
Citation: Gao, K.; Horng, J.-H.;

Chang, C.-C.; Chang, C.-C. Linguistic

Secret Sharing via Ambiguous Token

Selection for IoT Security. Electronics

2024, 13, 4216. https://doi.org/

10.3390/electronics13214216

Academic Editor: Yazan Otoum

Received: 29 September 2024

Revised: 21 October 2024

Accepted: 25 October 2024

Published: 27 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Linguistic Secret Sharing via Ambiguous Token Selection for
IoT Security
Kai Gao 1, Ji-Hwei Horng 2,* , Ching-Chun Chang 3 and Chin-Chen Chang 1,*

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 407102, Taiwan; p0968862@o365.fcu.edu.tw

2 Department of Electrical Engineering, National Quemoy University, Jinning, Kinmen 892009, Taiwan
3 Information and Communication Security Research Center, Feng Chia University, Taichung 407102, Taiwan;

ccc@fcu.edu.tw
* Correspondence: horng@email.nqu.edu.tw (J.-H.H.); ccc@o365.fcu.edu.tw (C.-C.C.)

Abstract: The proliferation of Internet of Things (IoT) devices has introduced significant security
challenges, including weak authentication, insufficient data protection, and firmware vulnerabilities.
To address these issues, we propose a linguistic secret sharing scheme tailored for IoT applications.
This scheme leverages neural networks to embed private data within texts transmitted by IoT
devices, using an ambiguous token selection algorithm that maintains the textual integrity of the
cover messages. Our approach eliminates the need to share additional information for accurate
data extraction while also enhancing security through a secret sharing mechanism. Experimental
results demonstrate that the proposed scheme achieves approximately 50% accuracy in detecting
steganographic text across two steganalysis networks. Additionally, the generated steganographic
text preserves the semantic information of the cover text, evidenced by a BERT score of 0.948. This
indicates that the proposed scheme performs well in terms of security.

Keywords: ambiguous token selection; Galois field; linguistic secret sharing; language modeling

1. Introduction

Steganography conceals a secret message in cover media. A classic scenario illustrating
linguistic steganography is the “Prisoner’s problem”. Consider that Alice and Bob were two
inmates in a prison, planning to escape. To facilitate their plan, they decided to exchange
secret messages via short notes. However, all message exchanges must be checked by Eve.
If Eve successfully detects any concealed message, she retains the authority to terminate
any further communication. In this scenario, Alice employed an embedding rule to conceal
the secret message within the cover note, which was then sent to Bob under the surveillance
of Eve. Upon receiving the note, Bob employed an extraction rule to retrieve the concealed
message from the note.

In the rapidly evolving landscape of the Internet of Things (IoT), the surge of connected
devices brings new security challenges. Ensuring secure and confidential data transmission
is crucial in this context. Traditional encryption methods may be unsuitable due to the
limited computational and storage capacities of IoT devices. Thus, steganography emerges
as a potential alternative for protecting information. With the IoT now deeply embedded
in everyday life, securing user privacy, data integrity, and infrastructure is essential [1,2].
Despite advances in the IoT, security and privacy concerns remain major hurdles. Inno-
vative solutions like steganography are vital for building robust security frameworks and
supporting the IoT’s sustainable growth.

As time has advanced, except for text, various cover media have been employed
in steganography including images [3,4], audio [5], 3D mesh models [6], and videos [7].
However, due to the development of deep neural networks, linguistic steganography

Electronics 2024, 13, 4216. https://doi.org/10.3390/electronics13214216 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13214216
https://doi.org/10.3390/electronics13214216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2134-5257
https://orcid.org/0000-0002-7319-5780
https://doi.org/10.3390/electronics13214216
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13214216?type=check_update&version=1

Electronics 2024, 13, 4216 2 of 13

attracts much attention again [8–27]. Linguistic steganography can be primarily catego-
rized into two types based on whether the steganographic text maintains the semantics
of the cover text, namely generation-based linguistic steganography [8–19] (GLS) and
modification-based linguistic steganography [20–27] (MLS).

GLS primarily embeds secret bits during the generation of high-quality steganographic
text, leveraging neural network-based language models such as RNNs [8], LSTM [9–11],
auto-encoders [12], and GANs [13]. This flexibility in word selection for each position
based on secret data is especially beneficial in the IoT context, where devices generate
large volumes of text that can serve as cover messages. However, this mechanism results
in significant differences in features between the cover text, generated through semantic
predictions from the language model, and the steganographic text. To address these dis-
crepancies, recent advancements have focused on enhancing both the security and quality
of steganographic text. Zhou et al. [14] utilized a GAN to overcome issues such as exposure
bias and embedding deviation, which can compromise the security of steganography. This
scheme dynamically adjusts probability distributions to maintain diversity and embeds in-
formation during the model’s training process to enhance security. Yan et al. [15] proposed
a secure token selection principle to further improve security and resolve ambiguity, which
ensures the sum of selected token probabilities correlates with statistical imperceptibility.
Similarly, Zhang et al. [16] proposed an adaptive dynamic grouping scheme to embed
secret information by grouping tokens based on their probabilities from a language model
recursively, addressing the statistical differences between the probability distributions of
steganographic text and natural text. To maintain the semantic expression of the generated
steganographic text, some schemes [17–19] try to incorporate semantic constraints. Yang
et al. [17] utilized context as the constraint, aiming to preserve a strong semantic correlation
between the steganographic text and the cover text. Wang et al. [18] encoded secret data
and refined the generated steganographic text through multiple rounds, improving the
text’s quality and reducing the negative effects of steganographic encoding. Wang et al. [19]
enhanced the controllability of steganography generation by analyzing the discourse fea-
tures of the cover, which serve as the inputs to the steganography generator. However,
since these GLS schemes operate at the word level, they can still easily lead to significant
distortion of the local semantics. Furthermore, state-of-the-art steganalysis models use deep
neural networks to extract multidimensional statistical features, enhancing their ability to
detect steganographic text. These models integrate temporal features derived from spatial
features [28] or continuous text sequences [29], improving their effectiveness in detecting
steganographic text. This significantly reduces the inherent embedding capacity of GLS.

MLS primarily embeds secret bits by modifying part of the cover text at the word [20–22],
phrase [23,24], and sentence levels [25–27]. Word- or phrase-level MLS schemes generally
utilize synonym substitutions to embed the secret. For instance, Chang and Clark [20]
employed the Google n-gram corpus to verify the contextual applicability of synonyms,
ensuring more accurate and contextually appropriate substitutions. Xiang et al. [21] intro-
duced a method that combines arithmetic coding with synonym substitution, analyzing
synonyms based on their relative frequencies and quantizing them into a binary sequence.
This sequence is then compressed using adaptive binary arithmetic coding to create space
for additional data. The compressed data, along with the secret data, are embedded into the
text using synonym substitutions. Dai and Cai [22] proposed a steganographic technique
using a patient Huffman algorithm, which generates text by combining ciphertext-driven
token selection with language model-based sampling.

At the phrase level, Wilson and Ker [23] introduced distortion measures specific to lin-
guistic steganography, which helps determine the optimal embedding strategy, balancing
text quality with embedding capacity. Qiang et al. [24] emphasized the importance of pre-
serving meaning by using paraphrase modeling to generate suitable substitute candidates.

