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Abstract: The detection of abrasive grain images in diamond tools serves as the foundation for
assessing the overall condition of the tools, encompassing crucial aspects of diamond abrasive grains
like the quantity, size, morphology, and distribution. Given the intricate background textures and
reflective characteristics exhibited by diamond images, diamond detection and segmentation pose
a significant challenge. Recently, numerous defect detection methods based on machine learning and
deep learning have emerged. However, several issues persist, such as detection accuracy and the
interference caused by intricate background textures. The present work demonstrates an efficient
classification and segmentation network algorithm that combines Swin-Unet with SAM (Segment
Anything Model) to alleviate the existing problems. Specifically, four embedding structures were
devised to bridge the two models for iterative training. The transformer blocks within the Swin-Unet
model were enhanced to facilitate classification and coarse segmentation, and the mask structure in
SAM was refined to enable fine segmentation. The experimental results show that under a small
sample dataset with complex background textures, the average index values of ACC (accuracy), SE
(Sensitivity), and DSC (Dice Similarity Coefficient) for the classification and segmentation of diamond
abrasive grains reached 98.7%, 92.5%, and 85.9%, respectively. Compared with the model before
improvement, its ACC, SE and DSC increased by 1.2%, 15.9%, and 7.6%, respectively. The test results,
based on four different datasets, consistently indicated that this model has excellent segmentation
performance and robustness and has great application potential in the industrial field.

Keywords: classification and segmentation; diamond detection; Swin-Unet; SAM; deep learning

1. Introduction

In the manufacturing industry, diamond abrasive grains are widely used in grinding,
lapping, polishing, and other fields due to their high hardness and high wear resistance, and
they have become the main tools for processing hard and brittle materials [1,2]. Diamond
abrasive grains fixed in these tools act on the workpiece material through scratching,
plowing, and cutting to achieve processing control of the shape accuracy and surface quality
of the workpiece. During the processing, both the binder holding the abrasive grains and
the abrasive grains will be eroded by the workpiece material and coolant, resulting in
situations such as the breakage and wear of the diamond abrasive grains, and severe
wear of the binder will also cause the abrasive grains to fall off directly [3–5]. Therefore,
the surface quality of the workpiece is profoundly affected by the morphology state of
the abrasive grains on the tool surface, and the study of abrasive grain wear is of great
significance for tool condition detection [6,7]. Due to the complexity of the environment,
the multiplicity of external parameters, and the unique geometry of the abrasive grains, the
identification and detection of abrasive grains still have great difficulties. Many scholars
establish models by actually measuring the quantity of static abrasive grains and their
degree of wear [8–10] in order to establish more accurate simulation and prediction models,
but this requires accurate characteristic data of diamond abrasive grains.
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In recent years, intelligent means such as machine vision and pattern recognition have
replaced manual labor and gradually become the mainstream trend in the field of identifi-
cation and detection. The processes of feature extraction and recognition classification are
combined and a multi-layer neural network structure is utilized to automatically combine
the simple features extracted at the lower layer and send them layer by layer to the top
layer network to learn advanced features that can better represent the object, which has a
strong model expression ability. This technology has been widely applied in image recogni-
tion tasks in different scenarios, such as face recognition, license plate recognition, speech
recognition and defect detection, foreign object detection on railroad transmission lines,
and mineral zoning detection [11–15]. Therefore, applying deep learning to the detection
of diamond abrasive grain tools and completing the detection of diamond abrasive grain
images through automatic learning is an effective approach.

Taking advantage of the superiority of deep learning, this paper presents a novel
model based on Swin-Unet and SAM (Segment Anything Model) for the classification
and segmentation of diamond abrasive grains. The main contributions of this paper are
summarized as follows:

(1) A Swin-Unet-SAM network structure is designed based on Swin-Unet and SAM for
the classification and segmentation of diamond abrasive grains.

(2) Four embedding structures are devised to bridge the two models of Swin-Unet and
SAM for iterative training.

(3) The transformer blocks within the Swin-Unet model are enhanced to facilitate classifi-
cation and coarse segmentation.

(4) The mask structure in SAM is refined to enable the fine segmentation performance of
diamond abrasive grains.

This paper is structured into six sections. Section 1 describes the background of dia-
mond abrasive grain detection and the motivation for writing this paper. Section 2 narrates
and discusses the related work on diamond abrasive grain detection and segmentation and
summarizes the existing problems and the contributions of this article. Section 3 provides
the theories and knowledge required for this paper and presents the model and methods
proposed in this paper. Section 4 describes the experimental details of this paper, the source
characteristics of the dataset, and the model performance evaluation method. Section 5
analyzes and discusses the model performance and ablation experiments. Finally, Section 6
provides a summary of this paper.

2. Related Work

For different identification and detection problems and targets, different processing
methods are selected, and there is no unified algorithm that is universally applicable.
For the segmentation of diamond abrasive grains and similar small sample semantic
segmentation, they can mainly be divided into feature extraction-based traditional methods
and deep learning-based intelligent methods.

