
Citation: Xue, D.; Pang, S.-Y.;

Liu, N.; Liu, S.-K.; Zheng, W.-M.

Phase-Angle-Encoded Snake

Optimization Algorithm for

K-Means Clustering. Electronics 2024,

13, 4215. https://doi.org/10.3390/

electronics13214215

Academic Editors: Chih-Lung Lin,

Bacha Rehman and Amin Amini

Received: 13 September 2024

Revised: 23 October 2024

Accepted: 25 October 2024

Published: 27 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Phase-Angle-Encoded Snake Optimization Algorithm for
K-Means Clustering
Dan Xue 1, Sen-Yuan Pang 1, Ning Liu 1, Shang-Kun Liu 1 and Wei-Min Zheng 2,*

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; xuedan@sdust.edu.cn (D.X.); pangsenyuan@sdust.edu.cn (S.-Y.P.);
liuning@sdust.edu.cn (N.L.); liushangkun@sdust.edu.cn (S.-K.L.)

2 College of Artificial Intelligence, Nanjing University of Information Science and Technology,
Nanjing 210044, China

* Correspondence: 003872@nuist.edu.cn

Abstract: The rapid development of metaheuristic algorithms proves their advantages in optimization.
Data clustering, as an optimization problem, faces challenges for high accuracy. The K-means algo-
rithm is traditaaional but has low clustering accuracy. In this paper, the phase-angle-encoded snake
optimization algorithm (θ-SO), based on mapping strategy, is proposed for data clustering. The disad-
vantages of traditional snake optimization include slow convergence speed and poor optimization
accuracy. The improved θ-SO uses phase angles for boundary setting and enables efficient adjustments
in the phase angle vector to accelerate convergence, while employing a Gaussian distribution strategy
to enhance optimization accuracy. The optimization performance of θ-SO is evaluated by CEC2013
datasets and compared with other metaheuristic algorithms. Additionally, its clustering optimization
capabilities are tested on Iris, Wine, Seeds, and CMC datasets, using the classification error rate and
sum of intra-cluster distances. Experimental results show θ-SO surpasses other algorithms on over
2/3 of CEC2013 test functions, hitting a 90% high-performance mark across all clustering optimization
tasks. The method proposed in this paper effectively addresses the issues of data clustering difficulty
and low clustering accuracy.

Keywords: phase-angle-encoded snake optimization; snake optimization; metaheuristic algorithms;
K-means clustering

1. Introduction

Metaheuristics are algorithmic frameworks inspired by natural phenomena, designed
to address complex optimization problems for which traditional algorithms are often
inefficient [1]. Metaheuristic algorithms (MAs) have proven effective in addressing various
optimization challenges [2], including vehicle routing problems [3], electric systems [4],
gene selection [5], and industry applications [6]. Broadly speaking, MAs lack a universally
accepted classification scheme [7]. Hashim et al. classify MA into four distinct categories:
EAs, SI, physical and chemical algorithms, as well as human-based algorithms [8]. Zhao et
al. categorize MA into several types: EAs, SI, physics or mathematics, and others [9]. In
this paper, MAs are classified into three main categories based on their underlying heuristic
principles: evolutionary algorithms, swarm intelligence, and others. Figure 1 shows the
classification of the MAs.

(1) Evolutionary Algorithms (EAs). Evolutionary algorithms simulate natural selection
and genetic evolution processes to address optimization problems. Guided by evolutionary
principles such as inheritance, mutation, selection, and crossover, these algorithms aim to
iteratively enhance a population of potential solutions. With each iteration, the overall fitness
of the solutions is improved, serving as a metric to quantify their effectiveness in addressing
the problem. By applying evolutionary operators, new individuals are generated, gradually
evolving into superior versions compared to the previous generation. Ultimately, the goal

Electronics 2024, 13, 4215. https://doi.org/10.3390/electronics13214215 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13214215
https://doi.org/10.3390/electronics13214215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13214215
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13214215?type=check_update&version=2

Electronics 2024, 13, 4215 2 of 24

is to converge on the optimal solution. As a result, evolutionary algorithms demonstrate
a profound capability for global optimization while effectively avoiding local optima [10].
Within the domain of evolutionary computation, the four principal paradigms are comprised
of genetic algorithms (GA), evolutionary programming (EP), evolutionary strategies (ES),
and genetic programming (GP) [11]. The most emblematic example is the genetic algorithm
(GA), originally proposed by John H. Holland [12].

ACO
Metaheuristic

algorithms

Evolutionary

Algorithms

Swarm

Intelligence

Others

PSO

BBOGA GP DEESEP

ABC GWO WOA SO

CGO SRO COA AOA FWA MVO

Figure 1. Classification of Metaheuristic Algorithms.

Among the four, GA simulates the principles of natural selection and genetics, as
observed in Darwinian evolution. The fundamental procedures within the GA revolve
around the concepts of inheritance, where traits are passed down from one generation to the
next, and variation, which introduces novelty through mutation and crossover. These mech-
anisms work in concert to evolve a population of candidate solutions, driving both explo-
ration and exploitation in the search for optimal or near-optimal outcomes [13]. Some other
popular evolutionary algorithms are differential evolution (DE) [14] and biogeography-
based optimization (BBO) [15]. DE was introduced by Rainer Storn and Kenneth Price in
1995 for the purpose of solving real-parameter optimization problems over continuous
spaces [16]. It iteratively improves a population of candidate solutions through three key
processes: mutation operation, crossover operation, and selection operation. During the
mutation phase, new solution candidates are generated by perturbing the solution space
based on differences between existing solutions, thereby fostering diversity. The crossover
phase involves recombining these mutated solutions with other solutions to create off-
spring, which are subsequently evaluated. Finally, the selection mechanism ensures that
only the most fit solutions are retained for the next generation [17].

(2) Swarm Intelligence (SI). SI algorithms draw inspiration from the collective behavior
and interaction patterns observed in natural swarms, aiming to mimic these natural phe-
nomena to solve complex optimization problems [18]. Inside a swarm, although individuals
within the system lack intelligence, the system as a whole can exhibit intelligent behavior,
akin to a form of collective intelligence. SI algorithms employ a population of agents, each
represented by a solution vector. The system is initially populated with random samples from
the search space. These agents are updated in a quasi-deterministic manner, known as algo-
rithmic dynamics, which governs the evolution of the system based on a set of equations. The
introduction of randomness serves to disrupt the equilibrium of the system and potentially
enables it to escape from local minima. A selection mechanism identifies the best solutions,
allowing them to propagate to the next generation. This process often leads to convergence
towards a set of optimal solutions as iterations progress [19]. Traditional swarm intelligence al-
gorithms sometimes fall short when tackling complex, real-world multi-objective optimization
challenges. However, in recent years, scholars have developed numerous innovative swarm
intelligence optimization algorithms that exhibit strong adaptability and have demonstrated
impressive experimental results in solving intricate practical problems [20].

The most widely recognized examples of SI algorithms include the particle swarm
optimization (PSO) [21], ant colony optimization (ACO) [22], artificial bee colony algorithm

Electronics 2024, 13, 4215 3 of 24

(ABC) [23], grey wolf optimizer (GWO) [24], whale optimization algorithm (WOA) [25],
firefly algorithm (FA) [26], seagull optimization algorithm (SOA) [27], ant lion optimizer
(ALO) [28], squirrel search algorithm (SSA) [29], cuckoo search (CS) [30], crow search
algorithm (CSA) [31], bat algorithm (BA) [32], snake optimization (SO) [8], and fish migra-
tion optimization algorithm (FMO) [33]. PSO, initially introduced in 1995, is a stochastic
optimization technique that is inspired by the social behaviors of animals, employing
population-based principles [34,35].

(3) Others. In addition to the previously mentioned categories, evolutionary algorithms
(EAs) and swarm intelligence (SI), the final category includes a diverse range of other
metaheuristic methods. These are based on either physics, mathematics, or human-based
algorithms, which encompass algorithms inspired by various aspects of human behavior,
including both physical and non-physical activities like thinking and social interaction. Such
algorithms include chaos game optimization (CGO) [36], search and rescue optimization
(SRO) [37], cognitive behavior optimization algorithm (COA) [38], Archimedes optimization
algorithm (AOA) [39], fireworks algorithm (FWA) [40], multiverse optimizer (MVO) [41],
Lichtenberg algorithm (LA) [42], poor and rich optimization (PRO) [43], atomic orbital
search (AOS) [44], sine cosine algorithm (SCA) [45], and human mental search (HMS) [46].

Meanwhile, grouping data into clusters based on common attributes or features is
the essence of clustering, a process that organizes information into distinct segments for
analysis [47,48]. Benabdella et al. categorized clustering into partitioning-based, hierarchical-
based, density-based, grid-based, and model-based methods by matching the considered
factors to the 4Vs of big data: volume, variety, velocity, and value [49]. It is generally agreed
that clustering algorithms can be broadly categorized into two primary classifications: hier-
archical clustering and partitional clustering [50–52]. Due to the varying requirements of
different application scenarios for clustering performance, as well as the distinct characteris-
tics of datasets, no single clustering algorithm can excel across all evaluation criteria [53].
Among various clustering methods, one of the most popular used clustering algorithms is
the K-means clustering algorithm because of its easiness and effectiveness [54].

The K-means clustering algorithm is an iterative refinement process that comprises two
main steps: initialization, where the initial set of K centroids is determined, and an iterative
procedure, which is originally known as the Lloyd algorithm [55]. The K-means algorithm is
a typical prototype-based clustering method, which usually assumes that the cluster structure
can be depicted through a set of prototypes. It is one of the most commonly used methods
in clustering. The K-means algorithm takes the mean vector of samples within a cluster as
the prototype to depict the cluster structure. It initializes cluster centers with K random
samples and adopts a greedy strategy to perform clustering through iterative optimization.
This clustering process is simple, efficient, easy to understand and implement, and has good
scalability; especially when the data are close to normal distribution, the effect is better.

However, within the framework of the K-means, the initial placement of centroids
holds a pivotal role in shaping the ultimate clustering outcomes. Different initial cluster
centroids often result in varied ultimate clustering configurations, thus resulting in a
relatively poor stability of the K-means. Furthermore, the choice of cluster centroids can
cause the clustering results to fall into a local optimum. It is one of the key challenges in
the K-means that lies in the assignment of data points to centroids [56]. Therefore, many
studies have improved the classic K-means algorithm.

The K-medoids algorithm is specifically designed to identify medoids, which are central
representative points within a cluster. Compared to the K-means algorithm, K-medoids
exhibits greater robustness due to its approach of selecting k representative objects that
minimize the total dissimilarity among data points within the clusters. In contrast, K-means
utilizes the sum of squared Euclidean distances between data points as the distance metric,
which can be influenced by outliers and noise. By minimizing the sum of dissimilarities
rather than squared distances, K-medoids is able to mitigate the effects of outliers and noise
in the datasets, resulting in potentially more accurate and robust clustering outcomes [57].

K-means++ is a clustering algorithm specifically designed to enhance the process of
selecting initial cluster centers in the K-means algorithm. Unlike K-means, which randomly

Electronics 2024, 13, 4215 4 of 24

selects the initial cluster centers, K-means++ employs a more strategic approach by selecting
new cluster centers based on a probability proportional to the squared distance of each
data point to the closest existing cluster center. This strategy aims to reduce the similarity
among the initial cluster centers, potentially accelerating the convergence of the algorithm
and improving the quality of the clustering results. However, despite its improvements
in clustering effectiveness, when K-means++ runs in sequential mode, the speed of the
clustering process can still be limited due to the sequential processing of all data points in
each iteration, especially when dealing with large-scale datasets [58].

Generally speaking, MAs are a powerful tool in optimization due to their global
exploration capabilities, which involve the use of randomization to explore multiple regions
within the solution space and avoid becoming trapped in local optima. Additionally, these
algorithms possess local exploitation abilities, allowing them to conduct thorough searches
within specific areas to fine-tune and find better or optimal solutions. From these empirical
studies, many studies have focused on the parameters of algorithms, while few have delved
into the basic mechanisms. In this paper, a new variant of SO, named phase-angle-encoded
snake optimization, is proposed that aims to enhance the performance of heuristic algorithms
and overcome the challenges faced by the K-means algorithm in clustering. Compared
to the traditional SO algorithm, the improved θ-SO utilizes phase angles for boundary
setting, allowing for efficient adjustments in the phase angle vector to expedite convergence.
Additionally, it adopts a Gaussian distribution strategy to further enhance optimization
accuracy. The challenge that the θ-SO aims to address pertains to the difficulties associated
with data clustering and the resultant low clustering accuracy.

The rest of the manuscript is organized as follows: Section 2 introduces the related
work on K-means and SO, while Section 3 focuses on the θ-SO algorithm we have proposed.
Section 4 details the related experiments and their results. Finally, Section 5 concludes the
work with a summary and final remarks.

2. Related Work

In this section, we present a brief overview of some related works that primarily focus
on recognizing and understanding the K-means clustering algorithm. Meanwhile, we offer
a concise review of the pertinent research endeavors that are centered primarily on the
recognition and comprehension of the snake optimization algorithm.

2.1. K-Means Clustering Algorithm

The fundamental principle of the K-means clustering algorithm involves randomly
selecting K points from the dataset as the initial centroids. Subsequently, it calculates the
distance between each remaining sample and these cluster centers, assigning each sample
to the cluster with the closest centroid. Each centroid and its assigned data points constitute
a cluster. Once all samples in the dataset have been allocated to their respective clusters, the
new centroid of each cluster is computed by taking the mean of the data points within that
cluster. The algorithm then compares the centroids from the current iteration with those
from the previous iteration. If there is no significant change in the centroids, indicating
convergence of the sum of squared errors criterion, the algorithm terminates. Otherwise, it
proceeds with another iteration, recalculating the centroids based on the current assignment
of data points, without randomly selecting new initial centroids.

During the clustering process, it is paramount to maintain an optimal balance, ensuring
that the distances between sample points within the same cluster are minimized, while
simultaneously maximizing the distances between sample points belonging to distinct
clusters. This is carried out to minimize the sum of squared errors (SSE), which is used as
an objective function to measure clustering quality and is defined in Equation (1). Three
commonly used distance metrics that are pivotal in the K-means clustering algorithm are
Euclidean distance, Manhattan distance, and Minkowski distance, defined in Equations (2),
(3), and (4), respectively. Typically, the Euclidean distance is used as a similarity measure.

Sum of squared error (SSE):

Electronics 2024, 13, 4215 5 of 24

E =
k

∑
i=1

∑
x∈Ci

d(x, ci)
2, (1)

where the dataset D = { xi|i = 1, . . ., N }, consisting of n-dimensional vector data points, is
to be partitioned into k clusters, and N is the total number of the data points. C1, . . ., Ck,
where xi represents the ith data point. Ultimately, the set D is divided into k clusters. E
represents the sum of squared errors of all objects in the dataset, and x is a point in space
representing the data objects belonging to a given cluster. ci is the centroid of cluster Ci,
while d represents their Euclidean distance.

In K-means clustering, various distance metrics are crucial for calculating the distances
between individual data points and the centroids. These measurements are used to assign
data points to their respective clusters, that is, the closest centroid based on the measured
distance. Three distinct distance metric methods are encompassed and detailed as follows.

(1) Euclidean distance:

d(x, y) =

√
n

∑
i=1

(xi − yi)2, (2)

(2) Manhattan distance:

d(x, y) =
n

∑
i=1

|xi − yi|, (3)

(3) Minkowski distance:

d(x, y) = (
n

∑
i=1

(|xi − yi|)p)
1
p , (4)

where x and y are the coordinates of two points, n represents the dimensionality, and p is a
parameter. When p = 2, it corresponds to the Euclidean distance; meanwhile, when p = 1, it
refers to the Manhattan distance.

In the K-means algorithm, the selection of initial cluster centers has a significant
impact on the clustering results. For different initial cluster centers, the final clustering
outcomes often differ, leading to poor stability of the K-means clustering algorithm [59].
Additionally, the choice of cluster centers can cause the clustering results to fall into local
optima [60]. Nie et al. have reformulated the classical K-means objective function as a trace
maximization problem, introducing a new formulation that eliminates the need to calculate
cluster centers in each iteration and requires fewer additional intermediate variables during
the optimization process [61].

Based on partial-order relations, Wan et al. have developed an enhanced K-means al-
gorithm known as the multi-feature induced order K-means algorithm, which incorporates
a novel centroid initialization method leveraging partial-order relations and utilizing a
multi-feature induced ordered weighted average operator [62]. Yang et al. propose a sparse
K-means clustering algorithm that incorporates anchor graph regularization to enhance the
robustness of initial cluster center selection and enhance the sparsity of the membership
matrix [63].

Additionally, automatic K-means clustering algorithms, incorporating nature-inspired
metaheuristic strategies, outperform traditional clustering methods, especially in terms of
their rapid convergence and capacity to generate high-quality solutions [64].

2.2. Snake Optimization Algorithm

Introduced by Hashim, the SO represents a pioneering approach that abstracts the
intricate behaviors of snakes, including mating, feeding, and fighting, into a rigorous
mathematical framework. The process of feeding within the algorithm is split into two
distinct stages: exploration and exploitation. The core idea of SO lies in simulating the
combat and mating behaviors of snakes to achieve global optimization. In nature, the
behaviors of snakes are influenced by a variety of factors, including the availability of food,
temperature, and so on. The SO algorithm incorporates these factors into its algorithm

Electronics 2024, 13, 4215 6 of 24

design. By simulating the different behavioral patterns of snake swarms in scenarios of
food scarcity and abundance, it aims to solve optimization problems. When the food
threshold is not met, the SO algorithm enters the exploration phase. During this phase,
snakes, represented as individuals in the population, roam randomly in the search space,
simulating their natural behavior of searching for food. This random movement allows
the algorithm to explore the search space thoroughly and discover new potential solutions.
When food becomes available, the algorithm transitions to the exploitation phase. Here,
snakes begin to converge towards areas with higher concentrations of food, analogous to
moving towards better solutions in the optimization problem. Additionally, temperature,
which affects snake behavior in the wild, is incorporated into the algorithm to influence the
movement and search behavior of the individuals.

The SO approach differentiates the population by assigning each individual as either
male or female. The initialization of SO involves creating a population through random
generation. Moreover, considering snakes are ectothermic, temperature significantly affects
their fighting and mating behaviors [8]. Each snake is assigned a random position in the
search space and evaluated based on a fitness function specific to the optimization problem.
The fitness of each snake is evaluated using a predefined objective function. This function
measures the quality of the position of the snake in the search space and assigns a fitness
score accordingly. The fitness score determines the ability of the snake to compete for
food and mates in the simulation. The SO algorithm’s combination of exploration and
exploitation mechanisms ensures that it can effectively balance the need for global search and
local refinement. This balance leads to faster convergence towards optimal or near-optimal
solutions, even for complex and non-linear optimization problems. While innovative, it
has limitations. Its performance is sensitive to parameter tuning, which can be challenging.
Additionally, its exploration–exploitation balance may not be optimal for highly multi-modal
problems, risking premature convergence. Moreover, SO lacks theoretical convergence
guarantees, and its computational complexity scales poorly with problem size, limiting its
applicability for large-scale or real-time optimization tasks.

Since the proposal of the SO algorithm, there have been several papers that have
improved upon the algorithm. Li et al. use SO to address the threshold selection issue in
the variable-step multiscale single threshold slope entropy [65]. Zheng et al. propose the
compact SO to enhance indoor positioning accuracy [66]. Yao et al. introduce an advanced
version of the SO, featuring novel dynamic update mechanisms and incorporating a mirror
imaging approach inspired by convex lens imaging principles, aimed at addressing real-
world engineering challenges [67]. Yan et al. incorporate a chaos mechanism during the
initialization phase and employ a sigmoid-based acceleration coefficient to enhance SO,
thereby delivering an optimal convolutional neural network structure [68].

2.3. Heuristics Algorithms and K-Means

Given the classic nature of the K-means algorithm, numerous heuristic algorithms
have been combined with it for optimization purposes. In PSO, each candidate solution for
a particular problem is envisioned as a particle traversing the vast landscape of the problem
space, equipped with a unique velocity. Each particle, influenced by a blend of deterministic
and stochastic factors, integrates information from its own historical best positions, the
global best position, and current location, as well as from one or more neighboring particles
within the swarm. After each iteration, during which all particles update their positions, the
swarm collectively inches closer to the optimal solution of the objective function, gradually
converging towards the desired outcome [69].

During the initial stages of the global search process, PSO experiences successful
convergence. However, as it approaches the global optimum, a notable issue emerges: the
search process slows down significantly. Alireza Ahmadyfard et al. proposed the PSO-KM
algorithm by combining the PSO with the K-means, leveraging the faster convergence to the
optimal solution offered by K-means to address this problem [70]. To better demonstrate the
optimization capabilities of the proposed compact particle swarm optimization based on
t-location–scale distribution, Ning Liu et al. conducted clustering experiments utilizing K-

Electronics 2024, 13, 4215 7 of 24

means as a benchmark, allowing for a further comparison and evaluation of the optimization
effects achieved by tCPSO [71].