At the sentence level, MLS schemes typically convert sentences into alternative forms
that maintain the original meaning, using techniques such as syntactic analysis [25] and
sentence translation [26,27]. For instance, Xiang et al. [25] developed a syntax-controlled

Electronics 2024, 13, 4216 3 of 13

paraphrase generation model to automatically modify the expression of cover text, using
a syntactic bins coding strategy for embedding secret information within the generated
syntactic space. Yang et al. [26] pivoted the text between two languages and embedded
secret data using a semantic-aware encoding strategy, which modifies the expression of the
text while maintaining its original meaning, thereby allowing for a larger payload. Ding
et al. [27] introduced a scheme that integrates semantic fusion and language model reference
units into a neural machine translation model. This approach generates translations that
embed secret messages while preserving the text’s semantics and context. Additionally,
they implemented a new encoding scheme that combines arithmetic coding with a waiting
mechanism, enhancing embedding capacity without compromising semantic consistency.

In the context of the IoT, where device-generated texts often follow specific structures
or patterns, MLS can be used to subtly modify these texts to embed secret data. However,
these MLS schemes suffer from a low embedding capacity.

In summary, GLS schemes offer impressive embedding capacity but may introduce
semantic ambiguity and increase suspicion by steganalysis. While MLS schemes success-
fully maintain the overall semantics, their limited embedding capacity poses a significant
challenge. Moreover, previous linguistic steganography schemes typically involve encrypt-
ing the secret data, recording additional information for recovery, and managing the secret
key. Specifically, in GLS, to ensure that the receiver generates the same text as the sender,
the sender must transmit the latent space vectors used to initialize the model, ensuring
consistent text output. Furthermore, both GLS and MLS require the encryption of secret
data, necessitating the transmission of a secret key for decryption, which can be impractical
in certain applications.

In order to solve the above problems, we propose a novel linguistic secret sharing
scheme for IoT security. In our scheme, only the most ambiguous word in each sentence is
substituted to embed secret data, thereby preserving the semantic integrity of each sentence.
Moreover, the receiver can also easily identify this specific word during the extraction
process. Additionally, we employ a secret sharing mechanism to encrypt secret data.
Instead of relying on a secret key, secret sharing distributes the secret into multiple shares,
ensuring that a single share alone cannot restore the original secret. Our contributions are
summarized as follows:

1. We propose a token selection algorithm that enables both the sender and the receiver
to identify the same most ambiguous word in each sentence.

2. Data embedding and extraction can be performed without the need to share any
secret key.

3. The proposed scheme maintains the semantic coherence of the steganographic text.
4. Secret sharing over a Galois field is first introduced to linguistic steganography.

2. Preliminary Work

We first review the concept of (k, n)-threshold secret sharing, which serves as the
foundational framework of the proposed scheme for ensuring security. Then, a masked
language model called “RoBERTa” is introduced, which will be modified to embed data in
our scheme.

2.1. (k, n)-Threshold Secret Sharing over GF(2m)

In 1979, Shamir [30] proposed a cryptographic algorithm known as (k, n)-threshold
secret sharing, which improves security by distributing the secret to multiple participants.
The concept of (k, n)-threshold secret sharing is to divide a secret into n shares and distribute
to n participants. The original secret can only be reconstructed when at least k shares are
available in recombination.

The fundamental operation of (k, n)-threshold secret sharing over GF(2m) involves the
construction of a set of polynomial equations over a Galois field, provided x1, x2, . . . , xn ∈
GF(2m) denote n distinct binary polynomials. Given a secret s ∈ GF(2m), we can construct
a k − 1 degree polynomial as follows:

Electronics 2024, 13, 4216 4 of 13

f (x) =
[
s ⊕ (a1 ⊙ x)⊕

(
a2⊙x2

)
⊕ . . . ⊕

(
ak−1 ⊙ xk−1

)]
mod p(x), (1)

where “⊕” represents the exclusive or operation; “⊙” represents the Galois field multiplica-
tion in GF(2m), where each element is an m-bit binary polynomial, and the multiplication
follows the rules of the Galois field; and {a1, a2, . . . , ak−1} ∈ GF(2m) and p(x) represent a
group of random binary polynomials and an irreducible polynomial, respectively. After
secret share generation, each participant holds a share (xi, f (xi)), where xi is the owner’s
private key and f (xi) is the corresponding secret share.

When at least k participants contribute their private keys and secret shares, the coeffi-
cients a1, a2, . . . ak−1 and secret s can be restored via the Lagrange interpolating polynomial.

f (x) =
k

∑
q=1

{ f (xq)⊙ ∏
1≤w≤k

w ̸=q

[
(x ⊕ xw)⊙

(
xq ⊕ xw

)−1
]
} mod p(x). (2)

s =
k

∑
q=1

{ f (xq)⊙ ∏
1≤w≤k

w ̸=q

[
xw ⊙

(
xq ⊕ xw

)−1
]
} mod p(x), (3)

where (·)−1 represents the multiplicative inverse in the Galois field. For any element
a ∈ GF(2m), the inverse is an element b ∈ GF(2m) such that a ⊙ b = 1 under the field’s
multiplication. When at least k participants contribute their private keys and secret shares,
the coefficients a1, a2, . . . ak−1 and secret s can be restored via the Lagrange interpolating
polynomial.

To provide a clearer understanding of the proposed scheme, we present a mathematical
example. Assume that k = 2, n = 3; the k − 1 degree polynomial can be constructed by

f (xi) = s ⊕ (a1 ⊙ xi)mod p(x). (4)

Let s = 111, a1 = 101, x1 = 001, x2 = 010, x3 = 011, and p(x) = x3 + x + 1. Three
shares can be calculated as

f (x1) = s ⊕ (a1 ⊙ x1)mod p(x) = (111 ⊕ 101 ⊙ 001) mod 1011 = 010, (5)

f (x2) = s ⊕ (a1 ⊙ x2)mod p(x) = (111 ⊕ 101 ⊙ 010) mod 1011 = 110, (6)

f (x3) = s ⊕ (a1 ⊙ x3)mod p(x) = (111 ⊕ 101 ⊙ 011) mod 1011 = 011. (7)

By collecting any two out of three shares, s can be recovered by Equation (3) as

s =
{

f (x1)⊙
[

x2 ⊙ (x1 ⊕ x2)
−1

]
⊕ f (x2)⊙

[
x1 ⊙ (x2 ⊕ x1)

−1
]}

= (010 ⊙ (010 ⊙ 110)⊕ 110 ⊙ (001 ⊙ 110)) = 101 ⊕ 010 = 111.
(8)

Similarly, a1 can also be recovered by Equation (2).

2.2. RoBERTa-Masked Language Modeling

RoBERTa (Robustly Optimized Bidirectional Encoder Representations from Trans-
formers Pre-training Approach) [31] is an NLP model that is built upon a variant of the
transformer architecture [32] and is specifically designed to handle language comprehen-
sion tasks. Its layout is depicted in Figure 1. The key objective of the RoBERTa model is to
improve the pre-training process in order to effectively leverage large-scale unlabeled text
data for model training. Compared to the earlier BERT [33], RoBERTa incorporates a larger
model size and a longer training time while introducing several technical improvements
such as dynamic masks, continuous text paragraph training, and larger batch sizes.

Electronics 2024, 13, 4216 5 of 13

Electronics 2024, 13, x FOR PEER REVIEW 5 of 13

transformer architecture [32] and is specifically designed to handle language comprehen-
sion tasks. Its layout is depicted in Figure 1. The key objective of the RoBERTa model is to
improve the pre-training process in order to effectively leverage large-scale unlabeled text
data for model training. Compared to the earlier BERT [33], RoBERTa incorporates a larger
model size and a longer training time while introducing several technical improvements
such as dynamic masks, continuous text paragraph training, and larger batch sizes.

Figure 1. Architecture of RoBERTa.

Masked language modeling is the fundamental task of RoBERTa, aiming to predict a
masked word based on the context of surrounding words. Tokenization is an initial step,
where a text sequence is split into tokens. An input sentence containing one or more mask
tokens is fed into the model, which estimates the probability distribution of each mask
token across the entire vocabulary. The predicted results can then be used to replace the
masked tokens for data embedding.

3. Proposed Linguistic Secret Sharing
Consider a scenario in which a company produces advanced equipment that is re-

stricted for use in certain areas or by specific companies. This equipment has an associated
secret code to activate it. The equipment is delivered by a logistics company, while the
secret code is distributed among multiple participants with a secret sharing scheme to
ensure authorized usage of the equipment.

Figure 1. Architecture of RoBERTa.

Masked language modeling is the fundamental task of RoBERTa, aiming to predict a
masked word based on the context of surrounding words. Tokenization is an initial step,
where a text sequence is split into tokens. An input sentence containing one or more mask
tokens is fed into the model, which estimates the probability distribution of each mask
token across the entire vocabulary. The predicted results can then be used to replace the
masked tokens for data embedding.

3. Proposed Linguistic Secret Sharing

Consider a scenario in which a company produces advanced equipment that is re-
stricted for use in certain areas or by specific companies. This equipment has an associated
secret code to activate it. The equipment is delivered by a logistics company, while the
secret code is distributed among multiple participants with a secret sharing scheme to
ensure authorized usage of the equipment.

As illustrated in Figure 2, during the share generation stage, the secret code is trans-
formed into n distinct shares using a polynomial secret sharing technique. These shares
are then concealed within the regular messages intended for the participants with an open-
source pre-trained model. These steganographic messages are then transmitted over the
IoT devices of the participants.

In the secret recovery stage, the system enables any k authorized personnel (where
k < n) to collaboratively extract the activation code of the equipment. By applying the same
token selection principle and data embedding rule, participants can extract the secret shares

Electronics 2024, 13, 4216 6 of 13

from the messages on their own IoT devices and combine them back into the activation
code. This mechanism ensures authorized usage of the protected equipment by preventing
unauthorized personnel or an insufficient number of participants from activating it.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 13

As illustrated in Figure 2, during the share generation stage, the secret code is trans-
formed into 𝑛 distinct shares using a polynomial secret sharing technique. These shares
are then concealed within the regular messages intended for the participants with an
open-source pre-trained model. These steganographic messages are then transmitted over
the IoT devices of the participants.

Figure 2. Flowchart of proposed scheme.

In the secret recovery stage, the system enables any 𝑘 authorized personnel (where 𝑘 < 𝑛) to collaboratively extract the activation code of the equipment. By applying the
same token selection principle and data embedding rule, participants can extract the se-
cret shares from the messages on their own IoT devices and combine them back into the
activation code. This mechanism ensures authorized usage of the protected equipment by
preventing unauthorized personnel or an insufficient number of participants from acti-
vating it.

3.1. Text Share Generation
Theoretically, the proposed scheme can employ any type of text as its carrier and the

three carrier texts can be completely different in content. However, in our case, we choose
to utilize texts generated by deep learning-based models. By utilizing generated texts,
their uniqueness can prevent attackers from comparing the texts to existing content on
social media or the Internet in order to decipher the secret. Additionally, the generated
texts offer greater control to tailor the contents according to the user’s requirements. Users
can generate texts suitable for linguistic secret sharing by providing appropriate prompts.
For implementing the text generation stage, GPT-4 [34] is applied as the text generator. It
is worth mentioning that we do not specifically address grammar or syntax, so the gener-
ated text is used directly without modification.

3.2. Token Selection Algorithm and Data Embedding Rule
In the proposed scheme, an ambiguous token is selected and masked for each sen-

tence first. The masked sentence is fed into a token predictor, which gives the prediction
results for each masked token. Finally, the masked token is replaced with one of the pre-
diction results according to the data embedding rule.

Figure 2. Flowchart of proposed scheme.

3.1. Text Share Generation

Theoretically, the proposed scheme can employ any type of text as its carrier and the
three carrier texts can be completely different in content. However, in our case, we choose
to utilize texts generated by deep learning-based models. By utilizing generated texts, their
uniqueness can prevent attackers from comparing the texts to existing content on social
media or the Internet in order to decipher the secret. Additionally, the generated texts
offer greater control to tailor the contents according to the user’s requirements. Users can
generate texts suitable for linguistic secret sharing by providing appropriate prompts. For
implementing the text generation stage, GPT-4 [34] is applied as the text generator. It is
worth mentioning that we do not specifically address grammar or syntax, so the generated
text is used directly without modification.

3.2. Token Selection Algorithm and Data Embedding Rule

In the proposed scheme, an ambiguous token is selected and masked for each sentence
first. The masked sentence is fed into a token predictor, which gives the prediction results
for each masked token. Finally, the masked token is replaced with one of the prediction
results according to the data embedding rule.

To select the target token, assume a sentence consists of l tokens denoted as T =
(t1, t2, . . . , tl). Each token ti can be masked individually and predicted using masked
language modeling. For a token belonging to the vocabulary pool V , the initial candi-
date pool for prediction is denoted as

[
c1, c2, . . . , c|V|

]
with corresponding probabilities[

p1, p2, . . . , p|V|
]
, where ∑

|V|
j=1 pj = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

Dt = ∑m−1
j=1

(
pσ(j) − pσ(j+1)

)
, (9)

Electronics 2024, 13, 4216 7 of 13

where pσ(j) represents the j-th greatest prediction probability. A lower Dt value indicates
that the top m prediction probabilities for this token are close together, making it harder for
the model to confidently predict the token. Altering this token does not significantly affect
the overall semantics of the sentence. The Algorithm 1 for ambiguous token selection is
given as follows:

Algorithm 1: Ambiguous Token Selection

Input: A sentence T = (t1, t2, . . . , tl).
Load: Token predictor P .

Output: ambiguous token

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

To select the target token, assume a sentence consists of 𝑙 tokens denoted as 𝑇 =

(𝑡1, 𝑡2, … , 𝑡𝑙). Each token 𝑡𝑖 can be masked individually and predicted using masked lan-

guage modeling. For a token belonging to the vocabulary pool 𝒱, the initial candidate

pool for prediction is denoted as [𝑐1, 𝑐2, … , 𝑐|𝒱|] with corresponding probabilities

[𝑝1, 𝑝2, … , 𝑝|𝒱|], where ∑ 𝑝𝑗
|𝒱|
𝑗=1 = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

𝒟𝑡 = ∑ (𝑝𝜎(𝑗) − 𝑝𝜎(𝑗+1))
𝑚−1

𝑗=1
, (9)

where 𝑝𝜎(𝑗) represents the j-th greatest prediction probability. A lower 𝒟𝑡 value indi-

cates that the top 𝑚 prediction probabilities for this token are close together, making it

harder for the model to confidently predict the token. Altering this token does not signif-

icantly affect the overall semantics of the sentence. The Algorithm 1 for ambiguous token

selection is given as follows:

Algorithm 1: Ambiguous Token Selection

Input:

Load:

Output:

1:

2:

3:

A sentence 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑙).

Token predictor 𝒫.

ambiguous token 𝓉.

for 𝑖 = 1, 2, … , 𝑙 do

𝒕𝒊 = < mask >

𝑇′ = (𝑡1, 𝑡2, … , 𝒕𝒊, … 𝑡𝑙)
[𝑝1, 𝑝2, … , 𝑝|𝑚|] = 𝒫(𝒯′)

compute 𝒟𝑡𝑖
.

end for
𝑐 = argmin

𝑖
(𝒟𝑡𝑖

)

return 𝓉 = 𝑡𝑐

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the

smallest 𝒟𝑡) is selected for data embedding. Since this token is the most difficult for the

model to predict, replacing it with one of the top 𝑚 candidates will introduce minimal

semantic distortion, thus allowing for the embedding of log2 𝑚 bits of secret data.

After selecting the ambiguous token 𝓉 , its top 𝑚 prediction candidates

[𝑐1, 𝑐2, … , 𝑐𝑚] can be mapped into 𝑚 different binary codes. Therefore log2 𝑚 bits of

data can be embedded into the sentence 𝑇 by replacing 𝓉 with one of its top 𝑚 predic-

tion candidates. To illustrate the token selection algorithm and data embedding rule, an

example is given in Figure 3. Suppose the cover text is “I am very happy.” and 𝑚 is set to

four; the predictor can provide the top four prediction results with the highest probability

for each masked token. By masking each token individually and predicting, we can obtain

the prediction results along with their respective probabilities. After calculating the prob-

ability difference for each token’s prediction results, we select the token with the lowest

value. In this case, “very” is selected as the ambiguous token because it has the lowest

probability difference indicator compared to the other tokens. The top four prediction

candidates for this token are then mapped in descending order of probability to represent

the secret data (i.e., “very”: 00; “so”: 01; “really”: 10; and “extremely”: 11). Therefore,

log2 4 = 2 bits of data can be embedded by replacing “very” with one of the top four can-

didates.

.
1: for i = 1, 2, . . . , l do

ti =< mask >
T′ = (t1, t2, . . . , ti, . . . tl)[

p1, p2, . . . , p|m|
]
= P(T ′)

compute Dti .
2: end for

c = argmin
i
(Dti)

3: return

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

To select the target token, assume a sentence consists of 𝑙 tokens denoted as 𝑇 =

(𝑡1, 𝑡2, … , 𝑡𝑙). Each token 𝑡𝑖 can be masked individually and predicted using masked lan-

guage modeling. For a token belonging to the vocabulary pool 𝒱, the initial candidate

pool for prediction is denoted as [𝑐1, 𝑐2, … , 𝑐|𝒱|] with corresponding probabilities

[𝑝1, 𝑝2, … , 𝑝|𝒱|], where ∑ 𝑝𝑗
|𝒱|
𝑗=1 = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

𝒟𝑡 = ∑ (𝑝𝜎(𝑗) − 𝑝𝜎(𝑗+1))
𝑚−1

𝑗=1
, (9)

where 𝑝𝜎(𝑗) represents the j-th greatest prediction probability. A lower 𝒟𝑡 value indi-

cates that the top 𝑚 prediction probabilities for this token are close together, making it

harder for the model to confidently predict the token. Altering this token does not signif-

icantly affect the overall semantics of the sentence. The Algorithm 1 for ambiguous token

selection is given as follows:

Algorithm 1: Ambiguous Token Selection

Input:

Load:

Output:

1:

2:

3:

A sentence 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑙).

Token predictor 𝒫.

ambiguous token 𝓉.

for 𝑖 = 1, 2, … , 𝑙 do

𝒕𝒊 = < mask >

𝑇′ = (𝑡1, 𝑡2, … , 𝒕𝒊, … 𝑡𝑙)
[𝑝1, 𝑝2, … , 𝑝|𝑚|] = 𝒫(𝒯′)

compute 𝒟𝑡𝑖
.

end for
𝑐 = argmin

𝑖
(𝒟𝑡𝑖

)

return 𝓉 = 𝑡𝑐

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the

smallest 𝒟𝑡) is selected for data embedding. Since this token is the most difficult for the

model to predict, replacing it with one of the top 𝑚 candidates will introduce minimal

semantic distortion, thus allowing for the embedding of log2 𝑚 bits of secret data.

After selecting the ambiguous token 𝓉 , its top 𝑚 prediction candidates

[𝑐1, 𝑐2, … , 𝑐𝑚] can be mapped into 𝑚 different binary codes. Therefore log2 𝑚 bits of

data can be embedded into the sentence 𝑇 by replacing 𝓉 with one of its top 𝑚 predic-

tion candidates. To illustrate the token selection algorithm and data embedding rule, an

example is given in Figure 3. Suppose the cover text is “I am very happy.” and 𝑚 is set to

four; the predictor can provide the top four prediction results with the highest probability

for each masked token. By masking each token individually and predicting, we can obtain

the prediction results along with their respective probabilities. After calculating the prob-

ability difference for each token’s prediction results, we select the token with the lowest

value. In this case, “very” is selected as the ambiguous token because it has the lowest

probability difference indicator compared to the other tokens. The top four prediction

candidates for this token are then mapped in descending order of probability to represent

the secret data (i.e., “very”: 00; “so”: 01; “really”: 10; and “extremely”: 11). Therefore,

log2 4 = 2 bits of data can be embedded by replacing “very” with one of the top four can-

didates.

= tc

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the
smallest Dt) is selected for data embedding. Since this token is the most difficult for the
model to predict, replacing it with one of the top m candidates will introduce minimal
semantic distortion, thus allowing for the embedding of log2 m bits of secret data.

After selecting the ambiguous token

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

To select the target token, assume a sentence consists of 𝑙 tokens denoted as 𝑇 =

(𝑡1, 𝑡2, … , 𝑡𝑙). Each token 𝑡𝑖 can be masked individually and predicted using masked lan-

guage modeling. For a token belonging to the vocabulary pool 𝒱, the initial candidate

pool for prediction is denoted as [𝑐1, 𝑐2, … , 𝑐|𝒱|] with corresponding probabilities

[𝑝1, 𝑝2, … , 𝑝|𝒱|], where ∑ 𝑝𝑗
|𝒱|
𝑗=1 = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

𝒟𝑡 = ∑ (𝑝𝜎(𝑗) − 𝑝𝜎(𝑗+1))
𝑚−1

𝑗=1
, (9)

where 𝑝𝜎(𝑗) represents the j-th greatest prediction probability. A lower 𝒟𝑡 value indi-

cates that the top 𝑚 prediction probabilities for this token are close together, making it

harder for the model to confidently predict the token. Altering this token does not signif-

icantly affect the overall semantics of the sentence. The Algorithm 1 for ambiguous token

selection is given as follows:

Algorithm 1: Ambiguous Token Selection

Input:

Load:

Output:

1:

2:

3:

A sentence 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑙).

Token predictor 𝒫.

ambiguous token 𝓉.

for 𝑖 = 1, 2, … , 𝑙 do

𝒕𝒊 = < mask >

𝑇′ = (𝑡1, 𝑡2, … , 𝒕𝒊, … 𝑡𝑙)
[𝑝1, 𝑝2, … , 𝑝|𝑚|] = 𝒫(𝒯′)

compute 𝒟𝑡𝑖
.

end for
𝑐 = argmin

𝑖
(𝒟𝑡𝑖

)

return 𝓉 = 𝑡𝑐

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the

smallest 𝒟𝑡) is selected for data embedding. Since this token is the most difficult for the

model to predict, replacing it with one of the top 𝑚 candidates will introduce minimal

semantic distortion, thus allowing for the embedding of log2 𝑚 bits of secret data.

After selecting the ambiguous token 𝓉 , its top 𝑚 prediction candidates

[𝑐1, 𝑐2, … , 𝑐𝑚] can be mapped into 𝑚 different binary codes. Therefore log2 𝑚 bits of

data can be embedded into the sentence 𝑇 by replacing 𝓉 with one of its top 𝑚 predic-

tion candidates. To illustrate the token selection algorithm and data embedding rule, an

example is given in Figure 3. Suppose the cover text is “I am very happy.” and 𝑚 is set to

four; the predictor can provide the top four prediction results with the highest probability

for each masked token. By masking each token individually and predicting, we can obtain

the prediction results along with their respective probabilities. After calculating the prob-

ability difference for each token’s prediction results, we select the token with the lowest

value. In this case, “very” is selected as the ambiguous token because it has the lowest

probability difference indicator compared to the other tokens. The top four prediction

candidates for this token are then mapped in descending order of probability to represent

the secret data (i.e., “very”: 00; “so”: 01; “really”: 10; and “extremely”: 11). Therefore,

log2 4 = 2 bits of data can be embedded by replacing “very” with one of the top four can-

didates.

, its top m prediction candidates [c1, c2, . . . , cm]
can be mapped into m different binary codes. Therefore log2 m bits of data can be embedded
into the sentence T by replacing

Electronics 2024, 13, x FOR PEER REVIEW 7 of 13

To select the target token, assume a sentence consists of 𝑙 tokens denoted as 𝑇 =

(𝑡1, 𝑡2, … , 𝑡𝑙). Each token 𝑡𝑖 can be masked individually and predicted using masked lan-

guage modeling. For a token belonging to the vocabulary pool 𝒱, the initial candidate

pool for prediction is denoted as [𝑐1, 𝑐2, … , 𝑐|𝒱|] with corresponding probabilities

[𝑝1, 𝑝2, … , 𝑝|𝒱|], where ∑ 𝑝𝑗
|𝒱|
𝑗=1 = 1. To quantify the ambiguity of a token’s prediction, we

define the probability difference indicator as

𝒟𝑡 = ∑ (𝑝𝜎(𝑗) − 𝑝𝜎(𝑗+1))
𝑚−1

𝑗=1
, (9)

where 𝑝𝜎(𝑗) represents the j-th greatest prediction probability. A lower 𝒟𝑡 value indi-

cates that the top 𝑚 prediction probabilities for this token are close together, making it

harder for the model to confidently predict the token. Altering this token does not signif-

icantly affect the overall semantics of the sentence. The Algorithm 1 for ambiguous token

selection is given as follows:

Algorithm 1: Ambiguous Token Selection

Input:

Load:

Output:

1:

2:

3:

A sentence 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑙).

Token predictor 𝒫.

ambiguous token 𝓉.

for 𝑖 = 1, 2, … , 𝑙 do

𝒕𝒊 = < mask >

𝑇′ = (𝑡1, 𝑡2, … , 𝒕𝒊, … 𝑡𝑙)
[𝑝1, 𝑝2, … , 𝑝|𝑚|] = 𝒫(𝒯′)

compute 𝒟𝑡𝑖
.

end for
𝑐 = argmin

𝑖
(𝒟𝑡𝑖

)

return 𝓉 = 𝑡𝑐

This algorithm ensures that the token with the highest prediction ambiguity (i.e., the

smallest 𝒟𝑡) is selected for data embedding. Since this token is the most difficult for the

model to predict, replacing it with one of the top 𝑚 candidates will introduce minimal

semantic distortion, thus allowing for the embedding of log2 𝑚 bits of secret data.

After selecting the ambiguous token 𝓉 , its top 𝑚 prediction candidates

[𝑐1, 𝑐2, … , 𝑐𝑚] can be mapped into 𝑚 different binary codes. Therefore log2 𝑚 bits of

data can be embedded into the sentence 𝑇 by replacing 𝓉 with one of its top 𝑚 predic-

tion candidates. To illustrate the token selection algorithm and data embedding rule, an

example is given in Figure 3. Suppose the cover text is “I am very happy.” and 𝑚 is set to

four; the predictor can provide the top four prediction results with the highest probability

for each masked token. By masking each token individually and predicting, we can obtain

the prediction results along with their respective probabilities. After calculating the prob-

ability difference for each token’s prediction results, we select the token with the lowest

value. In this case, “very” is selected as the ambiguous token because it has the lowest

probability difference indicator compared to the other tokens. The top four prediction

candidates for this token are then mapped in descending order of probability to represent

the secret data (i.e., “very”: 00; “so”: 01; “really”: 10; and “extremely”: 11). Therefore,

log2 4 = 2 bits of data can be embedded by replacing “very” with one of the top four can-

didates.

with one of its top m prediction candidates. To illustrate
the token selection algorithm and data embedding rule, an example is given in Figure 3.
Suppose the cover text is “I am very happy.” and m is set to four; the predictor can provide
the top four prediction results with the highest probability for each masked token. By
masking each token individually and predicting, we can obtain the prediction results along
with their respective probabilities. After calculating the probability difference for each
token’s prediction results, we select the token with the lowest value. In this case, “very” is
selected as the ambiguous token because it has the lowest probability difference indicator
compared to the other tokens. The top four prediction candidates for this token are then
mapped in descending order of probability to represent the secret data (i.e., “very”: 00; “so”:
01; “really”: 10; and “extremely”: 11). Therefore, log2 4 = 2 bits of data can be embedded
by replacing “very” with one of the top four candidates.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as
shown in Figure 4, the modified sentence is considered as the preceding context for the
current sentence. This ensures that the embedding process maintains coherence and con-
sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation
Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over 𝐺𝐹(2) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-
ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈ଵ, 𝓈ଶ, … , 𝓈},
where 𝓈 is logଶ 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯଵ, ℯଶ, … , ℯ using Equation (1) by replacing 𝑠 and
the coefficients 𝑎ଵ, 𝑎ଶ, … 𝑎ିଵ with 𝓈ଵ, 𝓈ଶ, … , 𝓈.

Step 3: Generate 𝑛 texts 𝑇ଵ, 𝑇ଶ, … , 𝑇 using a text generator with proper prompts.
Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇ଵᇱ, 𝑇ଶᇱ, … , 𝑇ᇱ.

Figure 3. An example of token selection and data embedding.

Electronics 2024, 13, 4216 8 of 13

Note that when applying the token selection and data embedding rule to a text,
as shown in Figure 4, the modified sentence is considered as the preceding context for
the current sentence. This ensures that the embedding process maintains coherence and
consistency throughout the entire text.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as
shown in Figure 4, the modified sentence is considered as the preceding context for the
current sentence. This ensures that the embedding process maintains coherence and con-
sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation
Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over 𝐺𝐹(2) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-
ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈ଵ, 𝓈ଶ, … , 𝓈},
where 𝓈 is logଶ 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯଵ, ℯଶ, … , ℯ using Equation (1) by replacing 𝑠 and
the coefficients 𝑎ଵ, 𝑎ଶ, … 𝑎ିଵ with 𝓈ଵ, 𝓈ଶ, … , 𝓈.

Step 3: Generate 𝑛 texts 𝑇ଵ, 𝑇ଶ, … , 𝑇 using a text generator with proper prompts.
Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇ଵᇱ, 𝑇ଶᇱ, … , 𝑇ᇱ.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over
GF(2m) to distribute the secret data into secret shares and embeds the shares into dis-
tinct generated texts correspondingly using the token selection algorithm and the data
embedding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments S = {

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

1,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

2, . . .,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

k}, where

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

i is log2 m bit in length.
Step 2: Generate n secret shares

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

1
i ,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

2
i , . . .,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

n
i using Equation (1) by replacing s and the

coefficients a1, a2, . . . ak−1 with

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

1,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

2, . . .,

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13

Figure 3. An example of token selection and data embedding.

Note that when applying the token selection and data embedding rule to a text, as

shown in Figure 4, the modified sentence is considered as the preceding context for the

current sentence. This ensures that the embedding process maintains coherence and con-

sistency throughout the entire text.

Figure 4. Embedding rule.

3.3. Secret Share Generation

Referring to Figure 2 again, the dealer adopts the polynomial secret sharing over

𝐺𝐹(2𝑚) to distribute the secret data into secret shares and embeds the shares into distinct

generated texts correspondingly using the token selection algorithm and the data embed-

ding rule. The procedures are given as follows:

Step 1: Convert the secret data into a sequence of binary segments 𝒮 = {𝓈1, 𝓈2, … , 𝓈𝑘},

where 𝓈𝑖 is log2 𝑚 bit in length.

Step 2: Generate 𝑛 secret shares ℯ𝑖
1, ℯ𝑖

2, … , ℯ𝑖
𝑛 using Equation (1) by replacing 𝑠 and

the coefficients 𝑎1, 𝑎2, … 𝑎𝑘−1 with 𝓈1, 𝓈2, … , 𝓈𝑘.

Step 3: Generate 𝑛 texts 𝑇1, 𝑇2, … , 𝑇𝑛 using a text generator with proper prompts.

Step 4: Embed the 𝑛 secret shares into the 𝑛 texts correspondingly using the token

selection algorithm and the data embedding rule to generate 𝑛 text shares 𝑇1
′, 𝑇2

′, … , 𝑇𝑛
′.

k.
Step 3: Generate n texts T1, T2, . . . , Tn using a text generator with proper prompts.
Step 4: Embed the n secret shares into the n texts correspondingly using the token

selection algorithm and the data embedding rule to generate n text shares T′
1, T′

2, . . . , T′
n.

3.4. Secret Data Recovery

By collecting any k out of n text shares, a combiner can restore the secret data. The
procedures are summarized as follows:

Step 1: Collect any k text shares.
Step 2: Split each text into sentences and identify a marked token for each sentence

using the token selection algorithm.
Step 3: Retrieve and collect the embedded secret bits from marked tokens according to

the data embedding rule.
Step 4: Combine k secret shares to recover the original secret data using Equations (2)

and (3).

4. Experimental Results

In this section, we introduce our experimental settings, give a demonstrative example,
and evaluate the performance of our scheme in terms of sentiment and semantic analyses.

Electronics 2024, 13, 4216 9 of 13

4.1. Experimental Setting

Model: Our experiments make use of the GPT-4 networks, a substantial language
model developed by OpenAI for the purpose of generating cover texts. GPT-4 is a state-of-
the-art model with a remarkable capacity for comprehending and producing both natural
language and code. Furthermore, we employ RoBERTa as our token predictor in this study.

Implementation: Our experiments are implemented using Python 3.8 and rely on
PyTorch 1.7.1 as the foundational framework. Acceleration is achieved through the uti-
lization of Nvidia 3090 and CUDA 11.2. The secret messages applied are binary pseudo-
random bitstreams.

4.2. Applicability Demonstration

An example of (2, 3)-linguistic secret sharing is provided. Suppose the original secret
data are an 8 bit binary random bitstream “11010011”; after secret sharing, three shared
bitstreams “00100100”, “11100101”, and “01001010” are generated. Three cover texts
and their corresponding text shares are shown in Figures 5a and 5b, respectively. It is
noteworthy that each sentence within the share text is capable of being embedded as
4 bit shared data when the number of candidate pools of each selected token is set to
16. During the secret recovery process, the ambiguous token within each sentence can
be easily identified through the proposed token selection algorithm. Subsequently, the
shared data can be extracted according to the order of selected tokens in the candidate
pool. Following this step, any two out of three shared data can be combined to recover the
original secret bitstream.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 13

3.4. Secret Data Recovery
By collecting any k out of n text shares, a combiner can restore the secret data. The

procedures are summarized as follows:
Step 1: Collect any k text shares.
Step 2: Split each text into sentences and identify a marked token for each sentence

using the token selection algorithm.
Step 3: Retrieve and collect the embedded secret bits from marked tokens according

to the data embedding rule.
Step 4: Combine k secret shares to recover the original secret data using Equations (2)

and (3).

4. Experimental Results
In this section, we introduce our experimental settings, give a demonstrative exam-

ple, and evaluate the performance of our scheme in terms of sentiment and semantic anal-
yses.

4.1. Experimental Setting
Model: Our experiments make use of the GPT-4 networks, a substantial language

model developed by OpenAI for the purpose of generating cover texts. GPT-4 is a state-
of-the-art model with a remarkable capacity for comprehending and producing both nat-
ural language and code. Furthermore, we employ RoBERTa as our token predictor in this
study.

Implementation: Our experiments are implemented using Python 3.8 and rely on
PyTorch 1.7.1 as the foundational framework. Acceleration is achieved through the utili-
zation of Nvidia 3090 and CUDA 11.2. The secret messages applied are binary pseudo-
random bitstreams.

4.2. Applicability Demonstration
An example of (2, 3)-linguistic secret sharing is provided. Suppose the original secret

data are an 8 bit binary random bitstream “11010011”; after secret sharing, three shared
bitstreams “00100100”, “11100101”, and “01001010” are generated. Three cover texts and
their corresponding text shares are shown in Figure 5a and 5b, respectively. It is notewor-
thy that each sentence within the share text is capable of being embedded as 4 bit shared
data when the number of candidate pools of each selected token is set to 16. During the
secret recovery process, the ambiguous token within each sentence can be easily identified
through the proposed token selection algorithm. Subsequently, the shared data can be
extracted according to the order of selected tokens in the candidate pool. Following this
step, any two out of three shared data can be combined to recover the original secret bit-
stream.

(a) Cover share text.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 13

(b) Marked share text.

Figure 5. An example of (2, 3)-linguistic secret sharing.

4.3. Performance Analysis
We evaluate the performance of steganographic text using sentiment and semantic

analyses. The sentiment of a text is determined by its emotional nature, where “positive”
refers to an optimistic or favorable emotion, while “negative” refers to a pessimistic or
unfavorable emotion. The sentiment of a text can be assessed using a pre-trained BERT-
based sentiment classifier [33]. In our experiments, text share 1 (474 words) and text share
2 (248 words) are generated from texts classified with positive (P: 99.84%) and negative
(N: 96.54%) emotions, respectively. Two strategies are used to segment the text into sen-
tences; strategy 1 segments the text with periods, while strategy 2 segments the text with
punctuation marks, including commas and periods. Thus, the number of resulting sen-
tences for strategy 1 is fewer than that for strategy 2. Data embedding is executed by se-
lecting only one word to replace within each sentence. As shown in Table 1, the ste-
ganographic texts generated with different 𝑚 values successfully preserve the sentiment
classification results (CRs) of the cover text.

To validate the preservation of semantic fidelity between the cover text and modified
text, we employ BERTScore [35] to analyze the texts. BERTScore captures the deep seman-
tic representations of both the cover text and the modified text. We then use cosine simi-
larity to compare these representations, ensuring that the intrinsic meanings remain con-
sistent between the two texts. As shown in Table 2, the modified text effectively maintains
the semantic essence of the cover text.

In summary, the modified text generated by the proposed scheme successfully re-
tains the information from the cover text, as only one ambiguous word is replaced in each
sentence. Although the text produced using segment strategy 2 exhibits slightly dimin-
ished quality compared to that generated through segment strategy 1, this trade-off yields
a higher embedding capacity. However, this slight degradation in text fidelity also in-
creases the risk of the text being detected by steganalysis. Therefore, for subsequent ex-
periments, we select strategy 1 with 𝑚 = 8. While the embedding capacity is relatively
smaller, the proposed scheme ensures the highest text fidelity, preserving the integrity
and meaning of the original cover text.

Table 1. Sentiment classification.

Top m/CR
Text Share 1 (P: 99.84%) Text Share 2 (N: 96.54%)

Strategy 1 Strategy 2 Strategy 1 Strategy 2
8 P: 99.76% P: 99.26% N: 95.52% N: 90.86%
16 P: 99.78% P: 99.54% N: 95.45% N: 87.41%
32 P: 99.71% P: 99.81% N: 97.35% N: 96.45%
64 P: 99.75% P: 99.59% N: 96.16% N: 96.39%
128 P: 99.85% P: 99.42% N: 96.76% N: 99.25%

Figure 5. An example of (2, 3)-linguistic secret sharing.

4.3. Performance Analysis

We evaluate the performance of steganographic text using sentiment and semantic
analyses. The sentiment of a text is determined by its emotional nature, where “positive”
refers to an optimistic or favorable emotion, while “negative” refers to a pessimistic or

Electronics 2024, 13, 4216 10 of 13

unfavorable emotion. The sentiment of a text can be assessed using a pre-trained BERT-
based sentiment classifier [33]. In our experiments, text share 1 (474 words) and text
share 2 (248 words) are generated from texts classified with positive (P: 99.84%) and
negative (N: 96.54%) emotions, respectively. Two strategies are used to segment the text
into sentences; strategy 1 segments the text with periods, while strategy 2 segments the text
with punctuation marks, including commas and periods. Thus, the number of resulting
sentences for strategy 1 is fewer than that for strategy 2. Data embedding is executed
by selecting only one word to replace within each sentence. As shown in Table 1, the
steganographic texts generated with different m values successfully preserve the sentiment
classification results (CRs) of the cover text.

Table 1. Sentiment classification.

Top m/CR
Text Share 1 (P: 99.84%) Text Share 2 (N: 96.54%)

Strategy 1 Strategy 2 Strategy 1 Strategy 2

8 P: 99.76% P: 99.26% N: 95.52% N: 90.86%
16 P: 99.78% P: 99.54% N: 95.45% N: 87.41%
32 P: 99.71% P: 99.81% N: 97.35% N: 96.45%
64 P: 99.75% P: 99.59% N: 96.16% N: 96.39%

128 P: 99.85% P: 99.42% N: 96.76% N: 99.25%

To validate the preservation of semantic fidelity between the cover text and modified
text, we employ BERTScore [35] to analyze the texts. BERTScore captures the deep semantic
representations of both the cover text and the modified text. We then use cosine similarity
to compare these representations, ensuring that the intrinsic meanings remain consistent
between the two texts. As shown in Table 2, the modified text effectively maintains the
semantic essence of the cover text.

Table 2. Semantic similarity.

Top m/CS
Text Share 1 Text Share 2

Strategy 1 Strategy 2 Strategy 1 Strategy 1

8 0.954 0.935 0.963 0.928
16 0.954 0.935 0.962 0.935
32 0.952 0.933 0.960 0.931
64 0.953 0.934 0.959 0.933

128 0.953 0.932 0.961 0.932

In summary, the modified text generated by the proposed scheme successfully retains
the information from the cover text, as only one ambiguous word is replaced in each
sentence. Although the text produced using segment strategy 2 exhibits slightly diminished
quality compared to that generated through segment strategy 1, this trade-off yields a
higher embedding capacity. However, this slight degradation in text fidelity also increases
the risk of the text being detected by steganalysis. Therefore, for subsequent experiments,
we select strategy 1 with m = 8. While the embedding capacity is relatively smaller, the
proposed scheme ensures the highest text fidelity, preserving the integrity and meaning of
the original cover text.

4.4. Comparison

We further compared the proposed scheme with two state-of-the-art schemes [25,26]
using a testing set of 1000 sentences. We set m to eight and employed strategy 1 to execute
(2, 3)-threshold linguistic secret sharing. As shown in Table 3, the average embedding
capacities (ECs) in bits per word (bpw) for Xiang et al.’s [25] scheme and Yang et al.’s [26]
scheme are higher than that of our scheme, with values of 0.333 bpw. However, the
proposed scheme exhibits better resistance to steganalysis, with detection accuracies of

Electronics 2024, 13, 4216 11 of 13

0.514 and 0.504 for LSCNN [28] and TSRNN [29] models, respectively, which is lower than
those of the compared schemes. Additionally, our scheme demonstrates a BERTScore of
0.948, indicating better preservation of the semantic information of the cover text.

Table 3. Characteristic comparisons.

Schemes EC LSCNN TSRNN BERTScore Tolerance Metadata

[25] 0.333 0.526 0.513 0.676 No Yes
[26] 0.333 0.594 0.559 0.825 No Yes

Proposed 0.162 0.514 0.504 0.948 Yes No

Although the EC could be enhanced by selecting a larger m or by applying strategy 2,
this would inevitably introduce a trade-off between security and text fidelity, potentially
distorting the naturalness of the generated text and making it more susceptible to detection
or steganalysis. Moreover, our scheme is tolerant of data loss or user failure and requires
no additional information or secret key management (metadata), which is more practical
than the compared schemes.

4.5. Theoretical Analysis for IoT Implementation

Due to limited access to large-scale real-world IoT environments, our study currently
focuses on theoretical analysis and simulations. The proposed scheme leverages pre-
trained models such as GPT-4 and RoBERTa, which can be deployed without additional
training, substantially lowering the implementation threshold. However, the computational
complexity of these models presents significant challenges in IoT contexts. RoBERTa’s
complexity is O

(
n2d

)
, where n is the input sequence length and d is the model dimension.

Assuming an input length of 128 and approximately 300 million parameters, the computa-
tional requirement is about 4.9 × 1012 FLOPs (floating point operations). In comparison,
GPT-4, with around 175 billion parameters, requires approximately 2.9× 1015 FLOPs to gen-
erate a sentence of length 128. This scale of computation is suitable for high-performance
cloud computing environments but may impact the real-time responsiveness of IoT de-
vices. In practical IoT networks, participants could pre-agree on specific model versions
for deployment in local or cloud-based environments. For IoT devices with constrained
computational capabilities, we recommend a cloud deployment strategy to mitigate these
computational demands and ensure efficient operation.

4.6. Limitations

Although the proposed scheme improves the security of secret data through a secret
sharing mechanism, which is unconditionally secure [36], several limitations still need to
be addressed. First, while secret data can be recovered without the need for additional data,
the scheme lacks an authentication mechanism to detect cheating by individual participants.
Additionally, secret sharing requires more storage space because the secret data must be
distributed across multiple shares. Moreover, the proposed ambiguous token selection
algorithm imposes constraints on the embedding capacity of each sentence, potentially
limiting the overall data throughput. Finally, the computational overhead introduced by
neural network operations could become a challenge for resource-constrained IoT devices.
Balancing the trade-off between enhanced security and computational efficiency remains a
critical area for future research and optimization. Our future work will focus on addressing
these issues.

5. Conclusions

In this paper, we introduce a novel linguistic secret sharing scheme via an ambiguous
token selection algorithm for IoT security. Unlike previous schemes, the proposed scheme
does not require sharing additional information for correct data extraction. Moreover, we
employ a secret sharing mechanism to improve security. Experimental results show that

Electronics 2024, 13, 4216 12 of 13

the steganographic text generated by the proposed scheme can effectively preserve the
sentiment and semantic information of the cover text. In the future, we will explore how to
improve the data embedding capacity of the proposed scheme.

Author Contributions: Conceptualization, K.G.; methodology, K.G.; software, K.G.; validation, K.G.,
J.-H.H., and C.-C.C. (Ching-Chun Chang); formal analysis, K.G. and J.-H.H.; investigation, K.G.,
J.-H.H., and C.-C.C. (Ching-Chun Chang); resources, C.-C.C. (Chin-Chen Chang); data curation, K.G.;
writing—original draft preparation, K.G.; writing—review and editing, J.-H.H.; visualization, K.G.;
supervision, C.-C.C. (Chin-Chen Chang); project administration, C.-C.C. (Chin-Chen Chang). All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data can be downloaded from https://huggingface.co, accessed on
25 November 2016.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Litoussi, M.; Kannouf, N.; Makkaoui, K.E.; Ezzati, A.; Fartitchou, M. IoT Security: Challenges and Countermeasures. Procedia

Comput. Sci. 2020, 177, 503–508. [CrossRef]
2. Mohanty, J.; Mishra, S.; Patra, S.; Pati, B.; Panigrahi, C.R. IoT Security, Challenges, and Solutions: A Review. In Progress in

Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2019; Springer: Singapore, 2021; Volume 2, pp. 493–504.
3. Gao, K.; Chang, C.-C.; Horng, J.-H.; Echizen, I. Steganographic Secret Sharing via AI-generated Photorealistic Images. EURASIP J.

Wirel. Commun. Netw. 2022, 2022, 1–23. [CrossRef]
4. Dong, L.; Zhou, J.T.; Sun, W.W.; Yan, D.Q.; Wang, R.D. First Steps Toward Concealing the Traces Left by Reversible Image Data

Hiding. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 951–955. [CrossRef]
5. Dutta, H.; Das, R.K.; Nandi, S.; Mahadeva Prasanna, S.R. An Overview of Digital Audio Steganography. IETE Tech. Rev. 2020, 97,

632–650. [CrossRef]
6. Gao, K.; Horng, J.-H.; Chang, C.-C. Reversible Data Hiding for Encrypted 3D Mesh Models with Secret Sharing over Galois Field.

IEEE Trans. Multimed. 2023, 26, 5499–5510. [CrossRef]
7. Zhang, J.; Ho, A.T.S.; Qiu, G.; Marziliano, P. Robust Video Watermarking of H.264/AVC. IEEE Trans. Circuits Syst. II Express Briefs

2007, 54, 205–209. [CrossRef]
8. Yang, Z.; Guo, X.; Chen, Z.; Huang, Y.; Zhang, Y. RNNStega: Linguistic Steganography Based on Recurrent Neural Networks.

IEEE Trans. Inf. Forensics Secur. 2019, 14, 1280–1295. [CrossRef]
9. Fang, T.; Jaggi, M.; Argyraki, K.J. Generating Steganographic Text with LSTMs. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 100–106.
10. Kang, H.; Wu, H.; Zhang, X. Generative Text Steganography Based on LSTM Network and Attention Mechanism with Keywords.

Electron. Imaging 2020, 32, 1–8. [CrossRef]
11. Guo, Y.; Wu, H.; Zhang, X. Steganographic Visual Story with Mutualperceived Joint Attention. EURASIP J. Image Video Process.

2021, 2021, 1–14. [CrossRef]
12. Yang, Z.; Zhang, S.; Hu, Y.; Hu, Z.; Huang, Y. VAE-Stega: Linguistic Steganography Based on Variational Auto-Encoder. IEEE

Trans. Inf. Forensics Secur. 2020, 16, 880–895. [CrossRef]
13. Yang, Z.; Wei, N.; Liu, Q.; Huang, Y.; Zhang, Y. GAN-TSTEGA: Text Steganography Based on Generative Adversarial Networks.

In Proceedings of the 18th International Workshop on Digital-Forensics and Watermarking, Chengdu, China, 2–4 November 2019;
pp. 18–31.

14. Zhou, X.J.; Peng, W.L.; Yang, B.Y.; Wen, J.; Xue, Y.M.; Zhong, P. Linguistic Steganography Based on Adaptive Probability
Distribution. IEEE Trans. Dependable Secur. Comput. 2022, 19, 2982–2997. [CrossRef]

15. Yan, R.Y.; Yang, Y.T.; Song, T. A Secure and Disambiguating Approach for Generative Linguistic Steganography. IEEE Signal
Process. Lett. 2023, 30, 1047–1051. [CrossRef]

16. Zhang, S.; Yang, Z.; Yang, J.; Huang, Y. Provably Secure Generative Linguistic Steganography. arXiv 2021, arXiv:2106.02011.
17. Yang, Z.; Xiang, L.; Zhang, S.; Sun, X.; Huang, Y. Linguistic Generative Steganography with Enhanced Cognitive-imperceptibility.

IEEE Signal Process. Lett. 2021, 28, 409–413. [CrossRef]
18. Wang, R.; Xiang, L.Y.; Liu, Y.F.; Yang, C.F. PNG-Stega: Progressive Non-Autoregressive Generative Linguistic Steganography.

IEEE Signal Process. Lett. 2023, 30, 528–532. [CrossRef]
19. Wang, Y.; Song, R.; Zhang, R.; Liu, J.; Li, L. LLsM: Generative Linguistic Steganography with Large Language Model. arXiv 2024,

arXiv:2401.15656.
20. Chang, C.-Y.; Clark, S. Practical Linguistic Steganography Using Contextual Synonym Substitution and a Novel Vertex Coding

Method. Comput. Linguist. 2014, 40, 403–448. [CrossRef]

https://huggingface.co
https://doi.org/10.1016/j.procs.2020.10.069
https://doi.org/10.1186/s13638-022-02190-8
https://doi.org/10.1109/TCSII.2020.2981550
https://doi.org/10.1080/02564602.2019.1699454
https://doi.org/10.1109/TMM.2023.3334972
https://doi.org/10.1109/TCSII.2006.886247
https://doi.org/10.1109/TIFS.2018.2871746
https://doi.org/10.2352/ISSN.2470-1173.2020.4.MWSF-291
https://doi.org/10.1186/s13640-020-00543-1
https://doi.org/10.1109/TIFS.2020.3023279
https://doi.org/10.1109/TDSC.2021.3079957
https://doi.org/10.1109/LSP.2023.3302749
https://doi.org/10.1109/LSP.2021.3058889
https://doi.org/10.1109/LSP.2023.3272798
https://doi.org/10.1162/COLI_a_00176

Electronics 2024, 13, 4216 13 of 13

21. Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X. Reversible Natural Language Watermarking Using Synonym Substitution and
Arithmetic Coding. Comput. Mater. Contin. 2018, 55, 541–559.

22. Dai, F.Z.; Cai, Z. