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Abstract: The proliferation of Internet of Things (IoT) devices has introduced significant security
challenges, including weak authentication, insufficient data protection, and firmware vulnerabilities.
To address these issues, we propose a linguistic secret sharing scheme tailored for IoT applications.
This scheme leverages neural networks to embed private data within texts transmitted by IoT
devices, using an ambiguous token selection algorithm that maintains the textual integrity of the
cover messages. Our approach eliminates the need to share additional information for accurate
data extraction while also enhancing security through a secret sharing mechanism. Experimental
results demonstrate that the proposed scheme achieves approximately 50% accuracy in detecting
steganographic text across two steganalysis networks. Additionally, the generated steganographic
text preserves the semantic information of the cover text, evidenced by a BERT score of 0.948. This
indicates that the proposed scheme performs well in terms of security.

Keywords: ambiguous token selection; Galois field; linguistic secret sharing; language modeling

1. Introduction

Steganography conceals a secret message in cover media. A classic scenario illustrating
linguistic steganography is the “Prisoner’s problem”. Consider that Alice and Bob were two
inmates in a prison, planning to escape. To facilitate their plan, they decided to exchange
secret messages via short notes. However, all message exchanges must be checked by Eve.
If Eve successfully detects any concealed message, she retains the authority to terminate
any further communication. In this scenario, Alice employed an embedding rule to conceal
the secret message within the cover note, which was then sent to Bob under the surveillance
of Eve. Upon receiving the note, Bob employed an extraction rule to retrieve the concealed
message from the note.

In the rapidly evolving landscape of the Internet of Things (IoT), the surge of connected
devices brings new security challenges. Ensuring secure and confidential data transmission
is crucial in this context. Traditional encryption methods may be unsuitable due to the
limited computational and storage capacities of IoT devices. Thus, steganography emerges
as a potential alternative for protecting information. With the IoT now deeply embedded
in everyday life, securing user privacy, data integrity, and infrastructure is essential [1,2].
Despite advances in the IoT, security and privacy concerns remain major hurdles. Inno-
vative solutions like steganography are vital for building robust security frameworks and
supporting the IoT’s sustainable growth.

As time has advanced, except for text, various cover media have been employed
in steganography including images [3,4], audio [5], 3D mesh models [6], and videos [7].
However, due to the development of deep neural networks, linguistic steganography
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attracts much attention again [8–27]. Linguistic steganography can be primarily catego-
rized into two types based on whether the steganographic text maintains the semantics
of the cover text, namely generation-based linguistic steganography [8–19] (GLS) and
modification-based linguistic steganography [20–27] (MLS).

GLS primarily embeds secret bits during the generation of high-quality steganographic
text, leveraging neural network-based language models such as RNNs [8], LSTM [9–11],
auto-encoders [12], and GANs [13]. This flexibility in word selection for each position
based on secret data is especially beneficial in the IoT context, where devices generate
large volumes of text that can serve as cover messages. However, this mechanism results
in significant differences in features between the cover text, generated through semantic
predictions from the language model, and the steganographic text. To address these dis-
crepancies, recent advancements have focused on enhancing both the security and quality
of steganographic text. Zhou et al. [14] utilized a GAN to overcome issues such as exposure
bias and embedding deviation, which can compromise the security of steganography. This
scheme dynamically adjusts probability distributions to maintain diversity and embeds in-
formation during the model’s training process to enhance security. Yan et al. [15] proposed
a secure token selection principle to further improve security and resolve ambiguity, which
ensures the sum of selected token probabilities correlates with statistical imperceptibility.
Similarly, Zhang et al. [16] proposed an adaptive dynamic grouping scheme to embed
secret information by grouping tokens based on their probabilities from a language model
recursively, addressing the statistical differences between the probability distributions of
steganographic text and natural text. To maintain the semantic expression of the generated
steganographic text, some schemes [17–19] try to incorporate semantic constraints. Yang
et al. [17] utilized context as the constraint, aiming to preserve a strong semantic correlation
between the steganographic text and the cover text. Wang et al. [18] encoded secret data
and refined the generated steganographic text through multiple rounds, improving the
text’s quality and reducing the negative effects of steganographic encoding. Wang et al. [19]
enhanced the controllability of steganography generation by analyzing the discourse fea-
tures of the cover, which serve as the inputs to the steganography generator. However,
since these GLS schemes operate at the word level, they can still easily lead to significant
distortion of the local semantics. Furthermore, state-of-the-art steganalysis models use deep
neural networks to extract multidimensional statistical features, enhancing their ability to
detect steganographic text. These models integrate temporal features derived from spatial
features [28] or continuous text sequences [29], improving their effectiveness in detecting
steganographic text. This significantly reduces the inherent embedding capacity of GLS.

MLS primarily embeds secret bits by modifying part of the cover text at the word [20–22],
phrase [23,24], and sentence levels [25–27]. Word- or phrase-level MLS schemes generally
utilize synonym substitutions to embed the secret. For instance, Chang and Clark [20]
employed the Google n-gram corpus to verify the contextual applicability of synonyms,
ensuring more accurate and contextually appropriate substitutions. Xiang et al. [21] intro-
duced a method that combines arithmetic coding with synonym substitution, analyzing
synonyms based on their relative frequencies and quantizing them into a binary sequence.
This sequence is then compressed using adaptive binary arithmetic coding to create space
for additional data. The compressed data, along with the secret data, are embedded into the
text using synonym substitutions. Dai and Cai [22] proposed a steganographic technique
using a patient Huffman algorithm, which generates text by combining ciphertext-driven
token selection with language model-based sampling.

At the phrase level, Wilson and Ker [23] introduced distortion measures specific to lin-
guistic steganography, which helps determine the optimal embedding strategy, balancing
text quality with embedding capacity. Qiang et al. [24] emphasized the importance of pre-
serving meaning by using paraphrase modeling to generate suitable substitute candidates.

At the sentence level, MLS schemes typically convert sentences into alternative forms
that maintain the original meaning, using techniques such as syntactic analysis [25] and
sentence translation [26,27]. For instance, Xiang et al. [25] developed a syntax-controlled
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paraphrase generation model to automatically modify the expression of cover text, using
a syntactic bins coding strategy for embedding secret information within the generated
syntactic space. Yang et al. [26] pivoted the text between two languages and embedded
secret data using a semantic-aware encoding strategy, which modifies the expression of the
text while maintaining its original meaning, thereby allowing for a larger payload. Ding
et al. [27] introduced a scheme that integrates semantic fusion and language model reference
units into a neural machine translation model. This approach generates translations that
embed secret messages while preserving the text’s semantics and context. Additionally,
they implemented a new encoding scheme that combines arithmetic coding with a waiting
mechanism, enhancing embedding capacity without compromising semantic consistency.

In the context of the IoT, where device-generated texts often follow specific structures
or patterns, MLS can be used to subtly modify these texts to embed secret data. However,
these MLS schemes suffer from a low embedding capacity.

In summary, GLS schemes offer impressive embedding capacity but may introduce
semantic ambiguity and increase suspicion by steganalysis. While MLS schemes success-
fully maintain the overall semantics, their limited embedding capacity poses a significant
challenge. Moreover, previous linguistic steganography schemes typically involve encrypt-
ing the secret data, recording additional information for recovery, and managing the secret
key. Specifically, in GLS, to ensure that the receiver generates the same text as the sender,
the sender must transmit the latent space vectors used to initialize the model, ensuring
consistent text output. Furthermore, both GLS and MLS require the encryption of secret
data, necessitating the transmission of a secret key for decryption, which can be impractical
in certain applications.

In order to solve the above problems, we propose a novel linguistic secret sharing
scheme for IoT security. In our scheme, only the most ambiguous word in each sentence is
substituted to embed secret data, thereby preserving the semantic integrity of each sentence.
Moreover, the receiver can also easily identify this specific word during the extraction
process. Additionally, we employ a secret sharing mechanism to encrypt secret data.
Instead of relying on a secret key, secret sharing distributes the secret into multiple shares,
ensuring that a single share alone cannot restore the original secret. Our contributions are
summarized as follows:

1. We propose a token selection algorithm that enables both the sender and the receiver
to identify the same most ambiguous word in each sentence.

2. Data embedding and extraction can be performed without the need to share any
secret key.

3. The proposed scheme maintains the semantic coherence of the steganographic text.
4. Secret sharing over a Galois field is first introduced to linguistic steganography.

2. Preliminary Work

We first review the concept of (k, n)-threshold secret sharing, which serves as the
foundational framework of the proposed scheme for ensuring security. Then, a masked
language model called “RoBERTa” is introduced, which will be modified to embed data in
our scheme.

2.1. (k, n)-Threshold Secret Sharing over GF(2m)

In 1979, Shamir [30] proposed a cryptographic algorithm known as (k, n)-threshold
secret sharing, which improves security by distributing the secret to multiple participants.
The concept of (k, n)-threshold secret sharing is to divide a secret into n shares and distribute
to n participants. The original secret can only be reconstructed when at least k shares are
available in recombination.

The fundamental operation of (k, n)-threshold secret sharing over GF(2m) involves the
construction of a set of polynomial equations over a Galois field, provided x1, x2, . . . , xn ∈
GF(2m) denote n distinct binary polynomials. Given a secret s ∈ GF(2m), we can construct
a k − 1 degree polynomial as follows:
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f (x) =
[
s ⊕ (a1 ⊙ x)⊕

(
a2⊙x2

)
⊕ . . . ⊕

(
ak−1 ⊙ xk−1

)]
mod p(x), (1)

where “⊕” represents the exclusive or operation; “⊙” represents the Galois field multiplica-
tion in GF(2m), where each element is an m-bit binary polynomial, and the multiplication
follows the rules of the Galois field; and {a1, a2, . . . , ak−1} ∈ GF(2m) and p(x) represent a
group of random binary polynomials and an irreducible polynomial, respectively. After
secret share generation, each participant holds a share (xi, f (xi)), where xi is the owner’s
private key and f (xi) is the corresponding secret share.

When at least k participants contribute their private keys and secret shares, the coeffi-
cients a1, a2, . . . ak−1 and secret s can be restored via the Lagrange interpolating polynomial.

f (x) =
k

∑
q=1

{ f (xq)⊙ ∏
1≤w≤k

w ̸=q

[
(x ⊕ xw)⊙

(
xq ⊕ xw

)−1
]
} mod p(x). (2)

s =
k

∑
q=1

{ f (xq)⊙ ∏
1≤w≤k

w ̸=q

[
xw ⊙

(
xq ⊕ xw

)−1
]
} mod p(x), (3)

where (·)−1 represents the multiplicative inverse in the Galois field. For any element
a ∈ GF(2m), the inverse is an element b ∈ GF(2m) such that a ⊙ b = 1 under the field’s
multiplication. When at least k participants contribute their private keys and secret shares,
the coefficients a1, a2, . . . ak−1 and secret s can be restored via the Lagrange interpolating
polynomial.

To provide a clearer understanding of the proposed scheme, we present a mathematical
example. Assume that k = 2, n = 3; the k − 1 degree polynomial can be constructed by

f (xi) = s ⊕ (a1 ⊙ xi)mod p(x). (4)

Let s = 111, a1 = 101, x1 = 001, x2 = 010, x3 = 011, and p(x) = x3 + x + 1. Three
shares can be calculated as

f (x1) = s ⊕ (a1 ⊙ x1)mod p(x) = (111 ⊕ 101 ⊙ 001) mod 1011 = 010, (5)

f (x2) = s ⊕ (a1 ⊙ x2)mod p(x) = (111 ⊕ 101 ⊙ 010) mod 1011 = 110, (6)

f (x3) = s ⊕ (a1 ⊙ x3)mod p(x) = (111 ⊕ 101 ⊙ 011) mod 1011 = 011. (7)

By collecting any two out of three shares, s can be recovered by Equation (3) as

s =
{

f (x1)⊙
[

x2 ⊙ (x1 ⊕ x2)
−1

]
⊕ f (x2)⊙

[
x1 ⊙ (x2 ⊕ x1)

−1
]}

= (010 ⊙ (010 ⊙ 110)⊕ 110 ⊙ (001 ⊙ 110)) = 101 ⊕ 010 = 111.
(8)

Similarly, a1 can also be recovered by Equation (2).

2.2. RoBERTa-Masked Language Modeling

RoBERTa (Robustly Optimized Bidirectional Encoder Representations from Trans-
formers Pre-training Approach) [31] is an NLP model that is built upon a variant of the
transformer architecture [32] and is specifically designed to handle language comprehen-
sion tasks. Its layout is depicted in Figure 1. The key objective of the RoBERTa model is to
improve the pre-training process in order to effectively leverage large-scale unlabeled text
data for model training. Compared to the earlier BERT [33], RoBERTa incorporates a larger
model size and a longer training time while introducing several technical improvements
such as dynamic masks, continuous text paragraph training, and larger batch sizes.
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Masked language modeling is the fundamental task of RoBERTa, aiming to predict a
masked word based on the context of surrounding words. Tokenization is an initial step,
where a text sequence is split into tokens. An input sentence containing one or more mask
tokens is fed into the model, which estimates the probability distribution of each mask
token across the entire vocabulary. The predicted results can then be used to replace the
masked tokens for data embedding.

3. Proposed Linguistic Secret Sharing

Consider a scenario in which a company produces advanced equipment that is re-
stricted for use in certain areas or by specific companies. This equipment has an associated
secret code to activate it. The equipment is delivered by a logistics company, while the
secret code is distributed among multiple participants with a secret sharing scheme to
ensure authorized usage of the equipment.

As illustrated in Figure 2, during the share generation stage, the secret code is trans-
formed into n distinct shares using a polynomial secret sharing technique. These shares
are then concealed within the regular messages intended for the participants with an open-
source pre-trained model. These steganographic messages are then transmitted over the
IoT devices of the participants.

In the secret recovery stage, the system enables any k authorized personnel (where
k < n) to collaboratively extract the activation code of the equipment. By applying the same
token selection principle and data embedding rule, participants can extract the secret shares
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from the messages on their own IoT devices and combine them back into the activation
code. This mechanism ensures authorized usage of the protected equipment by preventing
unauthorized personnel or an insufficient number of participants from activating it.
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3.1. Text Share Generation

Theoretically, the proposed scheme can employ any type of text as its carrier and the
three carrier texts can be completely different in content. However, in our case, we choose
to utilize texts generated by deep learning-based models. By utilizing generated texts, their
uniqueness can prevent attackers from comparing the texts to existing content on social
media or the Internet in order to decipher the secret. Additionally, the generated texts
offer greater control to tailor the contents according to the user’s requirements. Users can
generate texts suitable for linguistic secret sharing by providing appropriate prompts. For
implementing the text generation stage, GPT-4 [34] is applied as the text generator. It is
worth mentioning that we do not specifically address grammar or syntax, so the generated
text is used directly without modification.

3.2. Token Selection Algorithm and Data Embedding Rule

In the proposed scheme, an ambiguous token is selected and masked for each sentence
first. The masked sentence is fed into a token predictor, which gives the prediction results
for each masked token. Finally, the masked token is replaced with one of the prediction
results according to the data embedding rule.

To select the target token, assume a sentence consists of l tokens denoted as T =
(t1, t2, . . . , tl). Each token ti can be masked individually and predicted using masked
language modeling. For a token belonging to the vocabulary pool V , the initial candi-
date pool for prediction is denoted as

[
c1, c2, . . . , c|V|

]
with corresponding probabilities[

p1, p2, . . . , p|V|
]
, where ∑

|V|
j=1 pj = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

Dt = ∑m−1
j=1

(
pσ(j) − pσ(j+1)

)
, (9)
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where pσ(j) represents the j-th greatest prediction probability. A lower Dt value indicates
that the top m prediction probabilities for this token are close together, making it harder for
the model to confidently predict the token. Altering this token does not significantly affect
the overall semantics of the sentence. The Algorithm 1 for ambiguous token selection is
given as follows:

Algorithm 1: Ambiguous Token Selection

Input: A sentence T = (t1, t2, . . . , tl).
Load: Token predictor P .

Output: ambiguous token
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Token predictor 𝒫. 

ambiguous token 𝓉. 

for 𝑖 = 1, 2, … , 𝑙 do 

𝒕𝒊 = < mask > 

𝑇′ = (𝑡1, 𝑡2, … , 𝒕𝒊, … 𝑡𝑙) 
[𝑝1, 𝑝2, … , 𝑝|𝑚|] = 𝒫(𝒯′) 

compute 𝒟𝑡𝑖
. 

end for 
𝑐 = argmin

𝑖
(𝒟𝑡𝑖

) 

return 𝓉 = 𝑡𝑐 

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the 
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four; the predictor can provide the top four prediction results with the highest probability 

for each masked token. By masking each token individually and predicting, we can obtain 

the prediction results along with their respective probabilities. After calculating the prob-

ability difference for each token’s prediction results, we select the token with the lowest 

value. In this case, “very” is selected as the ambiguous token because it has the lowest 

probability difference indicator compared to the other tokens. The top four prediction 

candidates for this token are then mapped in descending order of probability to represent 

the secret data (i.e., “very”: 00; “so”: 01; “really”: 10; and “extremely”: 11). Therefore, 

log2 4 = 2 bits of data can be embedded by replacing “very” with one of the top four can-

didates. 

.
1: for i = 1, 2, . . . , l do

ti =< mask >
T′ = (t1, t2, . . . , ti, . . . tl)[

p1, p2, . . . , p|m|
]
= P(T ′ )

compute Dti .
2: end for

c = argmin
i
(Dti )

3: return
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This algorithm ensures that the token with the highest prediction ambiguity (i.e., the
smallest Dt) is selected for data embedding. Since this token is the most difficult for the
model to predict, replacing it with one of the top m candidates will introduce minimal
semantic distortion, thus allowing for the embedding of log2 m bits of secret data.
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with one of its top m prediction candidates. To illustrate
the token selection algorithm and data embedding rule, an example is given in Figure 3.
Suppose the cover text is “I am very happy.” and m is set to four; the predictor can provide
the top four prediction results with the highest probability for each masked token. By
masking each token individually and predicting, we can obtain the prediction results along
with their respective probabilities. After calculating the probability difference for each
token’s prediction results, we select the token with the lowest value. In this case, “very” is
selected as the ambiguous token because it has the lowest probability difference indicator
compared to the other tokens. The top four prediction candidates for this token are then
mapped in descending order of probability to represent the secret data (i.e., “very”: 00; “so”:
01; “really”: 10; and “extremely”: 11). Therefore, log2 4 = 2 bits of data can be embedded
by replacing “very” with one of the top four candidates.
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Note that when applying the token selection and data embedding rule to a text,
as shown in Figure 4, the modified sentence is considered as the preceding context for
the current sentence. This ensures that the embedding process maintains coherence and
consistency throughout the entire text.
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3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over
GF(2m) to distribute the secret data into secret shares and embeds the shares into dis-
tinct generated texts correspondingly using the token selection algorithm and the data
embedding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments S = {
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k.
Step 3: Generate n texts T1, T2, . . . , Tn using a text generator with proper prompts.
Step 4: Embed the n secret shares into the n texts correspondingly using the token

selection algorithm and the data embedding rule to generate n text shares T′
1, T′

2, . . . , T′
n.

3.4. Secret Data Recovery

By collecting any k out of n text shares, a combiner can restore the secret data. The
procedures are summarized as follows:

Step 1: Collect any k text shares.
Step 2: Split each text into sentences and identify a marked token for each sentence

using the token selection algorithm.
Step 3: Retrieve and collect the embedded secret bits from marked tokens according to

the data embedding rule.
Step 4: Combine k secret shares to recover the original secret data using Equations (2)

and (3).

4. Experimental Results

In this section, we introduce our experimental settings, give a demonstrative example,
and evaluate the performance of our scheme in terms of sentiment and semantic analyses.
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4.1. Experimental Setting

Model: Our experiments make use of the GPT-4 networks, a substantial language
model developed by OpenAI for the purpose of generating cover texts. GPT-4 is a state-of-
the-art model with a remarkable capacity for comprehending and producing both natural
language and code. Furthermore, we employ RoBERTa as our token predictor in this study.

Implementation: Our experiments are implemented using Python 3.8 and rely on
PyTorch 1.7.1 as the foundational framework. Acceleration is achieved through the uti-
lization of Nvidia 3090 and CUDA 11.2. The secret messages applied are binary pseudo-
random bitstreams.

4.2. Applicability Demonstration

An example of (2, 3)-linguistic secret sharing is provided. Suppose the original secret
data are an 8 bit binary random bitstream “11010011”; after secret sharing, three shared
bitstreams “00100100”, “11100101”, and “01001010” are generated. Three cover texts
and their corresponding text shares are shown in Figures 5a and 5b, respectively. It is
noteworthy that each sentence within the share text is capable of being embedded as
4 bit shared data when the number of candidate pools of each selected token is set to
16. During the secret recovery process, the ambiguous token within each sentence can
be easily identified through the proposed token selection algorithm. Subsequently, the
shared data can be extracted according to the order of selected tokens in the candidate
pool. Following this step, any two out of three shared data can be combined to recover the
original secret bitstream.
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4.3. Performance Analysis

We evaluate the performance of steganographic text using sentiment and semantic
analyses. The sentiment of a text is determined by its emotional nature, where “positive”
refers to an optimistic or favorable emotion, while “negative” refers to a pessimistic or
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unfavorable emotion. The sentiment of a text can be assessed using a pre-trained BERT-
based sentiment classifier [33]. In our experiments, text share 1 (474 words) and text
share 2 (248 words) are generated from texts classified with positive (P: 99.84%) and
negative (N: 96.54%) emotions, respectively. Two strategies are used to segment the text
into sentences; strategy 1 segments the text with periods, while strategy 2 segments the text
with punctuation marks, including commas and periods. Thus, the number of resulting
sentences for strategy 1 is fewer than that for strategy 2. Data embedding is executed
by selecting only one word to replace within each sentence. As shown in Table 1, the
steganographic texts generated with different m values successfully preserve the sentiment
classification results (CRs) of the cover text.

Table 1. Sentiment classification.

Top m/CR
Text Share 1 (P: 99.84%) Text Share 2 (N: 96.54%)

Strategy 1 Strategy 2 Strategy 1 Strategy 2

8 P: 99.76% P: 99.26% N: 95.52% N: 90.86%
16 P: 99.78% P: 99.54% N: 95.45% N: 87.41%
32 P: 99.71% P: 99.81% N: 97.35% N: 96.45%
64 P: 99.75% P: 99.59% N: 96.16% N: 96.39%

128 P: 99.85% P: 99.42% N: 96.76% N: 99.25%

To validate the preservation of semantic fidelity between the cover text and modified
text, we employ BERTScore [35] to analyze the texts. BERTScore captures the deep semantic
representations of both the cover text and the modified text. We then use cosine similarity
to compare these representations, ensuring that the intrinsic meanings remain consistent
between the two texts. As shown in Table 2, the modified text effectively maintains the
semantic essence of the cover text.

Table 2. Semantic similarity.

Top m/CS
Text Share 1 Text Share 2

Strategy 1 Strategy 2 Strategy 1 Strategy 1

8 0.954 0.935 0.963 0.928
16 0.954 0.935 0.962 0.935
32 0.952 0.933 0.960 0.931
64 0.953 0.934 0.959 0.933

128 0.953 0.932 0.961 0.932

In summary, the modified text generated by the proposed scheme successfully retains
the information from the cover text, as only one ambiguous word is replaced in each
sentence. Although the text produced using segment strategy 2 exhibits slightly diminished
quality compared to that generated through segment strategy 1, this trade-off yields a
higher embedding capacity. However, this slight degradation in text fidelity also increases
the risk of the text being detected by steganalysis. Therefore, for subsequent experiments,
we select strategy 1 with m = 8. While the embedding capacity is relatively smaller, the
proposed scheme ensures the highest text fidelity, preserving the integrity and meaning of
the original cover text.

4.4. Comparison

We further compared the proposed scheme with two state-of-the-art schemes [25,26]
using a testing set of 1000 sentences. We set m to eight and employed strategy 1 to execute
(2, 3)-threshold linguistic secret sharing. As shown in Table 3, the average embedding
capacities (ECs) in bits per word (bpw) for Xiang et al.’s [25] scheme and Yang et al.’s [26]
scheme are higher than that of our scheme, with values of 0.333 bpw. However, the
proposed scheme exhibits better resistance to steganalysis, with detection accuracies of
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0.514 and 0.504 for LSCNN [28] and TSRNN [29] models, respectively, which is lower than
those of the compared schemes. Additionally, our scheme demonstrates a BERTScore of
0.948, indicating better preservation of the semantic information of the cover text.

Table 3. Characteristic comparisons.

Schemes EC LSCNN TSRNN BERTScore Tolerance Metadata

[25] 0.333 0.526 0.513 0.676 No Yes
[26] 0.333 0.594 0.559 0.825 No Yes

Proposed 0.162 0.514 0.504 0.948 Yes No

Although the EC could be enhanced by selecting a larger m or by applying strategy 2,
this would inevitably introduce a trade-off between security and text fidelity, potentially
distorting the naturalness of the generated text and making it more susceptible to detection
or steganalysis. Moreover, our scheme is tolerant of data loss or user failure and requires
no additional information or secret key management (metadata), which is more practical
than the compared schemes.

4.5. Theoretical Analysis for IoT Implementation

Due to limited access to large-scale real-world IoT environments, our study currently
focuses on theoretical analysis and simulations. The proposed scheme leverages pre-
trained models such as GPT-4 and RoBERTa, which can be deployed without additional
training, substantially lowering the implementation threshold. However, the computational
complexity of these models presents significant challenges in IoT contexts. RoBERTa’s
complexity is O

(
n2d

)
, where n is the input sequence length and d is the model dimension.

Assuming an input length of 128 and approximately 300 million parameters, the computa-
tional requirement is about 4.9 × 1012 FLOPs (floating point operations). In comparison,
GPT-4, with around 175 billion parameters, requires approximately 2.9× 1015 FLOPs to gen-
erate a sentence of length 128. This scale of computation is suitable for high-performance
cloud computing environments but may impact the real-time responsiveness of IoT de-
vices. In practical IoT networks, participants could pre-agree on specific model versions
for deployment in local or cloud-based environments. For IoT devices with constrained
computational capabilities, we recommend a cloud deployment strategy to mitigate these
computational demands and ensure efficient operation.

4.6. Limitations

Although the proposed scheme improves the security of secret data through a secret
sharing mechanism, which is unconditionally secure [36], several limitations still need to
be addressed. First, while secret data can be recovered without the need for additional data,
the scheme lacks an authentication mechanism to detect cheating by individual participants.
Additionally, secret sharing requires more storage space because the secret data must be
distributed across multiple shares. Moreover, the proposed ambiguous token selection
algorithm imposes constraints on the embedding capacity of each sentence, potentially
limiting the overall data throughput. Finally, the computational overhead introduced by
neural network operations could become a challenge for resource-constrained IoT devices.
Balancing the trade-off between enhanced security and computational efficiency remains a
critical area for future research and optimization. Our future work will focus on addressing
these issues.

5. Conclusions

In this paper, we introduce a novel linguistic secret sharing scheme via an ambiguous
token selection algorithm for IoT security. Unlike previous schemes, the proposed scheme
does not require sharing additional information for correct data extraction. Moreover, we
employ a secret sharing mechanism to improve security. Experimental results show that
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the steganographic text generated by the proposed scheme can effectively preserve the
sentiment and semantic information of the cover text. In the future, we will explore how to
improve the data embedding capacity of the proposed scheme.
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