Shruti Kapil et al. proposed the genetic K-means algorithm, leveraging an analogy
between dataset scope and chromosome length. This innovative approach aims to address
the challenges of high computational cost and time consumption in traditional k-means
clustering, which are exacerbated by the number of data items, clusters, and iterations [72].
T. Namratha Reddy et al. applied ant colony optimization to the K-means clustering
algorithm by incorporating two strategies: allowing ants to undertake a random walk
and subsequently calculating the pick and drop probabilities of specific data items, and
the alternative approach of calculating these probabilities first and directing ants towards
the data items with the highest likelihood of being reassigned to a different cluster. These
strategies aim to enhance the accuracy of the resulting clusters [73].

3. Phase-Angle-Encoded Snake Optimization Algorithm (θθθ-SO) for Clustering

This section delves into the theoretical underpinnings of the θ-SO algorithm, elucidat-
ing its fundamental principles and core mechanisms. While using the improved algorithm
for clustering, the correspondence between individual dimensions and the solution to the
clustering problem is elaborated.

3.1. Phase-Angle-Encoded Snake Optimization Algorithm

The key idea of the θ-SO is to map the search space of the algorithm to the polar search
space. This process enables the algorithm to delve into the search space. The proposed
θ-SO denotes the location of individuals as a phase angle vector θ = [θ1, θ2, . . . , θD], where
each phase angle θi ∈ [−π/2, π/2] [74,75]. At the onset of the θ-SO procedure, akin to
numerous metaheuristic methodologies, the first phase involves creating a randomized
population with a uniform distribution to commence the optimization procedure. The
initial population can be obtained by the subsequent Equation (5).

θi = θmin + r × (θmax − θmin), (5)

where θi is the position of the ith individual, and r is the random number between 0 and 1.
θmax represents the upper bound, while θmin represents the lower bound of the problem.

We divided the swarm into two equal groups: males and females.

θm ≈ N/2, (6)

θ f = N − θm, (7)

where N represents the total population, θm signifies the count of male individuals, and θ f
denotes the number of female individuals.

We identified and registered the best individual within each category—the best male
(fbest,m), the best female (fbest, f), and the best food location (f f ood).

The temperature (Temp) can be obtained using Equation (8). The parameter settings,
including temperature, c1, threshold, c2, and rand, are all consistent with those of the SO
algorithm. This ensures that the simulated snakes exhibit similar behaviors in scenarios
of food scarcity and abundance, as well as under conditions of high or low temperatures,
mimicking their natural behavior of searching for food.

Temp = exp(
−t
T
), (8)

where t denotes the current iteration number, and T represents the maximum allowable
number of iterations.

Equation (9) provides a definition for the quantity of food(Q).

Q = c1 × exp(
t − T

T
). (9)

Electronics 2024, 13, 4215 8 of 24

where c1 is constant and equals 0.5.
When Q < Threshold (Threshold = 0.25) is indicated, it signifies that the environment

has insufficient food, prompting the snakes to enter the exploration phase for food in the θ-
SO, the update causing individuals to conduct a random search according to Equations (10)
and (11).

θt+1
i,m = θt

random,m ± C2 × Am × ((θmax − θmin)× rand + θmin), (10)

θt+1
i, f = θt

random, f ± C2 × A f × ((θmax − θmin)× rand + θmin), (11)

where θt+1
i,m and θt+1

i, f , respectively, denote the locations of the ith male and female; mean-

while, θt
random,m and θt

random, f indicate the positions of snakes randomly selected from the
male and female groups, respectively, at the tth iteration. The value of C2 is configured to
0.05, while rand denotes a random number between 0 to 1, and t represents the ongoing
iteration of the algorithm. Am and A f symbolize the ability of male and female snakes to
find the food, respectively. This ability is mathematically described by Equations (12) for
males and (13) for females.

Am = exp(
− frand,m

fi,m
), (12)

A f = exp(
− frand, f

fi, f
), (13)

where frand,m and frand, f , respectively, denote the fitness of θrand,m and θrand, f , while fi,m
and fi, f represent the fitness values corresponding to the i-th individual in both the male
and female cohorts.

When Q > Threshold, it means that food exists, and the system enters the exploitation
phase. During the exploitation phase, an abundance of food is accessible within the envi-
ronment. If the temperature > 0.6, snakes persist in their food search. Subsequently, the
locations of both male and female snakes can be updated utilizing Equation (14).

θt+1
i,j = Xt

f ood ± C3 × Temp × rand × (X f ood − θt
i,j), (14)

where θi,j denotes the new location of an individual from both the male and female populations.
If temperature < 0.6, the snake will assume either a fighting mode or a mating mode.
If rand > 0.6, fighting mode occurs, as determined by Equations (15) and (16), where

FM and FF are defined in Equations (17) and (18),

θt+1
i,m = θt

i,m ± C3 × FM × rand × (Xbest, f − θt
i,m), (15)

θt+1
i, f = θt+1

i, f ± C3 × FF × rand × (Xbest,m − θt+1
i, f), (16)

FM = exp(
− fbest, f

fi
), (17)

FF = exp(
− fbest,m

fi
), (18)

where FM and FF, respectively, signify the combative prowess of males and females,
and Xbest,m and Xbest, f , respectively, denote the locations of the most capable male and
female entities within the group. fbest, f and fbest,m, respectively, represent the fitness levels
associated with Xbest, f and Xbest,m.

If rand < 0.6, mating mode occurs, as determined by Equations (19) and (20), where
MM and MF are defined in Equations (21) and (22):

θt+1
i,m = θt

i,m ± C3 × Mm × rand × (Q × θt
i, f − θt

i,m), (19)

θt+1
i, f = θt

i, f ± C3 × M f × rand × (Q × θt
i,m − θt

i, f), (20)

Electronics 2024, 13, 4215 9 of 24

MM = exp(
− fi, f

fi,m
), (21)

MF = exp(
− fi,m

fi, f
), (22)

where MM and MF represent the respective mating abilities of males and females.
If an egg hatches, the worst male and female individuals are chosen for replacement

by Equations (23) and (24).

θworst,m = θmin + rand × (θmax − θmin), (23)

θworst, f = θmin + rand × (θmax − θmin), (24)

where θworst,m denotes the worst individual in the male group; meanwhile, θworst, f denotes
the worst individual in the male group.

In this paper, unlike the SO algorithm that directly calculates the fitness value based
on the position, the θ-SO algorithm maps the position of the current solution to the actual
solution space within the problem threshold before evaluating its fitness value, as the
boundaries of the phase angle do not correspond to the upper and lower bounds of the
problem being solved. The transition from the polar search space to the original problem
search space is achieved through the sinusoidal function and utilization of the subsequent
Equation (25) as follows:

Xt
i = [(Xmax − Xmin)× sin(θt

i) + Xmax + Xmin]/2, (25)

where Xt
i is the mapped position, Xmax represents the upper bound, while Xmin represents

the lower bound of the problem, and sin(θt
i) represents the transformation of the current

position. Figure 2 shows the curve of θ function.

0 0.5 1 1.5 2

0

20

40

60

80

100

f(
)

Figure 2. The Curve of θ Function.

The fitness calculation is obtained by the following Equation (26):

Ft
i = f itnessvalue(Xt

i) (26)

where Ft
i represents the value of fitness, and f itnessvalue is a general formula for fitness

function used to evaluate the quality of a given solution, reflecting its performance in a
specific optimization problem, to guide the search and selection process of the algorithm.

The determination of the best solution variable hinges on the fitness value, which func-
tions as the standard in optimization algorithms for comparing the merit of diverse solu-
tions. By evaluating the fitness value of each solution, the algorithm is capable of discerning
which solutions lie closer to the optimal one. Within the scope of this paper, a lower fitness
value indicates a solution that is more preferable. In the realm of clustering problems, this dis-
cernment is particularly made via a blend of accuracy and internal distance metrics. Accuracy

Electronics 2024, 13, 4215 10 of 24

quantifies how well the clusters correspond to the genuine underlying structure of the data,
whereas internal distance metrics assess the density and distinctiveness of the formed clusters.

By utilizing the aforementioned equation, the phase angle space is transformed into
the suitable domain where the problem is being analyzed. This allows the algorithm to
search the permissible area with greater accuracy. Algorithm 1 presents the illustrative
pseudocode detailing the implementation of the θ-SO.

Algorithm 1 θ-SO pseudocode

1: Input: Dim(Dimensions), UB(Upper Bounds), LB(Lower Bounds), t(Current Iteration),
T(Max Iteration)

2: Output: Xbest(Best Solution)
3: Initialize the population randomly between −π

2 and π
2

4: while (t ≤ T) do
Map the phase angle to a position in the solution space using Equation (25)
Evaluate all mapped positions in θm and θ f
Find best male fbest,m
Find best female fbest, f
Calculate Temp using Equation (8)
Calculate Q using Equation (9)

5: if (Q < 0.25) then
Perform Exploration Phase using Equations (10) and (11)

6: else
7: if (temp > 0.6) then

Perform Exploitation Phase using Equation (14)
8: else
9: if (rand > 0.6) then

Perform fight mode using Equations (15) and (16)
10: else Perform mating mode using Equations (19) and (20)

Change the worst male and female
11: end if
12: end if
13: end if

Sort fitness (Nm)
14: if Fitness (gt

bestm)>Fitness (gt−1
bestm) then

Countm = Countm + 1
15: end if
16: if (Countm ≥ 3) then

Countm = 0
17: for (i=1:5) do

Generate Xnewm(i) according to Gaussian perturbation by Equation (27);
Replace Xm(N − i + 1) = Xnewm(i)

18: end for
19: end if

Sort fitness (N f)
20: if Fitness (gt

best f)>Fitness (gt−1
best f) then

Count f = Count f + 1
21: end if
22: while (Count f ≥ 3) do

Count f = 0
23: for i=1:5 do

Generate Xnew f (i) according to Gaussian perturbation by Equation (27)
Replace X f (N − i + 1) = Xnew f (i)

24: end for
25: end while
26: end while

Electronics 2024, 13, 4215 11 of 24

The tendency of individuals within the population to converge towards the perceived
best individual, if flawed, can misdirect the entire population, trapping it in a local optimum.
Consequently, this study introduces an adaptation of the natural selection principle, aimed
at empowering the population to escape such suboptimal traps. During the iteration, when
the fitness value of the optimal individual in the population does not show significant
improvement for consecutive generations, the algorithm will trigger the mechanism of
survival of the fittest. The core of this mechanism is to select the top n individuals with
the highest fitness after sorting, apply Gaussian disturbance to their chosen dimensions,
and then replace the worst n individuals in the population with the disturbed individuals.
The Gaussian perturbation strategy operates by randomly selecting d dimensions and
sampling a new value for each dimension based on a Gaussian distribution. It is expressed
in Equation (27), as follows:

θd
new = Gaussian(d, σ2) (27)

where θd
new denotes the new position of the generated individual after Gaussian pertur-

bation. d corresponds to a randomly selected dimension. σ2 is the mean of the squared
deviations between each individual and the average value. Through this operation, indi-
viduals can bypass local optima and prevent premature convergence.

3.2. K-Means Clustering Algorithm Based on θ-SO

Next, we integrate the proposed algorithm with K-means, exploring the application
of an advanced optimization framework that transforms the classic K-means algorithm,
enhancing its capabilities to tackle real-world challenges involving large and complex
datasets. This integration provides a detailed examination of the proposed method, its
theoretical underpinnings and empirical evaluations, demonstrating its advantages over
traditional K-means.

Utilizing the devised algorithm for data clustering, the concept of candidate solutions
assumes a pivotal role. Essentially, these solutions are embodied within one-dimensional
arrays, where each array distinctly represents a potential strategy for grouping the data.
In this framework, a candidate solution is construed as a set of K initial cluster centers,
serving as the foundational points for the clustering process. The dimensionality of the
cluster centers is dictated by the characteristics of the data objects being clustered. For
example, in the scenario illustrated in Figure 3, a clustering problem arises involving data
objects with seven distinct features. As a result, each element within the one-dimensional
array representing a candidate solution aligns with one of these features, specifying the
location of the corresponding cluster center within the multidimensional feature space.This
methodology enables a thorough examination of diverse clustering configurations, as
each candidate solution presents a unique arrangement of initial cluster center positions.
By sequentially examining these candidate solutions and assessing their proficiency in
grouping similar data objects, the optimal clustering strategy that most accurately mirrors
the inherent structure of the data can be discerned. It should be noted that in Figure 3, the
use of gray is solely intended to distinguish between various features and does not convey
any sense of hierarchy or grading.

The K-means algorithm is the most well-known clustering algorithm that uses distance
measurement [64,76]. Therefore, the sum of intra-cluster distances (SD) and the error rate
(ER) [71,77] have been designed in the article to evaluate the performance of θ-SO with
K-means. SD is calculated by aggregating the distances between each data point and its
respective cluster center, as formulated in Equation (28). Evidently, a lower summation of
these distances indicates a higher clustering quality, reflecting a tighter grouping of data
within clusters. Meanwhile, the sum of intra-cluster distances serves as both the evaluation
criterion and the fitness measure for optimizing the clustering process.

SD =
N

∑
i=1

K

∑
j=1

fij · |oi − cj| (28)

Electronics 2024, 13, 4215 12 of 24

where N signifies the total count of objects, while K denotes the number of clusters present.
The notation oi represents the i-th object, and cj stands for the center of the j-th cluster. The
coefficient fij serves as a weight, which is assigned a value of 1 when the i-th object, oi,
belongs to the j-th cluster centered at cj. Conversely, if oi does not belong to this cluster, fij
is set to 0. |oi − cj| represents the absolute distance between the data point oi and the cluster
center cj. This mechanism allows for a precise differentiation of object–cluster associations
in subsequent calculations or analyses.

Feature 1 Feature 2 Feature 5Feature 3 Feature 4 Feature 6 Feature 7

Center 1

Feature 1 Feature 2 Feature 5Feature 3 Feature 4 Feature 6 Feature 7

Center 2

Feature 1 Feature 2 Feature 5Feature 3 Feature 4 Feature 6 Feature 7

Candidate

Figure 3. Illustration of Candidate Solutions and Cluster Centers.

Additionally, ER represents the percentage of data objects that are misclassified, indi-
cating the proportion of objects incorrectly placed or assigned to their respective clusters.
The clustering performance is quantified by the error rate, where a lower ER signifies
superior clustering effectiveness and enhanced optimization capability of the algorithm.
The calculation formula for the ER can be formulated as shown in Equation (29).

ER =
misclassi f ied
total number

× 100% (29)

where misclassified refers to the count of objects that have been incorrectly classified, and
total number encompasses the entire set of objects being evaluated.

4. Results and Discussion

In this section, we meticulously compare the performance of the θ-SO against its origi-
nal versions of the SO algorithm, as well as several other widely recognized optimization
algorithms, such as ABC, FMO, PSO, and GA, using various benchmark functions. In ad-
dition, we conduct simulation experiments for K-means, and the results show that it can
significantly reduce the clustering error rate. The experimental setup is in Table 1. Among
them, MATLAB version R2022a is the primary programming language used in this paper.

Electronics 2024, 13, 4215 13 of 24

Table 1. Hardware and Software of Experiments.

Details Description

Device Huawei MateBook 16s laptop
Processor 12th Generation Intel® Core™ i9-12900H processor
Memory LPDDR5 RAM

Operating system The latest Microsoft Windows 11 system
Software MATLAB R2022a

4.1. Performance Test of θ-SO

In order to assess the feasibility and effectiveness of the proposed θ-SO-based method,
we present the simulation experiments conducted to evaluate the algorithm and detail the
algorithms selected for comparison, the specific problems addressed, the datasets utilized for
testing, and the parameter values employed in the conducted experiments. The performance
of the θ-SO is tested using 28 benchmark functions from CEC2013 [78]. These functions can
be categorized into three primary types in Table 2: functions f1 to f5 are unimodal functions,
f6 to f20 are basic multimodal functions, and f21 to f28 are composition functions.

Table 2. CEC2013 Function.

No. Function Name Function Formula

f1 Sphere Function f1(x) =
D
∑

i=1
z2

i + f ∗
1 , z = x − o

f2
Rotated High Conditioned
Elliptic Function f2(x) =

D
∑

i=1
(106)

i−1
D−1 z2

i + f ∗
2 , z = TOSZ(M1(x − o))

f3 Rotated Bent Cigar Function f3(x) = z2
i + 106

D
∑

i=2
z2

i + f ∗
3 , z = M2T0.5

asy(M1(x − o))

f4 Rotated Discus Function f4(x) = 106z2
i +

D
∑

i=2
z2

i + f ∗
4 , z = TOSZ(M1(x − o))

f5 Different Powers Function f5(x) =

√
D
∑

i=1
|zi |2+4 i−1

D−1 + f ∗
5 , z = x − o

f6 Rotated Rosenbrock’s Function f6(x) =
D−1
∑

i=1
(100(z2

i − zi+1)
2 + (zi − 1)2) + f ∗

6 , z = M1(
2.048(x−o)

100) + 1

f7 Rotated Schaffers F7 Function
f7(x) = (

1
D − 1

D−1

∑
i=1

(
√

zi +
√

zi sin2(50z0.2
i)))2 + f ∗

7 ,

z =
√

y2
i + y2

i+1 f or i = 1, . . . , D, y = ∧10 M2T0.5
asy(M1(x − o))

f8 Rotated Ackley’s Function
f8(x) = −20exp(−0.2

√√√√ 1
D

D

∑
i=1

z2
i)− exp(

1
D

D

∑
i=1

cos(2πzi)) + 20 + e + f ∗
8 ,

z = ∧10 M2T0.5
asy(M1(x − o))

f9 Rotated Weierstrass Function

f9(x) =
D

∑
i=1

(
kmax

∑
k=0

[ak cos(2πbk(zi + 0.5))])− D
kmax

∑
k=0

[ak cos(2πbk · 0.5)] + f ∗
9 ,

a = 0.5, b = 3, kmax = 20, z = ∧10 M2T0.5
asy(M1(

0.5(x − o)
100

))

f10 Rotated Griewank’s Function f10(x) =
D
∑

i=1

z2
i

4000 −
D
∏
i=1

cos(zi√
i
) + 1 + f ∗

10 , z = ∧100 M1(
600(x−o)

100)

f11 Rastrigin’s Function f11(x) =
D
∑

i=1
(z2

i − 10 cos(2πzi) + 10) + f ∗
11 , z = ∧10T0.2

asy(Tosz(
5.12(x−o)

100))

f12 Rotated Rastrigin’s Function f12(x) =
D
∑

i=1
(z2

i − 10 cos(2πzi) + 10) + f ∗
12 , z = M1Λ10 M2T0.2

asy(Tosz(M1
5.12(x−o)

100))

f13
Non-Continuous Rotated
Rastrigin’s Function f13(x) =

D
∑

i=1
(z2

i − 10 cos(2πzi) + 10) + f ∗
13 , z = M1 ∧10 M2T0.2

asy(Tosz(y))

Electronics 2024, 13, 4215 14 of 24

Table 2. Cont.

No. Function Name Function Formula

f14 Schwefel’s Function f14(z) = 418.9829 × D −
D
∑

i=1
g(zi) + f ∗

14 , z = ∧10(1000(x−o)
100)4.209687462275036e + 002

f15 Rotated Schwefel’s Function f15(z) = 418.9829 × D −
D
∑

i=1
g(zi) + f ∗

15 , z = ∧10 M1(
1000(x−o)

100)4.209687462275036e + 002

f16 Rotated Katsuura Function f16(x) = 10
D2

D
∏
i=1

(1 + i
32
∑

j=1

|2jzi−round(2jzi)|
2j)

10
D1.2 − 10

D2 + f ∗
16 , z = M2 ∧100 (M1

5(x−o)
100)

f17 Lunacek Bi-Rastrigin Function f17(x) = min(
D
∑

i=1
(x̂i − µ0)

2, dD + s
D
∑

i=1
(x̂i − µ1)

2) + 10(D −
D
∑

i=1
cos(2πẑi)) + f ∗

17 , z = ∧100(x̂ − µ0)

f18
Rotated Lunacek
Bi-Rastrigin Function

f18(x) = min(
D

∑
i=1

(x̂i − µ0)
2, dD + s

D

∑
i=1

(x̂i − µ1)
2) + 10(D −

D

∑
i=1

cos(2πẑi)) + f ∗
18 ,

z = M2 ∧100 (M1(x̂ − µ0))

f19
Expanded Griewank’s plus
Rosenbrock’s Function

f19(x) = g1(g2(z1, z2)) + g1(g2(z2, z3)) + . . . + g1(g2(zD−1, zD)) + g1(g2(zD , z1)) + f ∗
19 ,

g1(x) =
D

∑
i=1

x2
i

4000
−

D

∏
i=1

cos(
xi√

i
) + 1, z = M1(

5.12(x − o)
100

) + 1

f20 Expanded Scaffer’s F6 Function
f20(x) = g(z1, z2) + g(z2, z3) + . . . + g(zD−1, zD) + g(zD , z1) + f ∗

20 ,

g(x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2 , z = M2T0.5
asy(M1(x − o))

f21
Composition Function 1
(n = 5, Rotated) f21(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗21, f ′i = fi − f ∗i , g1 = f ′6, g2 = f ′5, g3 = f ′3, g4 = f ′4, g5 = f ′1

f22
Composition Function 2
(n = 3, Unrotated) f22(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗22, f ′i = fi − f ∗i , g1−3 = f ′14

f23
Composition Function 3
(n = 3, Rotated) f23(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗23, f ′i = fi − f ∗i , g1−3 = f ′15

f24
Composition Function 4
(n = 3, Rotated) f24(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗24, f ′i = fi − f ∗i , g1 = f ′15, g2 = f ′12, g3 = f ′9, σ[20, 20, 20]

f25
Composition Function 5
(n = 3, Rotated) f25(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗25, f ′i = fi − f ∗i , g1 = f ′15, g2 = f ′12, g3 = f ′9, σ[10, 30, 50]

f26
Composition Function 6
(n = 5, Rotated) f26(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗26, f ′i = fi − f ∗i , g1 = f ′15, g2 = f ′12, g3 = f ′2, g4 = f ′9, g5 = f ′10

f27
Composition Function 7
(n = 5, Rotated) f27(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗27, f ′i = fi − f ∗i , g1 = f ′10, g2 = f ′12, g3 = f ′15, g4 = f ′9, g5 = f ′1

f28
Composition Function 8
(n = 5, Rotated) f28(x) =

n
∑

i=1
{ωi ∗ [λi gi(x) + biasi]}+ f ∗28, f ′i = fi − f ∗i , g1 = f ′19, g2 = f ′7, g3 = f ′15, g4 = f ′20, g5 = f ′1

The CEC2013 test suite is the most recognized, classic, and widely used test set in the
field of heuristic algorithms. CEC2013 encompasses a variety of function types, includ-
ing unimodal, multimodal, hybrid, and composite functions, enabling it to simulate the
complexity and difficulty of various optimization problems. This diversity and comprehen-
siveness make CEC2013 more reliable and accurate in evaluating optimization algorithms.
Additionally, as an early-released benchmark test suite, CEC2013 has been tested by time
and is widely recognized and used by researchers. Its well-designed function set can com-
prehensively evaluate the performance of optimization algorithms, thus occupying an
irreplaceable classic position in the research and development of optimization algorithms.
Liu et al. utilized the CEC2013 datasets to demonstrate that the t-location–scale distribution
exhibits superior optimization performance compared to other heuristic algorithms [71].
Zheng et al. employed the CEC2013 datasets to showcase that compact snake optimization
outperforms other heuristic algorithms in terms of optimization performance [66].

Electronics 2024, 13, 4215 15 of 24

Table 3 presents a comparative analysis of the performance of θ-SO versus that of
conventional heuristic algorithms. To ensure a rigorous and equitable evaluation, the exper-
imental setup maintained consistency across all algorithms, employing a population size
of 30 individuals for every one of the six algorithms across all problems. Ensuring a consis-
tent number of individuals across all algorithms facilitates a more accurate and equitable
assessment of their optimization capabilities. Therefore, when comparing the performance
of different algorithms, we adopted this approach, which essentially involves controlling
variables. By maintaining a uniform population size, we eliminate a potential variable that
might otherwise influence the results, allowing us to focus solely on the inherent strengths
and weaknesses of each algorithm in terms of their ability to find optimal solutions. Further-
more, all the compared algorithms were configured to run for a maximum of 1000 iterations
with a dimension of 30. In adherence to the standards set by CEC2013, the search range for
all these algorithms was confined within the specified interval of [−100, 100].

Table 3. Comparative Analysis of θ-SO Algorithm and Traditional Heuristic Algorithms.

Function θ-SO SO ABC FMO PSO GA

f1 −1.39 × 103 −1.40 × 103 1.07 × 104 −9.02 × 101 −1.40 ×103 9.24 × 104

f2 1.66 × 107 1.78 × 107 3.83 × 108 9.54 × 106 6.18 × 106 2.62 × 109

f3 6.16 × 109 4.48 × 109 1.09 × 1017 8.05 × 109 5.96 × 109 7.84 × 1022

f4 4.91 × 104 4.91 × 104 7.28 × 104 7.52 × 104 2.07 × 104 3.47 × 106

f5 −9.89 × 102 −9.79 × 102 7.98 × 103 −9.80 × 102 −9.49 × 102 8.02 × 104

f6 −8.48 × 102 −7.93 × 102 1.12 × 103 −8.42 × 102 −8.30 × 102 2.42 × 104

f7 −6.49 × 102 −6.66 × 102 1.69 × 105 −6.19 × 102 −3.80 × 102 1.12 × 108

f8 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102

f9 −5.70 × 102 −5.68 × 102 −5.60 × 102 −5.59 × 102 −5.62 × 102 −5.53 × 102

f10 −3.76 × 102 −4.42 × 102 1.69 × 103 −3.80 × 102 −4.93 × 102 1.35 × 104

f11 −3.21 × 102 −3.05 × 102 7.60 × 101 −1.35 × 102 7.80 × 101 1.15 × 103

f12 −7.41 × 101 −9.27 × 101 1.58 × 102 3.32 × 101 1.26 × 102 1.24 × 103

f13 7.83 × 101 5.51 × 101 2.46 × 102 1.28 × 102 3.37 × 102 1.33 × 103

f14 1.57 × 103 1.70 × 103 4.86 × 103 7.46 × 103 4.38 × 103 9.76 × 103

f15 5.36 × 103 7.59 × 103 7.70 × 103 7.83 × 103 4.66 × 103 9.26 × 103

f16 2.02 × 102 2.03 × 102 2.03 × 102 2.03 × 102 2.02 × 102 2.05 × 102

f17 4.47 × 102 4.57 × 102 7.50 × 102 7.14 × 102 7.69 × 102 3.04 × 103

f18 5.85 × 102 6.74 × 102 9.13 × 102 8.03 × 102 8.97 × 102 3.11 × 103

f19 5.08 × 102 5.09 × 102 2.58 × 105 5.14 × 102 5.43 × 102 1.31 × 107

f20 6.13 × 102 6.13 × 102 6.15 × 102 6.15 × 102 6.15 × 102 6.15 × 102

f21 9.73 × 102 9.74 × 102 2.76 × 103 1.07 × 103 1.02 × 103 7.24 × 103

f22 2.69 × 103 3.14 × 103 5.94 × 103 8.85 × 103 6.73 × 103 1.10 × 104

f23 6.12 × 103 8.14 × 103 9.25 × 103 9.41 × 103 6.91 × 103 1.08 × 104

f24 1.28 × 103 1.28 × 103 1.30 × 103 1.30 × 103 1.34 × 103 1.62 × 103

f25 1.39 × 103 1.39 × 103 1.41 × 103 1.42 × 103 1.48 × 103 1.55 × 103

f26 1.52 × 103 1.50 × 103 1.49 × 103 1.51 × 103 1.58 × 103 1.66 × 103

f27 2.31 × 103 2.25 × 103 2.63 × 103 2.51 × 103 2.82 × 103 3.29 × 103

f28 2.09 × 103 2.44 × 103 7.28 × 103 2.45 × 103 5.79 × 103 1.31 × 104

In Table 3, the cells marked in bold signify that the method exhibits excellent perfor-
mance in the benchmark function. The significant finding from Table 3 is that the θ-SO
emerges with the highest number of best results. The data from experiments reveal that the
θ-SO has better test performance than SO in 18 functions, better performance than ABC in
26 functions, better performance than FMO in 24 functions, better performance than PSO
in 20 functions, and outperforms all of GA. This indicates its effectiveness and robustness.
These findings strongly suggest that the results of θ-SO algorithm, which incorporates
phase angle encoding of the SO algorithm, not only can obtain better results on most testing
functions but also remarkably enhances the optimization performance compared to other
algorithms. It is effective and robust and presents a profound opportunity to explore viable
spaces for bolstering evolutionary performance during the ongoing evolutionary process.

Next, we further demonstrate the effectiveness of the algorithm through the evaluation
of convergence curves. Figure 4 presents the convergence curves of several benchmark
functions, offering a visual representation of their performance.

Electronics 2024, 13, 4215 16 of 24

0 100 200 300 400 500 600 700 800 900 1000

Iterations

F
u
n

c
ti
o
n

 V
a

lu
e

SO

ABC

FMO

PSO

GA

(a) f9

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

200

400

600

800

1000

1200

F
u
n

c
ti
o
n

 V
a

lu
e

SO

ABC

FMO

PSO

GA

(b) f11

0 100 200 300 400 500 600 700 800 900 1000

Iterations

1000

2000

3000

4000

5000

6000

7000

8000

9000

10,000

F
u
n

c
ti
o
n

 V
a

lu
e

SO

ABC

FMO

PSO

GA

(c) f14

0 100 200 300 400 500 600 700 800 900 1000

Iterations

0

500

1000

1500

2000

2500

3000

3500

F
u
n

c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(d) f17

0 100 200 300 400 500 600 700 800 900 1000

Iterations

500

1000

1500

2000

2500

3000

3500

F
u
n

c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(e) f18

0 100 200 300 400 500 600 700 800 900 1000

Iterations

2000

3000

4000

5000

6000

7000

8000

9000

10,000

11,000

12,000

F
u
n

c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(f) f22

0 100 200 300 400 500 600 700 800 900 1000

Iterations

6000

7000

8000

9000

10,000

11,000

12,000

F
u

n
c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(g) f23

0 100 200 300 400 500 600 700 800 900 1000

Iterations

1380

1400

1420

1440

1460

1480

1500

1520

1540

1560

F
u

n
c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(h) f25

0 100 200 300 400 500 600 700 800 900 1000

Iterations

2000

4000

6000

8000

10,000

12,000

14,000

F
u

n
c
ti
o

n
 V

a
lu

e

SO

ABC

FMO

PSO

GA

(i) f28

Figure 4. Performance Comparative Analysis of θ-SO and Popular Heuristic Algorithms.

From Figure 4, it can be observed that in comparison to other algorithms, the proposed
algorithm exhibits good performance. This means that θ-SO can find smaller function
values and converges faster on test functions f9 , f11, f14, f17, f18, f22, f23, f25, and f28. On
the basic multimodal function f9, PSO converges faster than θ-SO during the initial stage of
iteration. However, the function value of θ-SO rapidly decreases before reaching the 350th
iteration and consistently approximates the best optimal value after the 200th iteration,
exploiting the global optimal value to achieve higher convergence accuracy.

On the f11, f14, and f17 functions, the convergence curve of θ-SO is close to that of
SO and even briefly surpassed by SO during the early iteration stages from Figure 4, but
Table 3 clearly shows that θ-SO ultimately achieves the optimal value. Except for the poor
performance of GA, other algorithms like SO, ABC, FMO, PSO, and θ-SO can all locate a good
value at the beginning of the iteration on the f18 function. On the composition function f22
and f28, θ-SO outperforms all other algorithms and sustains its advantage after surpassing
them around the 150th iteration. On the function f23, despite not converging best initially,
θ-SO is able to effectively escape local extrema and swiftly converge towards the optimal
value as the iteration exceeds 350 with effective improvement. The θ-SO outperforms the
other algorithms consistently throughout the entire iteration process on the function f25.

Electronics 2024, 13, 4215 17 of 24

The good performance in the composition functions indicates that θ-SO effectively
avoids local extrema and achieves high convergence accuracy when dealing with com-
plex functions.

4.2. Application of θ-SO to Clustering

To assess the efficacy of the novel algorithm, it was deployed within the realm of
clustering challenges, leveraging a diverse selection of four datasets sourced from reputable
machine learning archives: Iris, Wine, Seeds, and Contraceptive Method Choice (CMC).
Because each dataset exhibits a distinct level of complexity, Kan Ni et al. conducted a
series of experiments utilizing datasets including Iris, Glass, CMC, and Wine, with the aim
of assessing and contrasting the clustering efficacy of the differential evolution artificial
bee colony-fuzzy clustering algorithm against other methods [79]. Similarly, to assess the
clustering performance of the FCM algorithm with the improved density-sensitive distance,
datasets like Wine, Iris, Seeds, CMC, and others were used [80].

The four clustering datasets are widely recognized within the data science and machine
learning communities as being both typical and frequently used. Due to their well-defined
structures and clear distinctions between different clusters, these datasets are often em-
ployed as benchmarks to evaluate the performance of clustering algorithms. Consequently,
this paper has chosen to utilize these four datasets. When employing the θ-SO for data clus-
tering, the candidate solution to the clustering problem is represented as a 1-dimensional
array. In this array, each candidate solution comprises K initial cluster centers, with each
individual unit in the array corresponding to a dimension of the cluster center.

The summary in Table 4 outlines the key features of the utilized datasets, including
their names, the number of clusters, the number of features, and the number of data objects.
The Iris dataset was divided into three classifications, each containing 50 samples. The
Wine dataset was divided into classifications with 59, 71, and 48 samples, respectively.
The Seeds dataset was divided into three classifications, each comprising 70 samples. The
CMC dataset was divided into classifications with 629, 334, and 510 samples, respectively.
The θ-SO algorithm is compared with its original version of the SO algorithm, as well as
several well-known algorithms, including ABC, FMO, PSO, and GA, which we have used
for comparison to test its performance.

Table 4. Key Features of the Test Datasets.

Datasets Clusters Features Objects

Iris 3 4 150 (50, 50, 50)
Wine 3 13 178 (59, 71, 48)
Seeds 3 7 210 (70, 70, 70)
CMC 3 9 1473 (629, 334, 510)

In this series of experiments, various datasets undergo clustering using distinct algo-
rithms, and the ER is computed for each individual experiment. Table 5 presents the mean
error rate achieved by the clustering algorithms, focusing on the best 10 iterations out of
100 independent simulation runs conducted on the test datasets.

Table 5. Comparison of Clustering Error Rates Across Different Test Datasets.

Datasets K-Means ABC FMO PSO GA SO θ-SO

Iris 13.42% 9.27% 10.13% 10.00% 19.73% 9.33% 8.67%
Wine 31.14% 28.60% 30.79% 35.67% 29.27% 28.99% 28.54%
Seeds 10.48% 10.71% 10.48% 15.62% 24.52% 10.48% 10.43%
CMC 60.68% 60.16% 60.29% 60.50% 58.40% 60.11% 58.01%

In this table, the horizontal rows represent the algorithms, specifically K-means, ABC,
FMO, PSO, GA, SO, and the θ-SO algorithm, while the vertical columns represent the
datasets, namely, Iris, Wine, Seeds, and CMC. Apart from K-mean algorithms, heuristic

Electronics 2024, 13, 4215 18 of 24

algorithms are all based on a combination with clustering algorithms to perform classifi-
cation, thereby obtaining the results. Worth mentioning, the θ-SO algorithm consistently
outperforms the rest, demonstrating the lowest average error rate across all test datasets, as
clearly indicated in Table 5. On the Iris dataset, it surpasses the original K-means algorithm
by a substantial margin of nearly 5 percentage points. Similarly, on the Wine dataset, the
θ-SO algorithm excels, outperforming the PSO by approximately 7 percentage points. The
Seeds dataset further underscores the superiority of the algorithm, as it outperforms the
GA algorithm by an impressive 14 percentage points and the PSO by nearly 5 percentage
points. Notably, even on the CMC data, where the difference in error rates is less pro-
nounced, the proposed θ-SO algorithm still manages to outperform K-means, ABC, FMO,
PSO, and SO by a consistent two percentage points, demonstrating its robust and consistent
performance advantages.

Next, Table 6 in the article presents a summary of the time required for the experiments.

Table 6. Comparison of Clustering Run Time(s) Across Different Test Datasets.

Datasets K-Means ABC FMO PSO GA SO θ-SO

Iris 70 46 46 45 47 46 46
Wine 101 77 85 67 75 60 60
Seeds 96 65 66 65 66 66 65
CMC 1092 1959 1144 1174 1192 896 867

From Table 6, we can observe that on the Iris dataset, the running time of θ-SO is similar
to that of ABC, FMO, and other algorithms, all at 46 s. Although it is slightly longer by 1 s
compared to PSO, its performance is relatively good. On the Wine dataset, the running time
of θ-SO is 60 s, tied for the shortest with SO. On the Seeds dataset, although the running
times of several algorithms are relatively close, the running time of θ-SO, which is equal to
that of ABC and PSO at 65 s, still ranks among the shortest. On the CMC dataset, the running
time of θ-SO is 867 s, far lower than that of other algorithms. These data demonstrate that
θ-SO not only boasts efficient running times but also exhibits relatively stable performance
across different datasets.

Meanwhile, Table 7 presents a concise overview of the SD achieved by the clustering
algorithms, organized with algorithms listed horizontally and datasets vertically for en-
hanced clarity and comparison. This summary concisely summarizes the key performance
metrics for each algorithm, including the mean, optimal, worst, and standard deviation of
the achieved distances.

Table 7. The Sum of Intra-Cluster Distances Across Multiple Datasets Using Various Algorithms.

Datasets Criteria K-Means ABC FMO PSO GA SO θ-SO

Iris

Mean 105.7290 98.1073 96.8642 96.8297 181.7896 96.9365 96.7558
Optimal 97.3259 96.6965 96.7429 96.6734 165.6193 96.6599 96.6555

Worst 128.4042 100.2745 97.1645 97.9127 198.2818 97.6482 96.9233
Std 12.3876 1.0284 0.1429 0.3834 9.3276 0.4094 0.1021

Wine

Mean 16,963.0450 16,538.4289 16,318.0643 16,323.6800 18,900.4460 16,307.2794 16,297.0141
Optimal 16,555.6794 16,348.4203 16,308.8201 16,310.9651 17,697.5615 16,297.3842 16,294.0796

Worst 23,755.0495 16,861.4818 16,331.1883 16,339.6993 20,372.7736 16,327.9950 16,300.3322
Std 1180.6942 162.3547 8.6356 9.9501 862.0817 8.6233 2.3578

Seeds

Mean 587.9040 323.8719 312.5240 312.4245 484.7676 312.2745 311.8223
Optimal 587.3186 312.5663 312.0396 312.1142 402.9336 311.8838 311.8100

Worst 588.7820 352.1443 313.2203 312.8770 533.8758 313.0029 311.8358
Std 0.7557 15.0272 0.3943 0.2213 40.0170 0.3469 0.0110

CMC

Mean 5543.4234 5660.5799 5601.3604 5583.9164 7626.8047 5553.9000 5534.8952
Optimal 5542.1821 5578.1252 5579.5982 5565.0366 7045.7836 5539.3442 5533.2193

Worst 5545.3334 5829.7017 5628.1325 5612.5687 8128.6454 5566.4741 5536.4578
Std 1.5238 89.0009 15.9879 16.5816 326.0442 10.3200 1.2966

Electronics 2024, 13, 4215 19 of 24

For the Iris dataset, the θ-SO algorithm achieved the mean, optimal and worst values of
96.75583, 96.65555, and 96.92326, respectively. Additionally, the standard deviation value of
merely 0.1 is much lower than 12.38759 for K-means and 9.32758 for GA, indicating the su-
perior performance and stability of the θ-SO algorithm compared to other methods. For the
Wine dataset, the mean, optimal, and worst values for the Wine dataset were 16,297.01413,
16,294.07960, and 16,300.33225, respectively. Although the standard deviation of 2.35784
is not as low as that for the Iris dataset, it is still lower than that of other algorithms. In
the Seeds dataset, the θ-SO algorithm achieved a worst value of 311.83579, which is lower
than the optimal results achieved by all other algorithms. Similarly, the same applies to
the CMC dataset. Based on the aforementioned results, it is evident that the proposed
algorithm surpasses the other test algorithms in four out of the examined datasets. Its ability
to discover high-quality solutions, coupled with a low standard deviation, underscores its
superiority. In simpler terms, the θ-SO algorithm consistently converges towards the global
optimum across all iterations, whereas the other algorithms risk becoming stuck in local
optimum solutions.

To validate the minimized sum of intra-cluster distances as outlined in Table 7, the
optimal centroids identified by the θ-SO algorithm for the test datasets are presented
in Tables 8–11. By systematically allocating the data points within each datasets to their
respective centroids listed in Table 8, the ideal values achieved in Table 7 are replicated.
Table 8, Table 9, Table 10, and Table 11, respectively, present the centroids for the Iris, Wine,
Seeds, and CMC datasets.

Table 8. Optimal Centroids for Iris Datasets by the θ-SO Algorithm.

Center 1 Center 2 Center 3

6.73368 5.01222 5.91910
3.06867 3.40296 2.79549
5.63239 1.47179 4.41112
2.10688 0.23369 1.40133

Table 9. Optimal Centroids for Wine Datasets by the θ-SO Algorithm.

Center 1 Center 2 Center 3

11.03000 14.01008 11.03000
5.46730 3.30646 2.32901
3.23000 3.23000 2.82646
10.78553 20.76729 10.60000
99.86794 93.06828 98.31607
0.98000 1.69196 0.98000
5.08000 3.67211 2.99557
0.13001 0.66000 0.19378
0.41000 1.35218 1.77120
3.08268 1.28000 1.28000
0.48000 0.48000 1.71000
1.29493 4.00000 1.69149

1152.27248 462.92829 692.11271

Table 10. Optimal Centroids for Seeds Datasets by the θ-SO Algorithm.

Center 1 Center 2 Center 3

11.92009 14.60652 18.76627
13.29476 14.45346 16.30508
0.85068 0.87806 0.88042
5.24514 5.56259 6.21840
2.85396 3.27796 3.74920
4.66124 2.64018 3.32926
5.11177 5.15714 6.07750

Electronics 2024, 13, 4215 20 of 24

Table 11. Optimal Centroids for CMC Datasets by the θ-SO Algorithm.

Center 1 Center 2 Center 3

24.42210 43.58460 33.54514
3.07447 4.00000 3.11408
3.50320 3.46291 3.53122
1.78841 4.53441 3.66586
0.92241 0.79996 0.81364
0.79809 0.77414 1.00000
2.28357 1.77331 2.10225
2.97353 3.51501 3.26426
0.04313 0.06957 0.03841

For instance, when we consider the Seeds datasets in Table 10, it typically contains
three cluster centers and seven features. The values of the first cluster center are 11.92009,
13.29476, 0.85068, 5.24514, 2.85396, 4.66124, and 5.11177; the values of the second cluster
center are 14.60652, 14.45346, 0.87806, 5.56259, 3.27796, 2.64018, and 5.15714; and the values
of the third cluster center are 18.76627, 16.30508, 0.88042, 6.21840, 3.74920, 3.32926, and
6.07750. In the context of validating the results, the optimal value for the SD achieved by
the θ-SO algorithm, as reported in Table 7 (specifically, 311.8100), should be replicated by
accurately assigning all data points in the Seeds datasets to their nearest centers identified
in Table 10. Failure to achieve this target value would indicate a potential discrepancy
in either the best values presented in Table 7, the optimal centroids listed in Table 10, or
both. This same verification process can be extended to any other test datasets to ensure
the accuracy and consistency of the clustering outcomes.

In general, the optimized K-means algorithm can address a variety of practical prob-
lems. For instance, in the commercial sector, it can be utilized for customer segmentation by
collecting multidimensional feature data such as purchase history, browsing behavior, age,
gender, and so on, to categorize customers into different groups, enabling enterprises to
formulate more targeted marketing strategies. In the field of natural language processing,
it can be applied to document classification and topic modeling. In the realm of image
processing, it can treat pixels in images as data points and perform clustering based on
their color, brightness, and other features.

5. Conclusions

In this paper, we present a novel optimization algorithm named θ-SO, which is
grounded in the foundations of the existing SO algorithm. The θ-SO algorithm employs a
new strategy that redefines its traditional search space by mapping it onto a polar domain.
This new mapping approach not only simplifies the architecture of the algorithm, making
it easier to implement, but also eliminates the need for cumbersome parameter tuning,
further enhancing its usability. The θ-SO algorithm underwent performance evaluation
using 28 test functions from the CEC2013 datasets. On more than two-thirds of the test
functions, θ-SO exhibits superior performance compared to other algorithms. Additionally,
our integration of the θ-SO algorithm with the K-means clustering algorithm on various test
sets showed improvement in clustering accuracy during simulation experiments. Looking
ahead, we aspire to devise groundbreaking strategies and delve deeper into the untapped
potential of fusing innovative algorithms with the K-means clustering approach, anticipat-
ing noteworthy achievements and groundbreaking outcomes from these endeavors.

Author Contributions: D.X.: contributed to the conceptualization, methodology, data curation,
formal analysis, visualization, and prepared the original draft of the writing. S.-Y.P.: involved
in validation, investigation, formal analysis, and conducted writing—review and editing. N.L.:
contributed to the methodology, resources, formal analysis, and conducted writing—review and
editing. S.-K.L.: involved in investigation, resources, formal analysis, and provided supervision.
W.-M.Z.: provided supervision, funding acquisition, and project administration. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is funded by the National Natural Science Foundation of China, No. 61932005.

Electronics 2024, 13, 4215 21 of 24

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MA Metaheuristic algorithm
EA Evolutionary algorithm
GA Genetic algorithm
EP Evolutionary programming
ES Evolutionary strategies
GP Genetic programming
DE Differential evolution
BBO Biogeography-based optimization
SI Swarm intelligence
PSO Particle swarm optimization
WOA Whale optimization algorithm
ABC Artificial bee colony
ACO Colony optimization
GWO Grey wolf optimization
FA Firefly algorithm
SOA Seagull optimization algorithm
ALO Ant lion optimizer
SSA Squirrel search algorithm
CS Cuckoo search
CSA Crow search algorithm
BA Bat algorithm
CGO Chaos game optimization
SRO Search and rescue optimization
COA Cognitive behavior optimization algorithm
AOA Archimedes optimization algorithm
FWA Fireworks algorithm
MVO Multiverse optimizer
LA Lichtenberg algorithm
PRO Poor and rich optimization
AOS Atomic orbital search
SCA Sine cosine algorithm
HMS Human mental search
SO Snake optimization
θ-SO Phase-angle-encoded snake optimization
K-means K-means clustering algorithm
SSE Sum of squared error
FMO Fish migration optimization
CMC Contraceptive Method Choice
SD Sum of intra-cluster distance
ER Error rate

References
1. Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A survey on metaheuristics for stochastic combinatorial optimization.

Nat. Comput. 2009, 8, 239–287. [CrossRef]
2. Abualigah, L.; Gandomi, A.H.; Elaziz, M.A.; Hussien, A.G.; Khasawneh, A.M.; Alshinwan, M.; Houssein, E.H. Nature-inspired

optimization algorithms for text document clustering—A comprehensive analysis. Algorithms 2020, 13, 345. [CrossRef]
3. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.F.; Wang, H.; Guo, W. An optimization model and solution algorithms for the

vehicle routing problem with a “factory-in-a-box”. IEEE Access 2020, 8, 134743–134763. [CrossRef]
4. Adetunji, K.E.; Hofsajer, I.W.; Abu-Mahfouz, A.M.; Cheng, L. A review of metaheuristic techniques for optimal integration of

electrical units in distribution networks. IEEE Access 2020, 9, 5046–5068. [CrossRef]

http://doi.org/10.1007/s11047-008-9098-4
http://dx.doi.org/10.3390/a13120345
http://dx.doi.org/10.1109/ACCESS.2020.3010176
http://dx.doi.org/10.1109/ACCESS.2020.3048438

Electronics 2024, 13, 4215 22 of 24

5. Shukla, A.K.; Tripathi, D.; Reddy, B.R.; Chandramohan, D. A study on metaheuristics approaches for gene selection in microarray
data: Algorithms, applications and open challenges. Evol. Intell. 2020, 13, 309–329. [CrossRef]

6. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence algorithms. IEEE Trans.
Ind. Inform. 2017, 14, 1004–1015. [CrossRef]

7. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. (CSUR)
2003, 35, 268–308. [CrossRef]

8. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320.
[CrossRef]

9. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications.
Eng. Appl. Artif. Intell. 2022, 114, 105075. [CrossRef]

10. Liu, L.; Fei, T.; Zhu, Z.; Wu, K.; Zhang, Y. A survey of evolutionary algorithms. In Proceedings of the 2023 4th International Conference
on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Hangzhou, China, 25–27 August 2023; pp. 22–27.

11. Zbigniew, M. Genetic algorithms+ data structures= evolution programs. Comput. Stat. 1996, 24, 372–373.
12. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
13. Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2023, 17, 1245–1256.

[CrossRef]
14. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
15. Ma, H.; Simon, D.; Siarry, P.; Yang, Z.; Fei, M. Biogeography-based optimization: A 10-year review. IEEE Trans. Emerg. Top.

Comput. Intell. 2017, 1, 391–407. [CrossRef]
16. Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research.

Eng. Appl. Artif. Intell. 2020, 90, 103479.
17. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in

optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]
18. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In Nature-Inspired Computing and Optimization: Theory and

Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 475–494.
19. Yang, X.S.; Deb, S.; Zhao, Y.X.; Fong, S.; He, X. Swarm intelligence: Past, present and future. Soft Comput. 2018, 22, 5923–5933.

[CrossRef]
20. Cao, L.; Cai, Y.; Yue, Y. Swarm intelligence-based performance optimization for mobile wireless sensor networks: Survey,

challenges, and future directions. IEEE Access 2019, 7, 161524–161553. [CrossRef]
21. Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 years of particle swarm optimization: Flourishing voyage of two

decades. Arch. Comput. Methods Eng. 2023, 30, 1663–1725. [CrossRef]
22. Fidanova, S.; Fidanova, S. Ant colony optimization. In Ant Colony Optimization and Applications; Springer: Berlin/Heidelberg,

Germany, 2021; pp. 3–8.
23. Kaya, E.; Gorkemli, B.; Akay, B.; Karaboga, D. A review on the studies employing artificial bee colony algorithm to solve

combinatorial optimization problems. Eng. Appl. Artif. Intell. 2022, 115, 105311. [CrossRef]
24. Almufti, S.M.; Ahmad, H.B.; Marqas, R.B.; Asaad, R.R. Grey wolf optimizer: Overview, modifications and applications. Int. Res.

J. Sci. Technol. Educ. Manag. 2021, 1, 44–56.
25. Rana, N.; Latiff, M.S.A.; Abdulhamid, S.M.; Chiroma, H. Whale optimization algorithm: A systematic review of contemporary

applications, modifications and developments. Neural Comput. Appl. 2020, 32, 16245–16277. [CrossRef]
26. Kumar, V.; Kumar, D. A systematic review on firefly algorithm: Past, present, and future. Arch. Comput. Methods Eng. 2021, 28,

3269–3291. [CrossRef]
27. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering

problems. Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]
28. Abualigah, L.; Shehab, M.; Alshinwan, M.; Mirjalili, S.; Elaziz, M.A. Ant lion optimizer: A comprehensive survey of its variants

and applications. Arch. Comput. Methods Eng. 2021, 28, 1397–1416. [CrossRef]
29. Dhaini, M.; Mansour, N. Squirrel search algorithm for portfolio optimization. Expert Syst. Appl. 2021, 178, 114968. [CrossRef]
30. Guerrero-Luis, M.; Valdez, F.; Castillo, O. A review on the cuckoo search algorithm. In Fuzzy Logic Hybrid Extensions of Neural and

Optimization Algorithms: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 113–124.
31. Hussien, A.G.; Amin, M.; Wang, M.; Liang, G.; Alsanad, A.; Gumaei, A.; Chen, H. Crow search algorithm: Theory, recent advances,

and applications. IEEE Access 2020, 8, 173548–173565. [CrossRef]
32. Agarwal, T.; Kumar, V. A systematic review on bat algorithm: Theoretical foundation, variants, and applications. Arch. Comput.

Methods Eng. 2021, 29, 2707–2736. [CrossRef]
33. Guo, B.; Zhuang, Z.; Pan, J.S.; Chu, S.C. Optimal design and simulation for PID controller using fractional-order fish migration

optimization algorithm. IEEE Access 2021, 9, 8808–8819. [CrossRef]
34. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
35. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

http://dx.doi.org/10.1007/s12065-019-00306-6
http://dx.doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.knosys.2022.108320
http://dx.doi.org/10.1016/j.engappai.2022.105075
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s12065-023-00822-6
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TETCI.2017.2739124
http://dx.doi.org/10.1007/s00500-020-05527-x
http://dx.doi.org/10.1007/s00500-017-2810-5
http://dx.doi.org/10.1109/ACCESS.2019.2951370
http://dx.doi.org/10.1007/s11831-022-09849-x
http://dx.doi.org/10.1016/j.engappai.2022.105311
http://dx.doi.org/10.1007/s00521-020-04849-z
http://dx.doi.org/10.1007/s11831-020-09498-y
http://dx.doi.org/10.1016/j.knosys.2018.11.024
http://dx.doi.org/10.1007/s11831-020-09420-6
http://dx.doi.org/10.1016/j.eswa.2021.114968
http://dx.doi.org/10.1109/ACCESS.2020.3024108
http://dx.doi.org/10.1007/s11831-021-09673-9
http://dx.doi.org/10.1109/ACCESS.2021.3049421

Electronics 2024, 13, 4215 23 of 24

36. Talatahari, S.; Azizi, M. Chaos game optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004. [CrossRef]
37. Anuradha, D.; Subramani, N.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Rajagopal, M. Chaotic search-and-rescue-optimization-based

multi-hop data transmission protocol for underwater wireless sensor networks. Sensors 2022, 22, 2867. [CrossRef] [PubMed]
38. Li, M.; Zhao, H.; Weng, X.; Han, T. Cognitive behavior optimization algorithm for solving optimization problems. Appl. Soft Comput.

2016, 39, 199–222. [CrossRef]
39. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic

algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
40. Zare, M.; Narimani, M.R.; Malekpour, M.; Azizipanah-Abarghooee, R.; Terzija, V. Reserve constrained dynamic economic dispatch in

multi-area power systems: An improved fireworks algorithm. Int. J. Electr. Power Energy Syst. 2021, 126, 106579. [CrossRef]
41. Ghannadi, P.; Kourehli, S.S. Multiverse optimizer for structural damage detection: Numerical study and experimental validation.

Struct. Des. Tall Spec. Build. 2020, 29, e1777. [CrossRef]
42. Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha Jr, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid

physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [CrossRef]
43. Moosavi, S.H.S.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng.

Appl. Artif. Intell. 2019, 86, 165–181. [CrossRef]
44. Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [CrossRef]
45. Abualigah, L.; Diabat, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608.

[CrossRef]
46. Mousavirad, S.J.; Ebrahimpour-Komleh, H. Human mental search: A new population-based metaheuristic optimization algorithm.

Appl. Intell. 2017, 47, 850–887. [CrossRef]
47. Ghazal, T.M. Performances of k-means clustering algorithm with different distance metrics. Intell. Autom. Soft Comput. 2021,

30, 735–742. [CrossRef]
48. Zou, M.; Zeng, Q.; Zhang, X. Weakly-supervised Action Learning in Procedural Task Videos via Process Knowledge Decomposi-

tion. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 5575–5588. [CrossRef]
49. Benabdellah, A.C.; Benghabrit, A.; Bouhaddou, I. A survey of clustering algorithms for an industrial context. Procedia Comput.

Sci. 2019, 148, 291–302. [CrossRef]
50. Zhou, Y.; Wu, H.; Luo, Q.; Abdel-Baset, M. Automatic data clustering using nature-inspired symbiotic organism search algorithm.

Knowl.-Based Syst. 2019, 163, 546–557. [CrossRef]
51. Singh, S.; Srivastava, S. Review of clustering techniques in control system: Review of clustering techniques in control system.

Procedia Comput. Sci. 2020, 173, 272–280. [CrossRef]
52. Dafir, Z.; Lamari, Y.; Slaoui, S.C. A survey on parallel clustering algorithms for big data. Artif. Intell. Rev. 2021, 54, 2411–2443.

[CrossRef]
53. Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A survey of clustering algorithms for

big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [CrossRef]
54. Tian, K.; Zhou, S.; Guan, J. Deepcluster: A general clustering framework based on deep learning. In Machine Learning and Knowledge

Discovery in Databases: European Conference (ECML PKDD 2017); Springer: Berlin/Heidelberg, Germany, 2017; pp. 809–825.
55. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
56. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics

2020, 9, 1295. [CrossRef]
57. Arora, P.; Varshney, S.; et al. Analysis of k-means and k-medoids algorithm for big data. Procedia Comput. Sci. 2016, 78, 507–512.

[CrossRef]
58. Daoudi, S.; Anouar Zouaoui, C.M.; El-Mezouar, M.C.; Taleb, N. Parallelization of the K-Means++ Clustering Algorithm. Ing. Syst.

d’Inf. 2021, 26, 59–66. [CrossRef]
59. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review,

variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [CrossRef]
60. Miraftabzadeh, S.M.; Colombo, C.G.; Longo, M.; Foiadelli, F. K-means and alternative clustering methods in modern power

systems. IEEE Access 2023, 11, 119596–119633. [CrossRef]
61. Nie, F.; Li, Z.; Wang, R.; Li, X. An effective and efficient algorithm for K-means clustering with new formulation. IEEE Trans.

Knowl. Data Eng. 2022, 35, 3433–3443. [CrossRef]
62. Wan, B.; Huang, W.; Pierre, B.; Cheng, Y.; Zhou, S. K-Means algorithm based on multi-feature-induced order. Granul. Comput.

2024, 9, 45. [CrossRef]
63. Yang, X.; Zhao, W.; Xu, Y.; Wang, C.D.; Li, B.; Nie, F. Sparse K-means clustering algorithm with anchor graph regularization.

Inf. Sci. 2024, 667, 120504. [CrossRef]
64. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey

of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects.
Eng. Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

65. Li, Y.; Tang, B.; Jiao, S.; Su, Q. Snake optimization-based variable-step multiscale single threshold slope entropy for complexity
analysis of signals. IEEE Trans. Instrum. Meas. 2023, 72, 6505313. [CrossRef]

http://dx.doi.org/10.1007/s10462-020-09867-w
http://dx.doi.org/10.3390/s22082867
http://www.ncbi.nlm.nih.gov/pubmed/35458850
http://dx.doi.org/10.1016/j.asoc.2015.11.015
http://dx.doi.org/10.1007/s10489-020-01893-z
http://dx.doi.org/10.1016/j.ijepes.2020.106579
http://dx.doi.org/10.1002/tal.1777
http://dx.doi.org/10.1016/j.eswa.2020.114522
http://dx.doi.org/10.1016/j.engappai.2019.08.025
http://dx.doi.org/10.1016/j.apm.2020.12.021
http://dx.doi.org/10.1007/s10462-020-09909-3
http://dx.doi.org/10.1007/s10489-017-0903-6
http://dx.doi.org/10.32604/iasc.2021.019067
http://dx.doi.org/10.1109/TCSVT.2024.3358547
http://dx.doi.org/10.1016/j.procs.2019.01.022
http://dx.doi.org/10.1016/j.knosys.2018.09.013
http://dx.doi.org/10.1016/j.procs.2020.06.032
http://dx.doi.org/10.1007/s10462-020-09918-2
http://dx.doi.org/10.1109/TETC.2014.2330519
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.3390/electronics9081295
http://dx.doi.org/10.1016/j.procs.2016.02.095
http://dx.doi.org/10.18280/isi.260106
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1109/ACCESS.2023.3327640
http://dx.doi.org/10.1109/TKDE.2022.3155450
http://dx.doi.org/10.1007/s41066-024-00470-w
http://dx.doi.org/10.1016/j.ins.2024.120504
http://dx.doi.org/10.1016/j.engappai.2022.104743
http://dx.doi.org/10.1109/TIM.2023.3317908

Electronics 2024, 13, 4215 24 of 24

66. Zheng, W.; Pang, S.; Liu, N.; Chai, Q.; Xu, L. A compact snake optimization algorithm in the application of WKNN fingerprint
localization. Sensors 2023, 23, 6282. [CrossRef]

67. Yao, L.; Yuan, P.; Tsai, C.Y.; Zhang, T.; Lu, Y.; Ding, S. ESO: An enhanced snake optimizer for real-world engineering problems.
Expert Syst. Appl. 2023, 230, 120594. [CrossRef]

68. Yan, C.; Razmjooy, N. Optimal lung cancer detection based on CNN optimized and improved Snake optimization algorithm.
Biomed. Signal Process. Control 2023, 86, 105319. [CrossRef]

69. Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022,
29, 2531–2561. [CrossRef]

70. Ahmadyfard, A.; Modares, H. Combining PSO and k-means to enhance data clustering. In Proceedings of the 2008 International
Symposium on Telecommunications, Tehran, Iran, 27–28 August 2008; pp. 688–691.

71. Liu, N.; Liu, S.; Chai, Q.W.; Zheng, W.M. A method for analyzing Stackelberg attack–defense game model in 5G by tCPSO. Expert
Syst. Appl. 2023, 228, 120386. [CrossRef]

72. Kapil, S.; Chawla, M.; Ansari, M.D. On K-means data clustering algorithm with genetic algorithm. In Proceedings of the 2016
Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 22–24 December 2016;
pp. 202–206.

73. Reddy, T.N.; Supreethi, K. Optimization of K-means algorithm: Ant colony optimization. In Proceedings of the 2017 International
Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 18–19 July 2017; pp. 530–535.

74. Baziar, A.; Kavousi-Fard, A. Considering uncertainty in the optimal energy management of renewable micro-grids including
storage devices. Renew. Energy 2013, 59, 158–166. [CrossRef]

75. Hosseinnezhad, V.; Babaei, E. Economic load dispatch using θ-PSO. Int. J. Electr. Power Energy Syst. 2013, 49, 160–169. [CrossRef]
76. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef]
77. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
78. Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special

Session on Real-Parameter Optimization; Technical Report 201212; Computational Intelligence Laboratory, Zhengzhou University:
Zhengzhou, China; Nanyang Technological University: Singapore, 2013; pp. 281–295.

79. Ni, K. A Clustering Algorithm Combining Fuzzy C-Means and Artificial Bee Colony Algorithm. Int. J. Innov. Comput. Inf. Control
2024, 20, 297–311.

80. Cui, R. An Improved Fuzzy C-Means Clustering Algorithm Considering Data Density Distribution. In Proceedings of the 2024
IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT), Jilin, China, 26–28 April 2024;
pp. 1332–1336.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s23146282
http://dx.doi.org/10.1016/j.eswa.2023.120594
http://dx.doi.org/10.1016/j.bspc.2023.105319
http://dx.doi.org/10.1007/s11831-021-09694-4
http://dx.doi.org/10.1016/j.eswa.2023.120386
http://dx.doi.org/10.1016/j.renene.2013.03.026
http://dx.doi.org/10.1016/j.ijepes.2013.01.002
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.1016/j.ins.2012.08.023

	Introduction
	Related Work
	K-Means Clustering Algorithm
	Snake Optimization Algorithm
	Heuristics Algorithms and K-Means

	Phase-Angle-Encoded Snake Optimization Algorithm (-.4-SO) for Clustering
	Phase-Angle-Encoded Snake Optimization Algorithm
	K-Means Clustering Algorithm Based on -SO

	Results and Discussion
	Performance Test of -SO
	Application of -SO to Clustering

	Conclusions
	References

