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Abstract: Image captioning aims to describe the content in an image, which plays a critical role in
image understanding. Existing methods tend to generate the text for more distinct natural images.
These models can not be well for paintings containing more abstract meaning due to the limitation
of objective parsing without related knowledge. To alleviate, we propose a novel cross-modality
decouple model to generate the objective and subjective parsing separately. Concretely, we propose
to encode both subjective semantic and implied knowledge contained in the paintings. The key
point of our framework is decoupled CLIP-based branches (DecoupleCLIP). For the objective caption
branch, we utilize the CLIP model as the global feature extractor and construct a feature fusion
module for global clues. Based on the objective caption branch structure, we add a multimodal fusion
module called the artistic conception branch. In this way, the objective captions can constrain artistic
conception content. We conduct extensive experiments to demonstrate our DecoupleCLIP’s superior
ability over our new dataset. Our model achieves nearly 2% improvement over other comparison
models on CIDEr.

Keywords: painting captioning; multimodal fusion; CLIP

1. Introduction

Painting understanding is critical in both public culture broadcasting and appreciation.
Typically, a painting conveys not only objective meanings but also its inner essence, such
as energy, life force, and spirit. However, paintings can be challenging to comprehend,
especially for those lacking historical and artistic knowledge.

With the advancement of Artificial Intelligence (AI), the task of image captioning,
which generates descriptions of given images, has emerged to aid in image appreciation and
research. Many studies focusing on natural image captioning [1–7] have made significant
strides. Existing image captioning models could be classified into two streams: two-stage
image captioning models [8–11] and end-to-end image captioning models [12–16]. The
two-stage image captioning models used the object detection module to obtain object
regions and then describe the images based on these objects, regions, and image features.
The end-to-end image captioning models remove the object detection module and generate
the caption directly from the image features. These approaches excel in generating objective
descriptions but often struggle to capture the deeper connotations within images. There
are also some works that focus on painting captioning, constructing datasets [17–20], objec-
tively describing paintings [21,22], etc. Current painting captioning faces two additional
challenges. Firstly, painting captioning must generate not only objective descriptions but
also artistic conceptions. The latter is often implicitly expressed in paintings, requiring the
model to interpret the painter’s intended meaning based on the scene. Therefore, painting
captioning is more complex than natural image captioning. Secondly, it is challenging to
effectively generate these two different types of descriptions within a unified model, as
they require different descriptive approaches. To address these challenges, we propose a
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decoupled painting captioning framework that generates objective captions and artistic
conception captions separately using distinct modules.

In this paper, we introduce the DecoupleCLIP model to enhance painting captioning
performance and provide comprehensive descriptions of paintings. Our approach is
based on the premise that employing specialized models for each caption type is more
effective than using a single unified model. The DecoupleCLIP model utilizes a dual-branch
structure with individual loss functions for each branch. The first branch employs PureT [2]
and CLIP [23] as image encoders, followed by a customized fusion module to integrate
their output features. Transformers are then used as language encoders and decoders to
generate objective captions. The second branch incorporates a specialized multimodal
fusion module to combine the objective caption generated by the first branch, aiding in
the generation of artistic conception captions. Finally, the objective caption and artistic
conception caption are concatenated to form the final caption. Our main contributions are
summarized as follows:

• We decouple painting captions into two aspects: objective and artistic conception. To
achieve this, we propose a network structure with two branches that incorporate local
to global feature fusion and multimodal fusion.

• We develop a multimodal fusion model that integrates objective caption text with
multiple scales of image visual features.

• We create a small-scale image captioning dataset comprising both Chinese and Western
paintings, conducting extensive experiments using this dataset.

2. Related Work
2.1. Image Captioning

Image captioning is critical for computer vision. Some works focus on end-to-end
image captioning structures. Vinyals et al. [1] first combined CNN and LSTM to image
caption task. Lu et al. [24] further proposed adaptive attention, which could decide
whether to attend to the image and where. However, this work did not consider the effect
of subsequent words on the whole sentence generation. Ge et al. [12] further proposed
a Mutual-aid network with Bi-LSTM (MaBi-LSTM) to capture more contextual data and
implicitly utilized the subsequent semantic information. However, this method lacks rich
semantic representation of images to capture fine-grained visual features. In order to
improve the compatibility of multi-modal information, Zhang et al. [13] integrated the part-
of-speech information into the image captioning model. More recently, Prudviraj et al. [14]
proposed an Attentive Contextual Network (ACN), which added an ACN module at the
last of the ResNet backbone and added a Deformable Network [15] in the middle of the
backbone. However, this method could not locate multi-scale semantic consistency regions
in the image perfectly. To address this problem, Yu et al. [16] proposed a pyramid attention
model with a ResNet backbone to obtain more bottom-up informative attention features.

Benefitting from the transformer’s high performance in the NLP domain, some works
used Transformers instead of LSTM as a language decoder to generate captions. Most
previous studies used flattened operations to process images which lost image spatial
information. To address this problem, Zhang et al. [25] proposed a Grid-Augmented (GA)
module and an Adaptive Attention (AA) module and fused them with Transformers. This
model could generate more fine-grained captions but had no interaction between vision
and language. More recently, Wang et al. [2] proposed a pure Transformer-based model
(PureT), which used Swin Transformer [26] as a visual feature extractor. At the same
time, the model used Transformers as language encoders and decoders, which contained a
pre-fusion module to increase the interaction between vision and language.

However, the above solution to the image captioning problem is still limited in how to
generate painting captioning of high quality. Hence, we aimed to solve this challenge. We
proposed a two-branch painting captioning structure to solve this.
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2.2. Painting Captioning

Painting captioning is widely applied in artwork understanding. Some works used
image captioning methods to describe paintings. Achlioptas et al. [17] presented a novel
large-scale paintings dataset called ArtEmis. It contained 80K paintings and 455K emotion
attributions explained by humans. However, the paintings’ attributes (title, author, type,
etc.) were also important in painting captioning. Garcia et al. [18] further presented a
novel painting dataset called SemArt. It contained 21K art images. Each painting matched
a group of attributes and at least one caption to describe. Deng et al. [19] proposed a
novel style-enhanced artist classification framework that combines the styles and authors
of art paintings and derives the creative characteristics of the artists from the paintings.
Lu et al. [20] proposed a style transfer virtual data generation method and virtual–real
semantic alignment module.

To solve this problem, Yan et al. [21] further proposed a VAD (Valence, Arousal,
and Dominance) dictionary and gated concatenation mechanism to generate captions of
paintings. This method fused affective word embedding and made caption generation
more accurate, but did not contain the author, background, etc. Bai et al. [22] proposed
a multi-topic and knowledge-based painting captioning framework. This framework
extracted knowledge from the extra knowledge database to obtain a caption with the
author, background, and objects.

These methods show an application of image captioning on paintings. However, they
still lack explicit artistic conception captions and cannot generate objective captions and
artistic conception captions of high quality. Hence, we aim to solve these challenges.

2.3. Multimodal Models

Most existing multimodal models based on Transformers can be divided into single-
stream and two-stream types by the fusion method. Most single-stream models used
CNNs or Transformers to obtain image visual features, then put word embedding and
visual features into a unified Transformer. In order to enhance inter-modal interactions,
Yu et al. [27] proposed a Multimodal Transformer (MT), used GloVe and LSTM as the
linguistic encoder, then used Faster R-CNN and Transformer as the visual encoder, and
finally sent linguistic features and visual features into a Transformer. Increasingly, studies
focus on how to align linguistic and visual features. VL-BERT [28] and Unicoder-VL [29]
models use Faster R-CNN as an image feature extractor, then use a single Transformer
to align language features and image features but do not use object tags information.
Li et al. [30] further proposed an Oscar model and used object tags to assist vision and
language alignment instead of using region features and language features. Most previous
works only focus on single modality or multi-modality and cannot efficiently adapt to each
other. More recently, Li et al. [31] proposed an UNIMO pre-train model that not only simply
aligns image and language features but also uses the contrastive learning loss function,
making the true image-text distance close.

Most two-stream models have a similar approach to single-stream models to obtain
visual and word embedding, then use different Transformers to process vision and language
features and use customized co-attention to let Transformers interact with each other. To
align visual and linguistic features, the LXMERT pre-train model proposed by Tan et al. [32]
and the ViL-BERT model proposed by Lu et al. [33] align different modal information.
Zhuang et al. [34] proposed the selfALign module which improves the retrieval accuracy
while maintaining retrieval efficiency.

Multimodal models can enrich linguistic information. Therefore, we attempted to
use a multimodal model to fuse visual and linguistic features, aiming to optimize the
performance of artistic conception captions.

3. Methodology

Traditional image captioning models cannot generate painting captions suitably and
accurately. Hence, we propose a DecoupleCLIP model to solve this problem. As shown in
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Figure 1 and Algorithm 1, we use a two-branch painting captioning structure (see Section 3.1),
which mainly consists of two modules: a local to global features fusion module (see Section 3.2)
and a multimodal fusion module (see Section 3.3).

Figure 1. The framework of our proposed method. Given an input image of 384 × 384 pixels, our
method employs two branches: the objective caption branch (top branch in this figure) and the
artistic conception caption branch (bottom branch in this figure) to generate captions individually.
In the artistic conception caption branch, we integrate a multimodal fusion module to enhance the
generation performance of artistic conception captions. Subsequently, after generating both objective
and artistic conception captions, we concatenate these captions to produce the final output.

Algorithm 1 Overview of DecoupleCLIP

Input: the paintings
Output: the final captions

1: # local to global feature fusion (Section 3.2)
2: L← Swin(I) #Use Swin Transformer
3: Gc ← CLIP(I)
4: Gl ← AvgPool(L)
5: G ← GlobalFusion(Gc, Gl)
6: El , Eg ← Encoder(L, G)
7:
8: # objective branch decoder part
9: Cobj ← Decoder(El , Eg) #Generate objective captions

10: lc ← l(Cobj) #compute objective branch loss
11:
12: # artistic branch multimodal fusion and decoder part
13: Fmm ← MMFusion(El , Eg, Cobj) # Section 3.3
14: Cart ← Decoder(Fmm)
15: la ← l(Csub) #compute artistic branch loss
16:
17: # generate the final captions
18: C ← Concatenation(Cobj, Cart)
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3.1. Network Desgin

We construct a two-branch network to generate high-quality objective and artistic
conception captions. In the objective caption branch, we feed original paintings to the local
to global features fusion module and then generate objective captions through the decoder.
In the artistic conception branch, we also feed the same images into the local to global
features fusion module to obtain the global and local features of the images for the artistic
conception captions. These features are combined with the generated objective captions
and jointly input into the multimodal fusion module. Then, we feed them into a decoder to
generate artistic conception captions.

3.2. Local to Global Features Fusion

The local to global features fusion module is shown in the blue dotted box in Figure 1.
We use the local to global features fusion module to increase the information of global image
features and utilize local image features simultaneously.

In the first part of the local to global features fusion module, we use the Swin Trans-
former and the CLIP model to extract local image features VD =

{
V1

D, V2
D, . . . , Vm

D
}

and
global image features Vg. Before we use the CLIP model to obtain global image features,
we use bilinear interpolation to adjust the image resolution (384 × 384) to 224 × 224. After
extracting local image features VD, we use global average pooling to obtain another type of
global image features V̂G, where V̂G = 1

m ∑m
i=1 Vi

D.
In the second part of the local to global features fusion module, we construct a global

fusion module to fuse different global image features V̂G and Vg. The global fusion module
can extract synthetic global features VG, and it can be formulated as follows:

VG = LN
(

ReLU
(

W f [Vg; V̂G]
))

+ αVg + V̂G, (1)

where W f is the learnable parameter matrix of a linear layer, LN denotes the layer nor-
malization method, α is the learnable parameter, and [Vg; V̂G] denotes the concatenation
of image global features obtained from CLIP and Swin Transformer (contains global
average pooling).

In conclusion, we use the Swin Transformer to extract local features. The local features
extracted by Swin Transformer are transformed into global features V̂G by global average
pooling. The global features Vg are extracted by CLIP. Finally, Vg and V̂G are fused to obtain
the final global features VG.

In the third part of the local to global features fusion module, we construct an image
feature encoder, as shown in Figure 2.

The encoder can encode local and global image features separately. The left part of
the encoder block consists of Window Multi-Head Attention (W-MA) and Shifted Window
Multi-Head Attention (SW-MA) with a feedforward module. Specifically, the W-MA and
the SW-MA modules are used alternately. The W-MA has lower computational costs
compared to the Multi-Head Attention (MA) module. We add the SW-MA module after
the W-MA module to improve cross-window modeling capabilities (with reference to the
Swin Transformer [2]). The left part of the encoder block can be formulated as follows:

ẼD = LN((S)W−MA(VD, [VD; VG], [VD; VG]) + VD), (2)

where (S)W-MA() denotes use SW-MA or W-MA, which are used in Swin Transformer.

ED = LN(FFN(ẼD) + ẼD), (3)

where ED denotes the output local features. FFN denotes the FeedForward Network (FFN),
which consists of two linear modules, ReLU activation function, and dropout modules. The
right part of the encoder block structure is similar to the left part. We use MA, FFN, and LN.
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Figure 2. The encoder structure of local to global features fusion module.

3.3. Multimodal Fusion

The multimodal fusion module is shown in the dotted green box of Figure 1. This
chapter uses the multimodal fusion module to assist the generation of high-quality artistic
conception captions. A suitable painting caption not only pays attention to objective
captions but also notes the reasonableness of artistic conception. For example, a bird is
standing on a tree in a painting. If we generate the artistic conception of ”people enjoying
life”, it would be unfitting.

To address this issue, we construct a multimodal fusion module that refers to the
co-attention transformer layer [33] as shown in Figure 3. It consists of three parts: sentence-
level global feature generation for the objective captions part (middle part of Figure 3),
image global features adjustment part (GF part of Figure 3), and image local features
adjustment part (DF part of Figure 3).

In generating sentence-level global features of the objective captions part, to facilitate
the constraint of image global and local features by objective captions, we introduce the
BERT pre-train model to obtain sentence-level global features. Specifically, we feed objective
caption Lsentence into the BERT model to get vectorized representation. Then, we use a
linear module to scale the vector to the specified size. The scaled vector is sentence-level
global features of objective captions Lg.

In the image local features adjustment part, we use the Multi-Head Attention (MA)
module, layer normalization, and the FFN module. Specifically, we feed image local
features VD as Query of MA, and sentence-level features Lg as Key and Value of MA. This
way, sentence-level features can interact with image local features but without adjustment
linguistic features, only adjusting visual features. The output of image local features can be
denoted as RD, which can be formulated as follows:

RD = LN(LN(MA(VD, Lg, Lg) + VD) + FFN(LN(MA(VD, Lg, Lg) + VD))), (4)

where in MA(VD, Lg, Lg) VD denotes the Query of the MA module and Lg is the Key and
Value of the MA module.

In the image global features adjustment part, we use the sentence-level global features
of the objective captions Lg and the image global features VG to generate image global
features RG. The implementation method is similar to RD.
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Figure 3. The structure of the multimodal fusion module. The middle part of the structure uses BERT
to generate the global features of sentences. The left part of the structure uses image local features and
the global features of sentences to generate new image local features that contain linguistic features.
The right part of the structure uses a similar method to generate new image global features.

We compute the loss function separately with the true value and the generated result
of the image captions of each branch. We combine the KL Divergence function with the
Softmax method as each branch loss function. In the first step, we compute the Softmax of
prediction value, called Q(xi),

Q(xi) = log

(
exp(xi)

∑j exp
(
xj
)), (5)

where xi is the output value of the previous module. In the second step, we use ground
truth and Q(xi) to compute objective caption branch KL Divergence as loss of objective
caption branch, called lc(P, Q),

lc(P, Q) = ∑
i=1

P(xi)log
P(xi)

Q(xi)
, (6)

where P(xi) is ground truth. We can easily ontain artistic conception loss la(P, Q) in the
same way.

Training and testing phase. For the training phase, we feed the original image
into the objective branch to generate objective captions. Then, we feed the ground truth
objective captions and original images into the artistic conception branch to generate artistic
conception captions. Compared with the use of predicted objective captions, our model can
reduce training errors. For the testing phase, we feed the original image into the objective
branch to generate objective captions. Then, we feed the generated objective captions along
with the original images into the artistic conception branch to generate artistic conception
captions. Finally, we concatenate the artistic conception captions and objective captions to
generate the final painting caption.

4. Experiments

We conduct extensive experiments on our dataset to demonstrate the effectiveness of
our DecoupleCLIP model. We further analyze the results on the Chinese paintings part
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and Western paintings part of our dataset to verify the robustness under different styles
of paintings.

4.1. Datasets

We propose a small-scale painting captioning dataset containing 2400 images, and
each image is annotated with objective and artistic captions. We use multiple experienced
individuals to label the dataset in a way that eliminates subjectivity to some extent. The
captions length is considerably longer than the COCO caption dataset, and the original
image resolution ranges from thousands to tens of thousands. For the convenience of
training, we unify the image resolution to 384 × 384.

In our dataset, the landscape accounts for about 39.8% of the total keyword number,
persons account for 26.5%, plants account for 23.5%, animals account for 5.5%, and vehicles
account for 4.6%. The type of landscape includes houses, mountains, etc. The types of
plants include bamboo, flowers, etc. The types of vehicles include horses, boats, etc. The
types of animals include birds, cows, etc.

4.2. Experimental Settings

We train the CLIP model separately using the training data from the painting captioning
dataset and employ the pre-trained CLIP model as the CLIP Encoder module in Figure 1. The
number of heads in the MA module is set to 8. We set the training epochs to 80, and the batch
size to 20. We employ the cross-validation method, and without the SCST [4] training method.

For all the comparison models and DecoupleCLIP model, we train (on the training
dataset), validate (on the validation dataset), and test (on the test dataset) with our proposed
dataset, and all the above models converge on the validation set.

4.3. Evaluation

In each metrics comparison table, the first row of each model represents the average
metrics, and the second row represents the variance of the experiment.

Quantitative Evaluation. The performance comparison of different baselines and our
model in pure Chinese paintings part is shown in Table 1. We highlight the best model in
bold. In this part of the experiment, we only use the Chinese paintings part of the dataset
to train each model separately. B@1 indicates BLEU-1, and B@2 to B@4 indicate similar
metrics. Our model achieves a CIDEr score of 35.5, which is an improvement of at least
1.97 compared to the other baseline models. Meanwhile, our model improves at least 0.8%
on BLEU-4 and at least 0.57% on SPICE. However, our model performs slightly lower than
the PureT model [2] on BLEU-1 and METEOR. These metrics suggest that our model can
produce more accurate keywords and smoother sentences. However, due to the limited
vocabulary size of the dataset, the diversity of non-keywords is smaller.

Compared to the representative two-stage image captioning model (GRIT), we at-
tribute our performance improvement to eliminating the object detection module, which
cannot effectively detect the object in Chinese paintings.

Compared to the representative one-stage models (PureT and VirTex), we attribute our
performance improvement to using the two-branche painting captioning structure, which
facilitates the training accurate painting captioning models. Our DecoupleCLIP model
improves performance and reduces annotation cost, as it does not require additional object
detection annotations.

The performance comparisons among different baselines and our model in the full
dataset, which contains Chinese and Western paintings, are shown in Table 2. We use bold
font to indicate the best model and blue to indicate the second-best model.

Comparing the sentence length generated by the model can reflect the quality of
the sentences to some extent. As shown in Figure 4, we analyze the results of the cross-
validation in the Chinese paintings part, where more than half of the captions have lengths
between 15 to 30 and 45 to 99. Our method generates captions whose lengths are closest to
the ground truth in these two ranges.
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Studying the relationship between sentence length and metrics generated by the
model, we conduct statistical analysis on single-part cross-validation results in the Chinese
paintings dataset, as depicted in Figure 5. PureT and our model exhibit relative stability in
CIDEr and SPICE metrics when the sentence length ranges from 15 to 30 and from 30 to
45, with our model performing the best. With a richer and more balanced sample set, our
model would achieve greater stability and produce more realistic captions.

Table 1. Metric comparisons among different baselines and our model in our proposed dataset of
Chinese paintings part. The best indicator is shown in bold black. The first row represents the average
and the second row represents the variance.

Metrics PureT [2] GRIT [35] VirTex [36] DecoupleCLIP (Ours)

B@1 43.40 39.33 29.73 43.20
5.7× 10−4 1.1× 10−3 3.4× 10−4 1.7× 10−4

B@2 31.43 28.80 20.08 31.70
5.6× 10−4 7.3× 10−4 1.6× 10−4 8.9× 10−5

B@3 23.45 21.78 13.93 24.15
5.2× 10−4 4.6× 10−4 1.6× 10−4 5.8× 10−5

B@4 17.33 16.23 8.93 18.18
4.3× 10−4 4.1× 10−4 1.8× 10−4 5.4× 10−5

METEOR 18.55 18.08 16.34 18.13
3.0× 10−5 7.9× 10−5 9.1× 10−5 8.3× 10−6

ROUGE-L 37.40 35.78 30.45 38.08
4.9× 10−4 8.1× 10−4 2.5× 10−4 2.7× 10−5

CIDEr 33.53 20.23 8.07 35.50
5.6× 10−3 8.7× 10−4 7.3× 10−4 6.8× 10−4

SPICE 27.08 22.33 17.35 27.65
3.1× 10−4 2.2× 10−4 5.8× 10−4 6.0× 10−5

Table 2. Metric comparisons among different baselines and our model in the full dataset show the best
indicator in bold black. The first row represents the average, and the second row represents the variance.

Metrics PureT [2] GRIT [35] VirTex [36] DecoupleCLIP (Ours)

B@1 41.65 28.85 24.78 41.18
1.7× 10−4 3.1× 10−4 3.3× 10−4 2.1× 10−4

B@2 29.20 20.28 16.65 29.13
1.1× 10−4 5.1× 10−4 4.9× 10−4 1.6× 10−4

B@3 21.35 14.90 11.90 21.60
9.6× 10−5 4.3× 10−4 5.1× 10−4 1.0× 10−4

B@4 15.53 10.50 7.83 15.93
7.5× 10−5 3.6× 10−4 5.0× 10−4 8.5× 10−5

METEOR 16.85 11.83 15.38 16.83
7.0× 10−6 6.1× 10−5 4.9× 10−4 1.6× 10−5

ROUGE-L 35.58 28.90 27.93 35.20
5.9× 10−5 7.3× 10−4 5.9× 10−4 3.1× 10−5

CIDEr 32.05 10.68 9.05 33.88
1.2× 10−3 1.1× 10−4 3.2× 10−4 6.2× 10−4

SPICE 23.28 14.65 16.75 23.95
8.5× 10−5 3.7× 10−4 8.7× 10−4 1.2× 10−5
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Figure 4. Sentence length of image captions in Chinese paintings part. GT denotes ground truth
sentence length. Our model generates the sentence length closest ground truth in the second and the
last range. The number of sentences in these two ranges accounted for 50% of all sentences.

Figure 5. Different models generate captions between length ranges of sentences and different metrics
relationships in the Chinese paintings part dataset. From left to right, BLUE-4, CIDEr, and SPICE are
explained. Our model performance is good in most situations.

Qualitative Evaluation. The VirTex model is not shown in the qualitative analysis
section due to its low metrics and low word generation efficiency. The GRIT model converts
words that occur 1 or fewer times to <unk>.

Figure 6 presents the qualitative analysis results of Chinese paintings from our model,
GRIT and PureT. The text captions below each Chinese painting are generated, respectively,
by our model and PureT. For the first Chinese painting, the PureT model incorrectly
generated the repeated captions “several houses”. The GRIT model failed to recognize
“Mountains” and “House” and did not generate substantial artistic captions. For the second
Chinese painting, the PureT model incorrectly identified “person” and “houses” that were
not present. The GRIT model also incorrectly identified “houses” and produced incomplete
artistic captions. In the case of the third Chinese painting, the PureT model incorrectly
identified “bridge”, “man”, and “hill”, and generated unreasonable artistic captions. The
GRIT model repeatedly generated the phrases “two people” and “bridge”, and produced
incorrect artistic captions. For the fourth Chinese painting, the PureT model incorrectly
identified “bridge” and “person”, and the GRIT model incorrectly identified a “boat”. Both
models generated artistic captions that were unrelated to the painting.
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Figure 6. Image captions of qualitative evaluation only in the Chinese paintings part. The first row
shows four under-test paintings. The following three rows show the result of different models, and
incorrect words are highlighted in red. We use different color boxes and words to annotate mainly
object position and object type in different images.

Figure 7 presents the qualitative analysis results of the complete dataset, encompassing
both the Chinese and Western parts, in comparison with our model, the PureT model, and
the GRIT model. In contrast to our model, the PureT model was unable to accurately iden-
tify the main objects in the four paintings and produced inappropriate artistic captions for
the fourth painting. Similarly, the GRIT model failed to accurately identify the main objects
in the paintings and did not generate meaningful artistic captions. These experiments
intuitively demonstrate the superior effectiveness of our model.

Electronics 2024, 1, 0 12 of 16

Figure 7. Image captions of qualitative evaluation in the full dataset. The first row shows four
under-test paintings. The following three rows show the result of different models, and incorrect
words are highlighted in red. We use different color boxes and words to annotate mainly object
position and object type in different images.

4.4. Ablation Studies

To assess the impact of each component in our DecoupleCLIP model, we evaluated
various configurations of our approach. The effectiveness of our multimodal fusion module
in DecoupleCLIP was tested on our dataset, comparing scenarios with and without the
multimodal fusion module (w/o MM), as detailed in Table 3. For the case of using the
multimodal fusion module, we compared the effect of using co-attention and our multi-
modal fusion module, respectively. The co-attention layer structure consists of two parallel
Transformers, similar to Figure 2, with input features comprising local image features and
sentence-level global features from objective captions. Our multimodal fusion module
outperformed other configurations in most metrics. We attribute this performance gain to
the effectiveness of our specific multimodal fusion module, which enhances the generation
of accurate artistic captions. This underscores the importance of a well-suited multimodal
fusion module in generating artistic conception captions.

The CLIP module and the global fusion module have a causal relationship, so we
conducted the ablation experiment of the two as a whole. The effectiveness of the Global
Fusion and CLIP module of our DecoupleCLIP is evaluated on our dataset, which is
described in Table 4. Compared to the without Global Fusion and CLIP module (w/o
Golbal Fusion and CLIP), we attribute our performance improvement to fusing more global
features in local to global feature fusion, which facilitates training a more effective encoder.
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4.4. Ablation Studies

To assess the impact of each component in our DecoupleCLIP model, we evaluated
various configurations of our approach. The effectiveness of our multimodal fusion module
in DecoupleCLIP was tested on our dataset, comparing scenarios with and without the
multimodal fusion module (w/o MM), as detailed in Table 3. For the case of using the
multimodal fusion module, we compared the effect of using co-attention and our multi-
modal fusion module, respectively. The co-attention layer structure consists of two parallel
Transformers, similar to Figure 2, with input features comprising local image features and
sentence-level global features from objective captions. Our multimodal fusion module
outperformed other configurations in most metrics. We attribute this performance gain to
the effectiveness of our specific multimodal fusion module, which enhances the generation
of accurate artistic captions. This underscores the importance of a well-suited multimodal
fusion module in generating artistic conception captions.

The CLIP module and the global fusion module have a causal relationship, so we
conducted the ablation experiment of the two as a whole. The effectiveness of the Global Fu-
sion and CLIP module of our DecoupleCLIP is evaluated on our dataset, which is described
in Table 4. Compared to the without Global Fusion and CLIP module (w/o Golbal Fusion
and CLIP), we attribute our performance improvement to fusing more global features in
local to global feature fusion, which facilitates training a more effective encoder. It can be
concluded that the CLIP and Global Fusion modules can fuse important global features.
Combined with the ablation experiment of the multimodal fusion modules, it can be shown
that using the appropriate multimodal fusion module can further improve performance.

Figure 8 presents the results of our model, the PureT model, and the GRIT model
qualitative analysis of the Chinese paintings. Compared to our model, the model using
the co-attention module generates unreasonable artistic conception captions, as seen in
the last three Chinese paintings. This could be attributed to modifications of objective
captions by the co-attention layer, which negatively impact the artistic conception captions.
In contrast to our model, the model without the multimodal fusion module (w/o MM)
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generates unreasonable artistic captions, such as in the second Chinese painting. This
occurs because artistic conception captions lack the constraints provided by objective
captions. The importance of a suitable multimodal fusion module is highlighted.

Table 3. Metric comparisons among different multimodal fusion modules in Chinese paintings part.
The best indicator is shown in bold black. The first row represents the average and the second row
represents the variance.

MM Module B@1 B@4 CIDEr SPICE

co-attention layer 43.33 18.30 35.08 27.55
1.8× 10−4 6.1× 10−5 1.1× 10−3 1.2× 10−4

w/o MM 42.85 17.90 33.88 26.98
4.9× 10−4 5.2× 10−4 1.8× 10−3 2.0× 10−4

Ours 43.20 18.18 35.50 27.65
1.7× 10−4 5.4× 10−5 6.8× 10−4 6.0× 10−5

Table 4. Metric comparisons with and without the Global Fusion and CLIP module in Chinese
paintings part. The better indicators are shown in bold black. The first row represents the average
and the second row represents the variance.

Module B@1 B@4 CIDEr SPICE

w/o Global Fusion and CLIP 43.00 17.10 27.60 25.48
7.7× 10−4 4.3× 10−4 6.5× 10−3 5.5× 10−4

Ours 43.20 18.18 35.50 27.65
1.7× 10−4 5.4× 10−5 6.8× 10−4 6.0× 10−5Electronics 2024, 1, 0 14 of 16

Figure 8. Image captions of ablation studies by category in Chinese paintings. The first row shows
four under-test paintings in different categories. Other rows show generat sentences of different
ablation methods, and incorrect words are highlighted in red. We use different color boxes to annotate
mainly object position and object type in different images.

In the experiment without the CLIP and Global Fusion modules (w/o CLIP), objective
captions contain numerous errors, affecting the artistic conception captions simultaneously
in the last two Chinese paintings. This demonstrates that CLIP can extract critical global
features that significantly influence objective captions.

5. Conclusions and Future Work

In this paper, we propose a painting captioning method with two branches to enhance
the caption performance. Our method utilizes CLIP to construct a local-to-global feature
fusion module and a multimodal fusion module. The former enriches global features,
while the latter integrates linguistic and visual features to generate more coherent painting
captions. Existing image captioning datasets rarely include Chinese paintings. To address
this gap, we introduce a small dataset that includes both Chinese and Western paintings.
Compared with other models, our proposed model achieves the best results on BLEU-2,
BLEU-3, BLEU-4, ROUGE-L, CIDEr, and SPIC evaluation metrics.

Figure 8. Cont.
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Figure 8. Image captions of ablation studies by category in Chinese paintings. The first row shows
four under-test paintings in different categories. Other rows show generat sentences of different
ablation methods, and incorrect words are highlighted in red. We use different color boxes to annotate
mainly object position and object type in different images.

In the experiment without the CLIP and Global Fusion modules (w/o CLIP), objective
captions contain numerous errors, affecting the artistic conception captions simultaneously
in the last two Chinese paintings. This demonstrates that CLIP can extract critical global
features that significantly influence objective captions.

5. Conclusions and Future Work

In this paper, we propose a painting captioning method with two branches to enhance
the caption performance. Our method utilizes CLIP to construct a local-to-global feature
fusion module and a multimodal fusion module. The former enriches global features,
while the latter integrates linguistic and visual features to generate more coherent painting
captions. Existing image captioning datasets rarely include Chinese paintings. To address
this gap, we introduce a small dataset that includes both Chinese and Western paintings.
Compared with other models, our proposed model achieves the best results on BLEU-2,
BLEU-3, BLEU-4, ROUGE-L, CIDEr, and SPIC evaluation metrics.

In future work, we will construct a unified model that integrates the objective caption
into the artistic conception caption while fully considering the influence of noisy labels on
the model.

Author Contributions: Conceptualization, M.Z. and X.H.; methodology, M.Z. and X.H.; software,
M.Z.; validation, Y.Y. and M.S.; formal analysis, X.H.; investigation, X.H.; resources, X.H.; data
curation, M.Z. and X.H.; writing—original draft preparation, M.Z. and Y.Y.; writing—review and
editing, X.H.; visualization, M.Z., Y.Y. and M.S.; supervision, X.H.; project administration, X.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (62102036),
Beijing Natural Science Foundation (4222024), R&D Program of Beijing Municipal Education Commis-
sion (KM202211232003), Open Project Program of State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University (No. VRLAB2022A02).

Data Availability Statement: The access link to the code (include dataset) in this paper is as follows:
https://github.com/zml110120/CP (accessed on 20 October 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 3156–3164.
2. Wang, Y.; Xu, J.; Sun, Y. End-to-End Transformer Based Model for Image Captioning. In Proceedings of the AAAI Conference on

Artificial Intelligence, New Orleans, LA, USA, 22 February–1 March 2023; pp. 2585–2594.

https://github.com/zml110120/CP


Electronics 2024, 13, 4207 15 of 16

3. Wang, D.; Hu, Z.; Zhou, Y.; Hong, R.; Wang, M. A Text-Guided Generation and Refinement Model for Image Captioning. IEEE
Trans. Multimed. 2023, 25, 2966–2977. [CrossRef]

4. Rennie, S.J.; Marcheret, E.; Mroueh, Y.; Ross, J.; Goel, V. Self-Critical Sequence Training for Image Captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1179–1195.

5. Dong, X.; Zhang, G.; Zhan, X.; Ding, Y.; Wei, Y.; Lu, M.; Liang, X. Caption-Aided Product Detection via Collaborative Pseudo-Label
Harmonization. IEEE Trans. Multimed. 2023, 25, 1916–1927. [CrossRef]

6. Wang, C.; Gu, X. Learning Double-Level Relationship Networks for Image Captioning. Inf. Process. Manag. 2023, 60, 103288–103312.
[CrossRef]

7. Luvembe, A.; Li, W.; Li, S.; Liu, F.; Wu, X. CAF-ODNN: Complementary Attention Fusion with Optimized Deep Neural Network
for Multimodal Fake News Detection. Inf. Process. Manag. 2024, 61, 103653–103689. [CrossRef]

8. Lu, J.; Yang, J.; Batra, D.; Parikh, D. Neural Baby Talk. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7219–7228.

9. Jiang, W.; Zhou, W.; Hu, H. Double-Stream Position Learning Transformer Network for Image Captioning. IEEE Trans. Circuits
Syst. Video Technol. 2022, 32, 7706–7718. [CrossRef]

10. Wang, Y.; Xu, N.; Liu, A.; Li, W.; Zhang, Y. High-order interaction learning for image captioning. IEEE Trans. Circuits Syst. Video
Technol. 2021, 32, 4417–4430. [CrossRef]

11. Liu, A.; Zhai, Y.; Xu, N.; Nie, W.; Li, W.; Zhang, Y. Region-aware image captioning via interaction learning. IEEE Trans. Circuits
Syst. Video Technol. 2021, 32, 3685–3696. [CrossRef]

12. Ge, H.; Yan, Z.; Zhang, K.; Zhao, M.; Sun, L. Exploring Overall Contextual Information for Image Captioning in Human-like
Cognitive Style. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 1754–1763.

13. Zhang, J.; Mei, K.; Zheng, Y.; Fan, J. Integrating Part of Speech Guidance for Image Captioning. IEEE Trans. Multimed. 2020, 23, 92–104.
[CrossRef]

14. Prudviraj, J.; Vishnu, C.; Mohan, C. Attentive contextual network for image captioning. In Proceedings of the International Joint
Conference on Neural Networks, Shenzhen, China, 18–22 July 2021; pp. 1–8.

15. Dai, J.; Qi, H.; Xiong, Y.; Zhang, Y.L.G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2017; pp. 764–773.

16. Yu, L.; Zhang, J.; Wu, Q. Dual attention on pyramid feature maps for image captioning. IEEE Trans. Multimed. 2022, 24, 1775–1786.
[CrossRef]

17. Achlioptas, P.; Ovsjanikov, M.; Haydarov, K.; Elhoseiny, M.; Guibas, L. Artemis: Affective Language for Visual Art. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 10–25 June 2021; pp. 11569–11579.

18. Garcia, N.; Vogiatzis, G. How to Read Paintings: Semantic Art Understanding with Multi-Modal Retrieval. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 10–25 June 2021; pp. 676–691.

19. Deng, Y.; Tang, F.; Dong, W.; Ma, C.; Huang, F.; Deussen, O.; Xu, C. Exploring the Representativity of Art Paintings. IEEE Trans.
Multimed. 2020, 23, 2794–2805. [CrossRef]

20. Lu, Y.; Guo, C.; Dai, X.; Wang, F. Data-Efficient Image Captioning of Fine Art Paintings via Virtual-Real Semantic Alignment
Training. Neurocomputing 2022, 490, 163–180. [CrossRef]

21. Yan, J.; Wang, W.; Yu, Y. Affective Word Embedding in Affective Explanation Generation for Fine Art Paintings. Pattern Recognit.
Lett. 2022, 161, 24–29. [CrossRef]

22. Bai, Z.; Nakashima, Y.; Garcia, N. Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 5422–5432.

23. Radford, A.; Jong, K.; Chris, H.; Aditya, R.; Gabriel, G.; Sandhini, A.; Girish, S.; Amanda, A.; Pamela, M.; Jack, C. Learning
Transferable Visual Models from Natural Language Supervision. In Proceedings of the International Conference on Machine
Learning, Wien, Austria, 18–24 July 2021; pp. 8748–8763.

24. Lu, J.; Xiong, C.; Parikh, D.; Socher, R. Knowing When to Look: Adaptive Attention via a Visual Sentinel for Image Captioning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 375–383.

25. Zhang, X.; Sun, X.; Luo, Y.; Ji, J.; Zhou, Y.; Wu, Y.; Huang, F.; Ji, R. Rstnet: Captioning with Adaptive Attention on Visual and
Non-Visual Words. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN,
USA, 10–25 June 2021; pp. 15465–15474.

26. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, G. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021; pp. 10012–10022.

27. Yu, J.; Li, J.; Yu, Z.; Huang, Q. Multimodal Transformer with Multi-View Visual Representation for Image Captioning. IEEE Trans.
Circuits Syst. Video Technol. 2019, 30, 4467–4480. [CrossRef]

28. Su, W.; Zhu, X.; Cao, Y.; Li, B.; Lu, W.; Wei, F.; Dai, J. VL-BERT: Pre-Training of Generic Visual-Linguistic Representations. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

29. Li, G.; Duan, N.; Fang, Y.; Gong, M.; Jiang, D. Unicoder-vl: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training.
In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11336–11344.

http://doi.org/10.1109/TMM.2022.3154149
http://dx.doi.org/10.1109/TMM.2022.3222653
http://dx.doi.org/10.1016/j.ipm.2023.103288
http://dx.doi.org/10.1016/j.ipm.2024.103653
http://dx.doi.org/10.1109/TCSVT.2022.3181490
http://dx.doi.org/10.1109/TCSVT.2021.3121062
http://dx.doi.org/10.1109/TCSVT.2021.3107035
http://dx.doi.org/10.1109/TMM.2020.2976552
http://dx.doi.org/10.1109/TMM.2021.3072479
http://dx.doi.org/10.1109/TMM.2020.3016887
http://dx.doi.org/10.1016/j.neucom.2022.01.068
http://dx.doi.org/10.1016/j.patrec.2022.07.009
http://dx.doi.org/10.1109/TCSVT.2019.2947482


Electronics 2024, 13, 4207 16 of 16

30. Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang, L.; Hu, H.; Dong, L.; Wei, F. Oscar: Object-semantics aligned pre-training
for vision-language tasks. In Proceedings of the European Conference on Computer Vision, New Glasgow, UK, 23–28 August
2020; pp. 121–137.

31. Li, W.; Gao, C.; Niu, G.; Xiao, X.; Liu, H.; Liu, J.; Wu, H.; Wang, H. Unimo: Towards Unified-Modal Understanding and Generation
via Cross-Modal Contrastive Learning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, Minneapolis, MN, USA, 2–7 June 2021; pp. 2592–2607.

32. Hao, H.; Mohit, B. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. In Proceedings of the
IConference on Empirical Methods in Natural Language Processing, Barceló Bávaro Convention Centre, Punta Cana, Dominican
Republic, 7–11 November 2021.

33. Lu, J.; Batra, D.; Parikh, D.; Lee, S. ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language
tasks. In Proceedings of the Conference and Workshop on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14
December 2019; Volume 32, pp. 13–23.

34. Zhuang, J.; Yu, J.; Ding, Y.; Qu, X.; Hu, Y. Towards Fast and Accurate Image-Text Retrieval with Self-Supervised Fine-Grained
Alignment. IEEE Trans. Multimed. 2023, 26, 1361–1372. [CrossRef]

35. Nguyen, V.-Q.; Suganuma, M.; Okatani, T. GRIT: Faster and better image captioning transformer using dual visual features. In
Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Volume 13696, pp. 167–184.

36. Desai, K.; Johnson, J. Virtex: Learning visual representations from textual annotations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 10–25 June 2021; pp. 11.157–11.168.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2023.3280734

	Introduction
	Related Work
	Image Captioning
	Painting Captioning
	Multimodal Models

	Methodology
	Network Desgin
	Local to Global Features Fusion
	Multimodal Fusion

	Experiments
	Datasets
	Experimental Settings
	Evaluation
	Ablation Studies

	Conclusions and Future Work
	References