2.1. Feature Extraction-Based Traditional Method

Traditional methods based on feature extraction extract representative feature at-
tributes from the image, perform a set transformation, and then use a certain threshold for
segmentation. Yu et al. [16] proposed an abrasive grain image segmentation method based
on background color recognition. After pre-segmentation using the gray threshold method,
the gray average and standard deviation of the three-color components were calculated
in the RGB channels and a certain component range was set to extract the abrasive grains.
This has a certain improvement compared to using only the gray threshold method. In
order to address the defect of mis-segmentation in the region division by the threshold
segmentation method of the gray histogram of abrasive grains on diamond grinding wheel
surfaces, Wu et al. [17] proposed an approach for segmenting abrasive grain images based
on the connected region marking of the quadratic gray-level histogram. This method has
a better segmentation effect, but is not applicable to abrasive grain images with complex
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textures. In view of the influence of complex background textures on the segmentation of
abrasive grains, Gong et al. [18] generated a fusion image and a height matrix of diamond
grains through the fusion method of focusing and applied the Snake model combined with
the height index image to generate a new image energy function suitable for segmentation,
but it was impossible to quantitatively analyze its wear degree. Although this method can
effectively segment abrasive grain images, it has high requirements for the focused fusion
images and is inefficient. Subsequently, Lin et al. [19] proposed an invalid edge elimination
method to solve irregular background textures and obtained good segmentation results
in some specific scenarios. Moreover, an abrasive grain segmentation method based on
morphological reconstruction and bit-planes was further proposed in order to improve the
segmentation accuracy based on the combined concept of coarse segmentation and fine
segmentation [20]. Besides directly focusing on the segmentation of abrasive grains, some
scholars have also conducted studies on the distribution of abrasive grains [21,22]. In these
studies, the threshold segmentation method is mainly used. Since only the position distri-
bution of abrasive grains is concerned, the requirements for the threshold segmentation
results are not high.

In summary, feature extraction-based traditional methods have the advantages of
high computational efficiency, strong interpretability, and no need for a large amount
of training data, and still have a place in the segmentation field of small samples such
as abrasive grains. However, due to the complexity of diamond images and the similar
features of the abrasive grain targets and the image background, this leads to the limited
feature parameters selected by traditional methods, resulting in inflexible models, low
segmentation accuracy and poor robustness, which is difficult to obtain satisfactory results.

2.2. Deep Learning-Based Intelligent Method

In view of the certain limitations of methods based on traditional machine vision in
terms of detection efficiency, detection accuracy and detection applicability in complex
scenarios. In recent years, methods based on deep learning have developed rapidly; in
particular, those using CNNs (convolutional neural networks) have the ability to handle
complex scenarios, and the model accuracy and generalization ability in handling complex
scenarios have been greatly improved. In the field of abrasive particle detection of ferrogra-
phy, Wang et al. [23] combined technology in the field of image recognition, innovatively
linked an image recognition model based on a CNN with abrasive particle analysis, and
adopted a two-level abrasive particle recognition model in order to classify abrasive parti-
cles with similarity. Then, Peng et al. [24] proposed a hybrid convolution neural network
with transfer learning and a support vector machine which was used to automatically
identify wear particles. When the number of classes of particle wear increases, the previous
automatic recognition model needs to be reconstructed and retrained. To solve this prob-
lem, Zhang et al. [25] proposed a CNN model based on class center vectors and distance
comparison and constructed a feature extraction module, a class center vector extraction
module, and a prediction module which could realize the classification of new types of
wear grains. On the basis of the classification of wear particles, Yang et al. [26] proposed a
digital characterization method of abrasive particles based on a Mask R-CNN. This method
uses transfer-learning training to achieve the recognition and instance segmentation of
abrasive particles in images. Although the importance of the CNN method in the intelligent
recognition of wear particles was affirmed, they point out that the models of wear particle
recognition in the aspects of the datasets still have a high labor cost and non-complete
objective [27].

Compared with the abrasive wear detection of ferrography, the research at the level
of diamond abrasive particles is much less and much delayed. Recently, in the field of
diamond industrial production, Yang et al. [28] proposed a detection method of yellow
industrial diamond grains based on deep learning: the purpose was to solve the problems
of the slow manual detection speed, high labor intensity, and low-quality consistency
of yellow industrial diamonds in industrial production. After constructing three base
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classifiers using three network structures, an integrated fusion method was adopted to
realize the information fusion of multiple base classifiers and the classification decisions for
yellow industrial diamond grains, and the class recognition ACC (accuracy) reached more
than 85%. In the field of diamond application tools, Hu et al. [29] proposed a Mask R-CNN
model with the deep learning framework TensorFlow. Multiple targets in the surface image
of a single fixed abrasive pad could be effectively segmented and recognized, and the
average ACC of the main evaluation indicators reached 78.9%. Recently, Suo et al. [30]
conducted research on the segmentation of abrasive grains and pores on the surface of
diamond grinding pads based on an improved Mask R-CNN. The segmentation ACC of
diamond abrasive grains and pores were 82.1% and 93.4%, respectively. In comparison
with the pore segmentation accuracy, the main cause for the relatively lower segmentation
accuracy of diamond abrasive grains lies in the significant difference in diamond abrasive
grain wear and the extremely complex background texture. As far as the current research
on diamond abrasive grain detection based on deep learning is concerned, only a small
number of reports have conducted classification and recognition studies, and few relevant
studies have been reported at the diamond segmentation level. This is mainly because
diamond abrasive grains will undergo dual wear of the abrasive grains and binders during
the machining process, resulting in extremely complex abrasive grain morphology and
binder background. Due to the difficulty of collecting various images of diamond wear
morphologies, it is difficult to form a large-scale dataset, which poses great challenges to
the research on diamond classification and segmentation due to the limited data.

In summary, deep learning has a high flexibility, good generalization ability, and
strong expression ability, but it relies on a large amount of training data. For small sample
datasets, some innovative methods need to be used to reduce the model’s dependence on
the dataset and prevent overfitting, so as to ensure the application effect of small sample
semantic segmentation in related fields. With the proposal of Transformer [31], the field
of deep learning has witnessed explosive growth; models based on the multi-head self-
attention mechanism have emerged in an endless stream, and their effects are all good. In
2020, Dosovitskiy et al. [32] proposed Vision Transformer, introducing Transformer into the
CV field for the first time to perform image segmentation tasks; in 2021, Chen et al. [33]
proposed TransUnet, replacing the Encoder part of Unet with Transformer, and achieved a
DSC (Dice Similarity Coefficient) index of 77.48% on the Synapse dataset, injecting new
power into small sample semantic segmentation.

Based on the above research status, it is difficult to solve the problems in achieving
high-precision and high-efficiency classification and segmentation caused by reasons such
as the complex background of abrasive grain images, diverse abrasive grain morphologies,
and a small number of data samples by simply using classical models or large models. Based
on the advantages that the Swin-Unet model is not prone to overfitting when training with
small amounts of sample data and the advantage that the SAM large model can perform
fine segmentation under prompt information, these models are suitable for solving the
problems and challenges faced in the classification and segmentation of diamond abrasive
grains. Therefore, based on the Swin-Unet model and the SAM large model, a classification
and segmentation network for diamond abrasive grains has been designed. This network
model has a more obvious improvement effect in terms of accuracy and robustness.

3. Proposed Method
3.1. Swin-Unet

Swin-Unet [34], shown in Figure 1, is a network structure that combines the Swin-
Transformer [35] with a sliding window self-attention mechanism and U-Net [36] with
up-sampling and down-sampling capabilities, and it has symmetrical encoders and de-
coders. Among them, the encoder contains Linear Embedding, Patch Emerging, and the
Swin Transformer Block layers in the Swin-Transformer, and has the down-sampling ability
to extract the feature information of different receptive fields; the decoder contains the
Patch Expanding layer and has the up-sampling ability to restore the resolution of the
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feature map to the input resolution. Between the corresponding layers of the encoder
and decoder, the same residual connection structure as U-Net is also retained to prevent
gradient vanishing and increase the information scale. Different from traditional convolu-
tional neural networks, it can capture richer contextual information in the image, thereby
effectively extracting semantic features and improving segmentation accuracy. However,
when dealing with complex scenarios, it is still insufficient to capture enough relevant
information. When dealing with datasets with imbalanced categories, the segmentation
performance of the minority classes is poor, alongside other problems.
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3.2. SAM

The neural network structure of SAM [37] is a large image segmentation model
proposed by Meta AI in 2023. The SAM structure mainly consists of three major parts:
a powerful image encoder, a flexible prompt encoder, and an efficient Mask Decoder,
as shown in Figure 2. The image encoder based on Vision Transformer can effectively
capture the contextual information in an image and extract high-level features from the
original image; the prompt encoder allows users to provide segmentation cues to the model
through simple interactions such as clicking or drawing bounding boxes, which greatly
improves the universality and practicality of the model. Additionally, the Mask Decoder
combines the image features and user prompts to generate accurate segmentation masks.
This structural design of SAM not only achieves efficient zero-shot learning ability, but
also enables the model to easily adapt to various complex segmentation tasks. Through
training on large-scale datasets, the SAM structure shows excellent performance and wide
applicability. Deng et al. [38] used SAM to perform segmentation of tumor treatment
completion, non-tumor tissue segmentation, and cell nucleus segmentation, but SAM failed
to achieve satisfactory performance in dense instance object segmentation with 20 prompts
per image. Ji et al. [39] explored that SAM performed well in various natural scenes, but
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in three types of concealed scenes, camouflaged animals, industrial defects, and medical
lesions, SAM did not perform well and some segmentation failures occurred.
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SAM is a network structure trained with the extremely large dataset SA-1B containing
1.1 billion masks. It can perform segmentation on both trained and untrained target types
and has a high degree of fitting for feature patterns. However, in professional fields with
small sample datasets, such as medical images and industrial images, SAM cannot well
understand the category and scope of the target, which will lead to huge segmentation
errors due to multiple target categories.

3.3. Model Design

Affected by the workpiece materials and coolant in the processing, the quantity, distri-
bution, size, morphology state of the abrasive grains on the surface of the diamond tool,
and the morphology of the binder are constantly changing. In order to be able to solve the
problem of abrasive grain detection and segmentation under such a complex background
texture, the Swin-Unet-SAM network structure is designed, as shown in Figure 3, in which
the red part is the improved and embedded structure. After the image is standardized, the
Swin-Unet model, which has the advantage that it is not prone to overfitting when training
with a small sample, is utilized to conduct targeted classification and coarse segmentation,
and the design embedding is used to generate prompt information; then, the SAM large
model is utilized to perform fine segmentation based on these information prompts to
improve the segmentation accuracy. This model structure integrates the advantages of the
small sample coarse segmentation of Swin-Unet and the prompt information fine segmenta-
tion of SAM, complementing each other and achieving high-precision image segmentation
even with a small number of training samples. Specific improvements are as follows.

3.3.1. Improved Swin Transformer Block

After the standardized image undergoes Patch Partition and Linear Embedding expan-
sion, it goes through three iterations of Patch Merging down-sampling and three times of
Patch Expanding up-sampling. To better utilize the Swin-Unet network for the coarse seg-
mentation of abrasive grain images, the original Swin Transformer Block with a low-level
small window is modified to a high-level large-window structure to extract more abundant
semantic information of the diamond morphology. For this, 2, 2, 12, 3, 12, 2, and 2 are used
as the number of Swin Transformer Blocks in each module, and the Bottleneck structure of
each is shown in Figure 4. The number of attention heads in the Swin Transformer Block is
adjusted from 3, 6, 12, and 24 to 4, 8, 16, and 32. Different numbers of Swin Transformer
Blocks are used for processing at four different scales, and the features of the same scale are
concatenated. Finally, the coarse-segmented image is obtained using Linear Projection.
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3.3.2. Improved SAM Structure

In the SAM structure, the abrasive grain image passes through the Image Encoder; that
is, after the processing of the Patch Partition and Image Embedding, it is concatenated with
the input Mask, and the prompt information is used in the Mask Decoder for operation
to obtain the fine segmentation result. This article designs a function of loop iteration,
which concatenates the result output from the Mask Decoder with the image processed
by the Image Encoder, and then inputs it into the Mask Decoder for operation again. This
multiple looping is to obtain a more accurate result as shown in Figure 5. The red line
is the route of loop iteration. After a series of processing of the image and mask input,
three masks of 1 × 256 × 256 and the corresponding score values are output from the top
of the Mask Decoder, and the one with the highest score value is selected as the input mask.
After convolution, it is concatenated with the processed image and then input into the
Mask Decoder together with other types of prompt information in order to use the loop
iteration function to achieve subsequent multiple loop operations and thereby obtain the
fine segmentation result.
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3.3.3. Embedded Structure Design

In order to better connect the data coordination work between the two neural network
structures of SAM and Swin-Unet, the following embedded structure is designed:

(1) Image Standardization

Considering that Swin-Unet mainly guarantees the accuracy of coarse segmentation
and does not require overly high-resolution image information, And given that the resolu-
tion of the input image is relatively large, in order to maximize the transfer advantage of
the pre-trained weights of the Swin-Transformer module, ensure that the attention window
can cover sufficient image information, and at the same time avoid excessive consumption
of computing resources, the size of the input image needs to be adjusted to a resolution that
matches the size of the attention window. Compared with other image scaling methods,
such as nearest neighbor interpolation and bilinear interpolation, cubic spline interpolation
performs excellently in maintaining image smoothness and details. It can retain more
image information during the scaling process.

Therefore, in order to make better use of the pre-trained weights and at the same time
match the size of the attention window, cubic spline interpolation is performed on the input
image and it is uniformly adjusted to 384 × 384 to retain image information as much as
possible to avoid the occurrence of jagged phenomena.
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(2) Mask Smoothing

Given that the original coarsely segmented image output by Swin-Unet alone has
many phenomena such as sawtooth and noise points and an unsmooth edge, which will
have a significant impact on the subsequent fine segmentation input into the SAM model,
an appropriate smoothing operation needs to be performed on the original coarsely seg-
mented image output by Swin-Unet. However, when additional convolutional layers are
added and training parameters are modified, a satisfactory smoothing effect cannot be ob-
tained. Considering the advantages of frequency-domain Gaussian filtering enhancement
in smoothing images, this paper finally chooses to use a Gaussian low-pass filter [40] to
smooth the mask image and uses the Canny operator to detect the edge and fill it to obtain
a mask with a smooth edge, thereby achieving the edge smoothness of the original coarsely
segmented image output by Swin-Unet. The transfer function formula of the Gaussian
low-pass filter is as follows:

H(u, v) = e
− D2(u,v)

2D2
0 (1)

where D(u, v) is the distance function in the frequency domain and D0 is the cut-
off frequency.

Mask Smoothing is used to smooth the image obtained by the coarse segmentation of
Swin-Unet, filtering out small and useless targets. Since SAM cannot classify when using
prompt information for segmentation, Mask Smoothing also undertakes the function of
transmitting classification information. By designing Mask Resampling to resample the
smoothed mask image, it is possible to input the mask as a kind of prompt information into
SAM. In order to make full use of the Prompt Encoder of SAM and enable SAM to obtain
as diverse inputs as possible, Prompt Generation is also designed to generate Point and
Box prompt information.

(3) Mask Resampling

Since the pre-trained model SAM used in this paper has an image size format that
does not match the image size format output by Swin-Unet, it is necessary to resample the
coarsely segmented image output by Swin-Unet to adapt to the SAM model and achieve
splicing in SAM. For the SAM model, its training image size format is 1 × 256 × 256, where
1 is the predicted confidence value and 256 × 256 is the image size.

To achieve this goal, first, the mask read from the output of Swin-Unet is converted
from a 384 × 384 × 3 color image to a 384 × 384 × 1 grayscale image. Then, binarization is
used to set the background pixels to 0 and the target pixels to 1, and the feature dimension
is shifted to become 1 × 384 × 384. The mask is a binary image and needs to remain binary
after scaling to be spliced in SAM. Nearest neighbor interpolation is used to scale the image
to 1 × 256 × 256, thereby providing better mask data for the fine segmentation of SAM.

(4) Prompt Generation

In the SAM large model, the execution of its segmentation task depends on the prompt
indicator. The quality of the prompt information provided by the prompt indicator will
directly affect the segmentation performance of the SAM large model. Considering that
diamond abrasive grains have multiple types of characteristics, in order to improve the
segmentation accuracy of the SAM large model in multi-classification, this paper takes the
Swin-Unet coarse segmentation mask separated by class as the prompt information, and
also uses Points and Box to provide more prompt information for the segmentation target.
Among them, Points provides segmentation clues for SAM segmentation by specifying the
feature points of the diamond abrasive grain segmentation target. In order to improve the
quality of the feature information provided by Points, this paper fine-tunes Points. It uses
over-erosion and dilation, Canny operator, and the Bradenham algorithm to accurately
calculate the central position feature information of the target diamond abrasive grain, thus
forming prompt information containing the edge and center of the diamond abrasive grain.
Box can use its flexibility to provide a suitable size and shape of Box for the segmentation
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target, providing space for the SAM model for fine segmentation. In order to improve
the quality of the information provided by Box, this paper conducts area detection on the
Swin-Unet coarse segmentation mask to enable Box to obtain a more accurate target area of
diamond abrasive grains.

Through the above design improvements, the combined use of masking and Points
and Box provides richer inputs for SAM, thereby achieving the purpose of accurate seg-
mentation using SAM.

3.4. Loss Function

In the diamond abrasive grain images, abrasive grains are usually classified into
four types: whole, micro-broken, macro-broken, and fall-off [41]. Due to the randomness
and complexity in the processing of diamond tools, there is a significant difference in the
number of abrasive grains among these types. Therefore, there exists a serious issue of
unbalanced positive and negative samples in the collected image sample data of diamond
abrasive grains. Additionally, due to the size variations of the diamond itself and the
different depths of the binder coating, the abrasive grain sizes in the collected diamond
abrasive grain images also have a large difference, with small target abrasive grains present
in the images. In view of this, a CE-Dice loss [42] is adopted in the present paper. This
loss is the combination of the Dice loss [43] and the CE (cross-entropy) loss [44]. The Dice
loss is used for a global perspective investigation in scenarios with unbalanced positive
and negative samples, while the CE loss is used for a micro-perspective investigation at
the pixel level. By combining Dice loss and CE loss, Dice Loss is employed to calculate
the disparity in Dice coefficients between the predicted segmentation result and the true
segmentation result to guide model training. This enables the model to pay greater attention
to the excavation of the foreground area and automatically balance the weights of different
categories. Meanwhile, CE loss is utilized to calculate the results of different categories
at the pixel level, effectively addressing the problem of the model’s reduced ability to
recognize minority categories caused by unbalanced positive and negative samples. In
brief, the advantage of CE-Dice loss lies in its ability to flexibly adjust the weights on
different tasks and datasets to achieve the optimal segmentation effect. The CE-Dice loss
function adopted in this paper is as follows:

Loss = Ldice × w f + Lcross ×
(

1 − w f

)
(2)

Ldice = 1 −
2

n
∑

i=1
pigi

n
∑

i=1
pi +

n
∑

i=1
gi + ε

(3)

Lcross = −
n

∑
i=1

pi log(qi) (4)

where Ldice and Lcross denote Dice loss and Cross-Entropy loss, respectively. wf is the weight
value that is used to adjust the proportion between the Dice loss and cross-entropy loss. n
represents the quantity of pixels in the diamond image, p represents the probability of the
true label, q represents the probability of the predicted value, and ε represents the initiate
term that is set to prevent the denominator from being zero.

In order to obtain the appropriate weight value wf to improve the performance and
stability of the model, ablation experiments were conducted on different weight values
ranged from zero to one, and in this article, it was finally determined that wf = 0.75.

4. Experiments

In this section, we detail the dataset experiments, the performance of the proposed
method on different datasets, and the effectiveness of the proposed method, which was
verified by a series of comparisons and verification ablation experiments through designing.
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Corresponding experiments were conducted on a CPU AMD EPYC 7543, GPU NVIDIA
A40 (40 GB), and the Pytorch (1.11.0) platform with Python 3.8.

4.1. Dataset Acquisition

Datasets are the foundation for training deep learning models. The quality of a dataset
will directly have a profound impact on the accuracy and generalization ability of the
model. In this paper, the image acquisition device Hirox KH-1000 (HIROX, Tokyo, Japan)
video microscope system produced by HIROX Company in Japan is used for collection.
This device has a magnification range of 50 times to 1000 times. The collected data are
diamond tools at different wear stages. The diameters of the diamond abrasive grains on
the tool surfaces are between 425 µm and 600 µm. The resolution of the collected images is
640 × 480. In order to construct a high-quality dataset, by tracking the changes in the wear
state of diamond abrasive during different stages of processing, 17 groups of diamond
abrasive grain areas on the tool surfaces are designed and collected. Each area contains
about 137 images, and the entire process from whole, micro-broken, and macro-broken to
fall-off is covered. By eliminating invalid and duplicate data, the original instance diamond
abrasive grain images are finally obtained.

4.2. Dataset

The datasets of diamond abrasive grains in four categories, namely the whole dataset,
micro-broken dataset, macro-broken dataset, and fall-off dataset, will be employed to verify
the effectiveness of the proposed model. The representative images of different diamond
wear categories are presented in Figure 6.
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The annotation of the dataset is carried out in JSON format using Labelme. The storage
data retrieval format includes information such as the name, information, size, mask type,
and endpoint coordinates of the image. It should be noted that each sample in the diamond
abrasive grain dataset contains one or more abrasive grains and category information. The
obtained annotation results are shown in Figure 7. In the figure, the green mark indicates
the whole category; the yellow mark indicates the micro-broken category; the red mark
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indicates the macro-broken category; and the white mark indicates the fall-off category.
To ensure a balance between model training and performance evaluation, the dataset is
divided into a training set and a testing set in a division ratio of 7:3. An overview of the key
characteristics of the diamond abrasive grain wear category dataset is shown in Table 1.
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Table 1. Distribution of labeled samples.

Dataset Total Labels Total Images Resolution Division ratio

Whole 1642 657 640 × 480 7:3

Micro-broken 969 421 640 × 480 7:3

Macro-broken 1018 503 640 × 480 7:3

Fall-off 188 124 640 × 480 7:3
Note: An online enhancement method was utilized to expand the samples, which includes geometric transforma-
tion, noise processing, linear transformation, random color jitter, etc.

4.3. Evaluation Index

In order to better quantitatively evaluate the performance of the proposed model,
this paper introduces four evaluation indexes: ACC, SE (Sensitivity), DSC, and HD95 (the
95th Percentile Hausdorff Distance). ACC represents the proportion of correctly predicted
sample categories in the classification process, SE represents the proportion of positive
samples classified correctly among the true positive samples, DSC represents the similarity
between the predicted segmentation area and the true segmentation area, and HD95
represents the number of pixels of the boundary error between the predicted segmentation
result and the true label segmentation result. The specific formulas are as follows:

ACC =
TP + FN

TP + FN + TN + FP
(5)

SE =
TP

TP + FN
(6)

DSC =
2TP

2TP + FP + FN
(7)

HD95 = max
t2

(
max

t1

(√
T2 − P2

))
× 0.95 (8)

where TP (True Positive) is the number of pixels correctly classified as target pixels; FP
(False Positive) is the number of pixels that are classified as the segmentation target but are
actually the background; TN (True Negative) represents the number of background point
pixels correctly classified; FN (False Negative) represents the number of pixels that actually
belong to the segmentation target but are classified as the background; T represents the
boundary of the true label segmentation, P represents the boundary of the segmentation
area predicted by the model, t1 and t2 are both boundary pixels, t1 belongs to P, and t2
belongs to T.
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5. Results and Discussion
5.1. Performance Comparison

To verify the superiority of the model proposed in this paper, the overall performance
of the proposed model is compared with the original Unet, TransUnet, Swin-Unet, and
other networks in the task of abrasive grain image segmentation. The hyperparameters for
the model training process are chosen as follows: conduct uniform training for 2500 epochs.
Each epoch is divided into five batches with a batch size of 24. A path dropout rate of 0.1 is
uniformly employed to randomly discard neurons in the network to prevent overfitting.
To enable the model to learn more detailed information about abrasive grains, the initial
learning rate for training is set at 0.001 and the decay exponent is 0.9. This ensures that in
the early stage of training, the model approaches the optimal solution more rapidly with
a larger learning rate, and in the later stage, it adjusts parameters more precisely with a
smaller learning rate and converges more accurately to the optimal solution. Meanwhile,
to make the parameter update smoother and reduce computational cost, the Stochastic
Gradient Descent with a momentum optimizer is utilized. In the optimizer, the momentum
parameter is set to 0.9, the momentum damping term is set to 0.05, and the weight decay
coefficient is set to 0.0001 for L2 regularization of the parameters to prevent overfitting.
Based on the training and testing experiments, the time consumption in training and testing
is presented in Table 2.

Table 2. Time consumption of different methods in training and testing.

Time
Consumption Unet TransUet Swin-Unet Swin-T Swin-S Swin-B DINOv2 Swin-Unet-SAM

(Ours)

Training (h) 3.20 7.82 4.17 4.05 4.82 7.20 0.86 6.62

Testing (ms) 535 422 201 198 234 423 1412 2425

Note: The training time is the time taken for 2000 epochs where the method reaches stable results. The testing
time is the average time consumed for testing each image.

As can be seen from Table 2, after 2000 epochs of training, almost all different models
require several hours in the training stage, which is a fairly normal time consumption
in deep learning. It should be noted that the training time of the DINOv2 model only
calculates the training time consumption of the task head of the pre-trained model, not the
complete training time consumption of the DINOv2 model. This is also the reason why
it seems that the training time consumption of the DINOv2 model is significantly shorter
than that of other models. Based on the training time consumption of each model, although
the time consumption of Swin-Unet has increased compared to Unet, it is relatively less
compared to TransUnet, Swin-S, and Swin-B. Our Swin-Unet-SAM model takes about
2.45 h more than using Swin-Unet alone. This is because the Imagecoder module in the
SAM large model is time-consuming and needs to fine-tune the coarse segmentation result
of Swin-Unet to achieve fine segmentation. In terms of the average time consumption
for testing a single sample, models such as Unet, TransUnet, Swin-Unet, Swin-T, Swin-S,
and Swin-B take about several hundred milliseconds, while the time consumption of the
DINOv2 model and our Swin-Unet-SAM model is about 1.4 s and 2.4 s, respectively. The
testing time is significantly longer than that of models such as Unet, TransUnet, Swin-Unet,
and other models. Considering that the abrasive grain wear detection of diamond tools
requires in situ or even offline detection, the real-time requirement for detection is not high.
In addition, in industrial detection, more attention is paid to the accuracy and segmentation
accuracy of diamond abrasive grain wear classification and segmentation. Therefore, in
this context, the time consumption of the model proposed in this paper is acceptable.

Table 3 shows the evaluation performance of the proposed model and other models
on the four types of diamond abrasive grain datasets. Judging from the values of various
indices, the ACC index values and SE index values of the traditional Unet network structure
for the classification of abrasive grains with different degrees of wear are generally low,
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indicating that the accuracy of its classification results is not high; while the lower DSC index
values and the higher HD95 index values reflect the poor segmentation effect. Compared
with Unet, TransUnet has certain improvements in the performance of indices such as ACC,
SE, DSC, and HD95. This is mainly due to the addition of a multi-head attention mechanism
and the Unet encoder-decoder architecture in the TransUnet network structure, thereby
enhancing the model’s performance in complex image segmentation tasks. Compared with
TransUnet, the performance of indices such as the ACC, SE, and HD95 of the Swin series
models has been improved to different degrees. This is because the Swin series models
completely remove the CNN encoder and instead use a pure Transformer structure, giving
full play to the advantages of the Transformer. However, the performance of the Swin
series models in terms of the DSC index is not good, indicating that the segmentation
effect has degraded. Comparing the DINOv2 model with the Swin series models, the
performance of indices such as ACC, SE, DSC, and HD95 has decreased to different degrees.
In particular, the HD95 index has increased significantly, indicating that the degradation
of the segmentation effect is relatively serious. By comparing the Swin-Unet-SAM model
proposed in this paper with other models, it can be found that although the HD95 index
value is not the best for two types of abrasive grains, macro-broken and fall-off, compared
with the results of Unet, Swin-Unet, etc., it can be seen that the HD95 index performance of
the Swin-Unet-SAM model still has a significant improvement. It is worth mentioning that
the abrasive grains that play the main cutting role in actual processing are the two types
of the whole and micro-broken abrasive grains, while the two types of abrasive grains of
macro-broken and fall-off have mostly lost or even completely lost their cutting function.
Therefore, the wear types of the whole and micro-broken abrasive grains are the focus of
attention, and having a relatively low HD95 index value for these two types of abrasive
grains is acceptable. Hence, the overall results of various evaluation indices indicate that
the model proposed in this paper has a high robustness and good segmentation effect.

Table 3. Results of different methods compared with the results of the proposed method on four
different datasets.

Model
Whole Micro-Broken Macro-Broken Fall-Off

ACC SE DSC HD95 ACC SE DSC HD95 ACC SE DSC HD95 ACC SE DSC HD95

Unet [36] 0.9297 0.1985 0.3757 111.82 0.9488 0.4961 0.6349 83.94 0.9459 0.2409 0.3546 76.26 0.9713 0.5126 0.4159 88.02

TransUet [33] 0.9513 0.6586 0.6274 73.34 0.9470 0.6981 0.7181 45.89 0.9842 0.8314 0.8635 22.37 0.9909 0.5374 0.6802 19.97

Swin-Unet [34] 0.9728 0.6859 0.7773 72.23 0.9602 0.7804 0.7788 44.46 0.9745 0.6631 0.7382 89.96 0.9928 0.9350 0.8378 31.25

Swin-T [31] 0.9712 0.7878 0.7730 43.27 0.9623 0.8233 0.7843 39.45 0.9815 0.9063 0.8327 76.39 0.9958 0.8552 0.8871 31.95

Swin-S [31] 0.9650 0.7117 0.7235 86.45 0.9683 0.7117 0.7235 24.63 0.9746 0.9168 0.7492 47.45 0.9715 0.7611 0.7504 43.99

Swin-B [31] 0.9695 0.9168 0.6966 56.58 0.9536 0.6886 0.7582 31.73 0.9753 0.6469 0.7582 112.43 0.9931 0.7518 0.8275 37.06

DINOv2 [45] 0.9361 0.5331 0.5684 164.37 0.9483 0.4931 0.6316 98.04 0.9594 0.2627 0.4118 172.23 0.9669 0.8184 0.4956 85.33

Swin-Unet-SAM
(Ours) 0.9864 0.9045 0.8909 36.49 0.9840 0.8629 0.9064 26.11 0.9856 0.9824 0.8491 39.26 0.9898 0.9515 0.7883 25.62

Note: A higher value is better for ACC, SE, and DSC. However, for HD95, a lower value is better. The results tell
that the model of ours has overall better performance than other models in terms of ACC, SE, DSC, and HD95
under four different datasets that cover various wear degrees of abrasive grains.

According to Table 3, it can be found that under the small sample dataset with complex
background textures, the average index values of ACC, SE, and DSC for the classification
and segmentation of diamond abrasive grains have reached 98.7%, 92.5%, and 85.9%,
respectively, which have increased by 1.2%, 15.9%, and 7.6%, respectively, compared to the
model of Swin-Unet before improvement, which proves the effectiveness of the method
proposed in this paper. Currently, there are extremely few studies on applying deep learning
models for diamond abrasive grain segmentation. The segmentation ACC of related
research generally remains at around 80% [28–30], which is not high. The main cause is that
the morphology and size of abrasive grains vary significantly after wear, and the complex
background texture also poses a great challenge to accurate segmentation. By employing
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the method proposed in this paper, the segmentation ACC of diamond abrasive grains is
increased to 98.7%, which represents a substantial improvement compared to previous ones.
This further substantiates that the proposed model has excellent segmentation performance
and robustness.

Figure 8 shows the actual classification and segmentation results of the model pro-
posed in this paper and other models on the four types of diamond datasets. Judging from
the various segmentation results, the Unet network has over-segmentation and classifica-
tion errors for the four types of abrasive grain wear classifications during the classification
process. The main reason is that the diamond abrasive grains are relatively close to the back-
ground, and the up-sampling of the Unet network cannot extract the features of abrasive
grains with different degrees of wear precisely, resulting in poor performance and a large
gap between the boundary part and the true label. The segmentation effect of the TransUnet
network structure is relatively smooth. By extracting features in a way that reduces the
segmentation target, a large amount of edge information will be lost, and there are also
some classification errors. Compared with the Unet network structure and the TransUnet
network structure, the network structure of the Swin series performs relatively well in
the classification of abrasive grain wear, but there are still a small number of classification
errors. Compared with the true label, the edge information of the segmentation result is
inaccurate and there are obvious missing parts, which is the reason for the improvement in
this paper. On the latest open-source visual large model DINOv2, its segmentation and
classification effects are relatively unsatisfactory, with problems such as classification errors
and a small amount of target missing. In view of the problems such as classification errors
and poor segmentation effects of the above models, in this paper, in the Swin-Unet, the
number of Swin Transformer Blocks is improved from the original low-level small-window
Swin Transformer Blocks to the high-level large-window structure to extract complex and
rich edge semantic information, solving the problem that it is difficult to distinguish the
information of diamond abrasive grains close to the complex background, and achieving
accurate classification of abrasive grain wear. The embedded structure is designed to
achieve the purpose of smoothing and filtering useless information, making the segmenta-
tion boundary smoother while ensuring the integrity of edge information, obtaining the
coarse segmentation result. Combined with the improved fine-tuning and iterative loop
of the SAM model to obtain the optimal result, the fine-segmented abrasive grain target
is obtained.
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results; (fourth column), TransUnet detection results; (fifth column), Swin-Unet detection results;
(sixth to eighth column), Swin series detection results; (ninth column), detection results of the
proposed method in this paper. In the figure, the green mark is for the whole category, the yellow
mark for the micro-broken category, the red mark for the macro-broken category, and the white mark
for the fall-off category. The results indicate that our method is superior to others in classifying and
segmenting abrasive grains with different degrees of wear under a complex background.

Based on the analysis and discussion of Table 3 and Figure 9, the model in this paper
is biased towards higher values of the three indicators ACC, SE, and DSC, which are
significantly higher than or not weaker than other models. This reflects that the predicted
categories of abrasive grains with different wear conditions are consistent with the true
labels and can be classified correctly. It has a highly accurate segmentation result in target
segmentation, and its coincidence degree with the label is also high. This confirms that
the method proposed in this paper has good classification, segmentation performance,
and robustness, and is suitable for the detection of multi-class wear targets with complex
texture backgrounds.
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Figure 9. Evaluation of different models. Swin-Unet refers to the original Swin-Unet; Our(0) repre-
sents our proposed model with the improved structure without the CE-Dice loss; Our(1) refers to the
proposed model with the improved structure without the CE-Dice loss. The results show that our
model outperforms Swin-Unet in terms of ACC, SE, and DSC. This is because after adding relevant
structures and loss function, the model has a faster convergence speed and more abundant learning
ability of wear features.

5.2. Ablation Experiments

To better illustrate the superiority of the proposed model, this paper conducts the
following ablation experiments in four different abrasive grain wear datasets to verify the
role of the improved Swin-Unet structure, the CE-Dice loss function, and the improved
SAM loop structure. After adding the improved Swin-Unet structure (Our(0)), comparing
the blue and green curves in Figure 9, it can be seen that the training convergence speed of
the improved model with the number of Swin Transformer Blocks becomes faster and the
model learns more abundant wear feature information. The ACC and SE index values of
abrasive particle wear classification have both significantly improved, and the DSC index
value reflecting the abrasive grain segmentation effect performs well. For the model after
using the CE-Dice loss function (Our(1)), by comparing the green and red curves, it can be
found that the CE-Dice loss function makes the model converge faster and focus more on
the feature analysis of the target abrasive grains, which has a very obvious advantage in
the segmentation of worn abrasive grains.

Table 4 shows the index evaluation results of the four indicators ACC, SE, DSC, and
HD95 for abrasive grains with four different degrees of wear (whole, micro-broken, macro-
broken, and fall-off). It can be seen from Table 4 that compared to Swin-Unet, the improved
Swin-Unet structure Our(0), the CE-Dice loss function Our(1), and the addition of the SAM
structure Our(2) have all achieved significant improvements in the performance of each
indicator. This is because the output result of Our(1) is used as an input (mask), and the
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prompts of Points, Box, and mask, as shown in Figure 10, are input into the improved SAM
large model. The fine-tuning function of the SAM model is utilized to achieve the rapid
positioning of abrasive grain targets and regions and achieve fine segmentation, thereby
improving the model performance.

Table 4. Ablation experiment results for three methods on the dataset.

Model ACC SE DSC HD95

Swin-Unet 0.9751 0.7382 0.7754 61.08

Our(0) 0.9791 0.8263 0.8192 33.90

Our(1) 0.9841 0.8762 0.8614 40.27

Our(2) 0.9865 0.9334 0.8767 39.69
Note: A higher value is better for ACC, SE, and DSC. However, for HD95, a lower value is better.
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6. Conclusions

This paper proposes an effective Swin-Unet-SAM neural network for diamond abra-
sive grain image detection. Specifically, the proposed model addresses the issues of abrasive
grain wear classification and segmentation. The proposed method can be roughly divided
into three stages. Firstly, the Swin-Unet network is improved by adjusting the Swin Trans-
former Block, aiming to obtain richer semantic information for abrasive grain classification
and coarse segmentation. In the second stage of the network, the SAM model structure
is improved by using the output result of Swin-Unet as mask information to enhance the
richness of network information and increase the loop iteration to obtain higher-precision
fine segmentation results. Finally, four embedded structures are designed to combine the
two models to achieve the input of abrasive grain images and the output of classification
and segmentation. Additionally, we adopt the CE-Dice loss to improve the convergence
speed and detection accuracy of the model. Extensive experiments have been conducted
on four types of abrasive grain wear datasets to evaluate the effectiveness of our model.
The proposed method not only significantly solves the rapid classification and segmenta-
tion tasks of diamond tool abrasive grains but also has good performance and potential
application prospects in the industrial field.

In the future, we plan to further optimize the embedded structure and design an
intermediate layer to achieve rapid model connection, thereby accelerating our model to
use fewer resources. Regarding the classification and segmentation results, we will further
analyze the wear characteristics of abrasive grains to provide more in-depth guidance for
the processing process.
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