Sufi-Dance air gap channel for receivers. By utilizing current mature
optical speed recognition methods, it is possible to identify and measure the speed (power
consumption) of an electricity meter. An optical tachometer is commonly used in industrial
settings and enables non-invasive measurement of device speed [31]. It typically consists
of an encoder and parser for continuous speed monitoring and requires optical coupling
with rotating axes/components. In this paper, we utilize a camera that can obtain device
speed through optical signals, providing a mature technical solution for implementing Bit
Sufi-Dance connections.
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5.2. Flashing LED Transmission

To facilitate users in monitoring power consumption, most electronic and smart me-
ters are equipped with flashing LED that represent the amount of electricity consumed.
The LED parameter labeling unit is imp/kWh, which indicates the number of flicker-
ing pulses generated by an electrical appliance for every 1 kWh of electricity consumed.
Common values for civilian electricity meters are typically 1000, 1600, or 3200 imp/kWh.
For instance, Schneider’s renowned electricity meter iME2250 1000 imp/kWh represents
every 1000 pulses corresponding to the consumption of 1 kWh of electricity, as shown
in Figure 13.
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Figure 13. The 1000 imp/kWh displayed in the figure indicates that flashing the LED 1000 times
consumes 1000 Wh of power, 1 Pulse/Wh.

Figure 14 displays a pulse output [32]. The pulse width, T_high, varies depending on
the meter used. T_high remains unchanged during operation. For the iEM2250 m, T_high
pulse width is also 90 ms [33]. The duration between pulses, T_low, varies based on the
pulse rate which represents the power measured by the meter.
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Calculate power consumption: for the iEM2250 m, each pulse represents 1 Wh of
electricity passing through the meter [32].

Light pulse counting: record the number of flashes of the LED.
When the device within the air gap organization operates a data transmitter (energy

consumption modulation software), the frequency of LED flashing in the electricity meter
can be influenced by regularly controlling the power consumption of the device, which
provides a theoretical and technical basis for researchers.

5.3. Camera Receiver

The camera can serve as a signal receiver for Bit Sufi-Dance. Visual-Based Measure-
ment (VBM) is a concept that replaces on-site measurements by processing sequences of
images or video signals captured by cameras to obtain measured values in Engineering
Structures [34]. VBM has been applied in many scenarios, such as item counting, detecting
specific shapes or colors, identifying industrial instruments, measuring object movement
speed, etc. It is also used in biometric applications for non-contact, non-invasive, and non-
destructive detection. The frame rate per second (FPS) is the main factor determining the
maximum bit rate of a camera. Common surveillance cameras and mobile watch cameras
capture up to 30 frames per second. In our experiment, it is necessary to detect the speed of
the mechanical meter turntable or the flashing frequency of the electronic meter LED and
then use video processing algorithms to decode all transmissions.
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5.3.1. Rotary Speed Detection

The VBM concept was proposed by Ferreira et al. for speed measurement using
cameras with mechanical meters [31]. To measure rotational speed, a new method was
introduced to generate actual raw sensor signals for sampling and analysis. A camera
was used to capture the change in light reflection intensity of the rotating component as
a signal source, followed by counting or frequency domain analysis to infer its rotational
speed. In real-time, we selected the region of interest (ROI) from the collected video, which
corresponds to the black part of the mechanical meter’s turntable shown in Figure 12. The
received light signal depends on both the camera and meter’s turntable line of sight and
visibility. After receiving the recorded video, we processed each frame individually to
detect the rotation speed of the turntable.

5.3.2. LED Flashing Detection

A camera can be used to extract LED flicker for electronic and smart meters. After
receiving the recorded video, each frame is processed to detect the frequency of LED flicker.
Finally, the binary data is decoded based on an encoding scheme.

6. Design and Implementation of Covert Channels

In this section, we introduce data transmission and describe the working principle of
the sending software, methods for optical signal generation, data modulation schemes, and
data frame structures. We also explore their characteristics and correlation with the model.
The workflow of the covert channel is shown in the Figure 15.
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In the model, we assume that two conditions have been met: (1) the computer equip-
ment within the air gap tissue has been installed with a program (sender software) capable
of modulating signals and is in an activated state; (2) the electricity meters used by the
organization can be captured by cameras. Sensitive information (such as user account, user
password, encryption key, key data, etc.) leaks through either the metal turntable or LED
indicator light of the electricity meter used by the air gap organization. The light signal
from the electricity meter is obtained through surveillance cameras or smartwatch cameras
located in public areas, establishing a covert channel between the electricity meter and
camera. Subsequently, sensitive data is decoded and restored by extracting signals from
video content.

6.1. Software Composition

The software components are shown in Figure 16. (1) The data collection module
collects the data of interest; (2) it encodes the data in the agreed format and divides the
encoded data into frames of equal length; (3) error correction codes or checksums are added
at the end of each data frame; (4) data frames are sent to the modulator; (5) fluctuations in
power consumption from construction equipment directly affect the working status of the
meter’s turntable/LED. The core modulation algorithm can be found in Algorithm 1.
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Algorithm 1 Power Modulator

1. Input: (CPU_Threads, Payload, PayloadSize, bitDuration)
2. binBuff[] = payload
3. i = 0
4. Do
5. if(binBuff[i++] == 1)
6. HighCPUload(bitDuration);
7. else
8. LowCPUload(2 * bitDuration)
9. While (i < payloadSize)

6.2. Electricity Meter Signal Generation

In our method, the carrier of data is either the metal turntable speed of the meter
or the flashing frequency of the LED. To generate signals, we need to control the power
consumption of computer equipment, thereby regulating the speed of the metal turntable
in mechanical meters or adjusting the LED flashing frequency in electronic meters. It is well
known that a computer’s overall power consumption varies with CPU workload, as shown
in the Figure 8. Therefore, software is used to manipulate device power consumption
changes, which subsequently impact overall power consumption and ultimately result in
regular variations in the metal turntable or LED of the meter.

6.2.1. Metal Turntable

The physical object representing a mechanical electric meter’s metal turntable is shown
in Figure 12. The scene of using a camera to capture the metal turntable of a mechanical
electric meter is shown in Figure 17. As the turntable continues to rotate, black patches will
periodically appear in the camera’s field of view, and the light reflectivity of these black
patches will be significantly reduced. This change will be recorded by the camera, laying
the foundation for subsequent decoding.
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6.2.2. LED

Figure 18 depicts the use of a camera to capture the LED on an electricity meter,
which reflects the power consumption through its flashing frequency. The camera can
continuously capture the complete flashing image of the LED, providing a foundation for
subsequent decoding.
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6.3. Data Encoding and Signal Modulation

We propose three modulation schemes for exfiltrating meter data: (1) Binary Frequency
Shift Keying (2FSK), (2) On/Off Keying (OOK), and (3) Multi-band Amplitude Shift Keying
(MASK).

6.3.1. Binary Frequency Shift Keying (2FSK)

FSK modulation is a digital modulation technique that encodes digital information
into signals with different frequencies. In the FSK modulation process, a binary “1” or “0”
is transmitted through carrier signal frequencies divided into two states. When the digital
information is “0”, the frequency of the carrier signal is a fixed center frequency f1; when
the digital information is “1”, the frequency of the carrier signal changes to another fixed
center frequency f2. Therefore, FSK modulation converts digital information into a series of
signals with changing frequencies. In our case, the metal turntable of the mechanical meter
represents 0 and 1 at two different speeds, while an electronic meter’s LED indicates 0 and
1 with two different flashing frequencies.

6.3.2. On/Off Keying (OOK)

Switching key control (OOK) is the simplest communication modulation method,
which is a simpler form of ASK. When transmitting “0”, there is no carrier signal output;
only when transmitting “1” is there a signal output, and the duration of both signals remains
the same. In our modulation scheme, when there is no operation by the sending software,
the power consumption of the computer device can be reduced to a lower state, representing
the transmission of “0”. When the sending software performs high load calculations, it can
put the computer device in a high power consumption state, representing the transmission
of “1”.

6.3.3. Multi-Band Amplitude Shift Keying (MASK)

Multi-band amplitude shift keying (MASK) utilizes amplitude as a variable, trans-
mitting information bits through the carrier wave’s amplitude. MASK represents the use
of signals with multiple amplitudes to convey different bit information. In our study, the
sending software can modulate the power consumption of computer devices by implement-
ing four different workloads. This change in power consumption will also synchronously
affect the working status of the electricity meter. The 4ASK encoding is shown in Table 1.

Table 1. 4ASK modulation coding table.

Workload
(Unit U)

Increase in Device Power
Consumption (Unit P)

Continuous
Time Data

1 U 1 P T 00
2 U 2 P T 01
3 U 3 P T 02
4 U 4 P T 03
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6.4. Data Frame

If the data packet is too long, it will cause synchronization difficulties, error correction
difficulties, verification difficulties, and other problems during the communication process.
Therefore, we need to standardize the data packet and divide the transmitted data into
smaller packets. Each frame consists of a header synchronization code, a payload, and
an error correction code. In our scheme, the synchronization code in the header consists
of eight alternating bit sequences (‘10101010’). The payload is the actual data we want to
transmit, and we arbitrarily choose 64 bits as the payload size. The error correction code is
located at the end of each data frame and is used to correct errors in data bits.

7. Evaluation & Analysis

In this section, we evaluate optical covert channels. Our evaluation focuses on the
optical characteristics and transmission rate of the meter. In our experiment, we adopted
a commonly used method in visible light communication, which assumes that the metal
turntable (LED) of the electricity meter and the camera can be directly viewed. The working
status of the electricity meter, as shown in the Figures 19 and 20. Figure 21 is shown in the
working scenario diagram of the Bit Sufi-Dance covert channel.
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Figure 21. The monitoring camera captures the electricity meter.

7.1. Signal Receiver

The validity of the signals in the video recorded by the camera, showing the electricity
meter in operation, depends on the line of sight and visibility during filming. We process
the recorded video frame by frame to detect either the metal turntable or LED of the
electricity meter. By analyzing each frame, we identify either the speed of the metal
turntable or frequency of LED flashing. Finally, we decode binary data based on an OOK
encoding scheme.

7.2. Video Processing

The video was decoded using FFmpeg, an open-source computer vision library that
offers a comprehensive solution for recording, converting, and streaming audio and video.
We have developed a program to receive videos as input and save the active screen of
the electricity meter to an output file in order to detect and track the rotation of the metal
turntable or LED flashing on the electricity meter.

There are typically two methods for measuring the rotational speed of mechanical
electric meters: frequency measurement method and period measurement method. The
frequency measurement method is commonly used for high rotational speeds, while the
period measurement method is employed for low speeds. Since computer equipment has
low power consumption, it results in lower rotational speed of the metal turntable on the
electricity meter. Therefore, this article primarily utilizes cycle measurement method for
testing purposes.

When capturing video footage of the metal turntable with a camera, there are two
distinct areas: a silver area and a black patch area where pixel values change accordingly.
Therefore, for each video frame, we select a two-dimensional region on the turntable (x0, y0,
x1, y1) as shown in Figure 22. Each pixel in this image corresponds to a three-dimensional
vector value (R, G, B), which allows us to calculate sum of pixels within this selected region
using Formula (1).

P = R + G + B (1)
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Figure 22. Two-dimensional area for selecting mechanical electricity meters.

Continuously recording the difference (P0, P1, P2,... Pn), selecting an appropriate
threshold to analyze the cycle of p-value, can obtain the speed of the metal turntable, the
signal waveform is shown in the Figure 23. The red line in the picture represents the time
division of the communication.
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Figure 23. Optical signal waveform of mechanical energy meters.

Measurement of LED flicker frequency in electronic meters. To detect and
quantify LED flicker, we utilized the fundamental methods employed in LED-based
communication [35]. The formula for calculating the pixel intensity values Q, the cal-
culation method can be found in Formula (2). Q for the specified two-dimensional region
(x0, y0, x1, y1) of the parsed video frame is as follow, as shown in the Figure 24.

Q = R + G + B (2)
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Figure 24. Two-dimensional area for electronic meter selection.

When continuously recording the value of (Q0, Q1, Q2,... Qn), the brightness of an
electric meter LED is the quantified level of light intensity in a two-dimensional image.
Due to the constant frame rate (FPS) of the camera sampling, we only need to select the
threshold of LED brightness to better identify whether the LED is in a glowing state. By
analyzing the periodic variation of Q value, the frequency of LED flashing can be obtained.

In our experiment, we tested various types of cameras as receivers. Using a video
processing demodulator to decode all transmissions, the signal waveform is shown in the
Figure 25.
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7.3. Data Rate

We used a GIGABYTE AERO 15 laptop for testing, which had a power consumption
range of 95–256 W. Then, we measured the communication rate of the Bit Sufi-Dance covert
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channel using both a mechanical meter with parameters of 1200 r/kWh and an electronic
meter with parameters of 1000 imp/kWh. When using mechanical and electronic meters,
inconsistent results may occur due to differences in physical accuracy of the products.
When the maximum power of the laptop is 256 W, the mechanical meter can reach 101 b/h
and the electronic meter can reach 93 b/h. The test results are presented in the Table 2.

Table 2. Bit Sufi-Dance channel communication rate.

No. Transmitter Receiver Bit Rate (b/h) Distance (m) BER
(%)

1 Mechanical meter Camera 101 5.5 3
2 Mechanical meter Smartwatch 101 2.9 6.3
3 Electronic meter Camera 93 15.7 1.6
4 Electronic meter Smartwatch 92 5.6 2.4

8. Countermeasures

There are three methods for addressing the risk of data leakage caused by establishing
a hidden channel between electricity meters and air gap isolation devices.

The first method is to shield the electricity meter of the air gap network from external
observation. Blocking the metal turntable signal or LED signal of the electricity meter,
which needs to be collected by the receiving end, is crucial for preventing data leakage.
However, completely masking the electricity meter requires a significant increase in work-
load and may hinder users from observing its working status, which is not conducive to
its maintenance.

The second method entails monitoring power grid fluctuations in the air gap network,
interfering with signals suspected of data leakage, and preventing reception by external
sources. When there is excessive noise or interference in the power grid, it submerges
any effective signals, thereby safeguarding the security of the air gap network. However,
this approach requires additional hardware devices and may lead to increased energy
consumption due to interference processes.

The third method involves performing feature recognition on infected computers’
software. This includes identifying software that potentially establishes power gap channels
and detecting their behavior through static and dynamic analysis of code. Once such
features are detected, operation of the code is terminated. However, since all software
utilizes CPU resources and their load is difficult to predict accurately, identifying them
based on software behavior can result in a relatively high false alarm rate that interferes
with normal user operations.

9. Conclusions

In this paper, we demonstrate how to use the power status indicator (such as a metal
turntable or LED) of an electric meter to optically exfiltrate data from a computer with an
air gap. By utilizing surveillance cameras and smartwatch cameras to receive status signals
from the electricity meter, we provide a detailed technical background at both hardware
and software levels. We propose modulation schemes and transmission protocols, address
design and implementation issues, and evaluate hidden channels on different types of
meters. Our experiments show that when there is a line of sight between the meter and the
camera, data can be exfiltrated at a bit rate of 101 bits per hour. The error rate of mechanical
meters is 3% and 6.3% respectively. The error rate of electronic meters ranged from 1.6%
to 2.4%.

The implications of our findings are significant for the security of air-gapped systems.
Our results highlight the vulnerability of physical indicators, such as LEDs, which can
be exploited to create covert communication channels. This underscores the need for
enhanced physical security measures and the monitoring of environmental signals in
sensitive environments. Additionally, our work suggests that organizations should consider
the potential risks associated with the deployment of smart devices and cameras, which
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can inadvertently serve as tools for data exfiltration. To mitigate these risks, we propose
three preventive measures.

10. Future Work

In future exploration and practice, we plan to comprehensively deepen the research
and application of Bit Sufi-Dance communication solutions. The primary task is to further
expand the testing scope, not limited to the currently known electrical equipment, but
widely including various new electronic devices and high-power appliances. Through
detailed performance testing and data analysis, the maximum communication rate of the
Bit Sufi-Dance solution can be accurately evaluated and continuously improved, in order
to improve transmission efficiency and increase data transmission speed.

Concurrently, in order to overcome the limitations of communication distance and
significantly improve signal quality, we will integrate optical telescope technology into
communication systems in the future. This cross-border integration will utilize the excellent
focusing and imaging capabilities of optical telescopes as an enhancement tool for camera
signal acquisition, which can extend the effective transmission distance of signals. In
addition, by finely adjusting the optical system parameters and combining them with
advanced signal processing technology, we are expected to significantly reduce the bit error
rate during communication, ensure accurate and error free data transmission, and provide
technical support for applications in extreme environments such as remote communication.

On this basis, we will continue to explore and introduce more cutting-edge tech-
nologies such as machine learning, artificial intelligence, and other auxiliary optimiza-
tion algorithms to enhance the performance and reliability of Bit Sufi-Dance solutions in
multiple dimensions.

In summary, future work will focus on combining technological innovation with prac-
tical applications, constantly challenging technological limits, promoting breakthroughs in
Bit Sufi-Dance solutions in a wider range of fields, and providing technical and solution
references for security researchers.
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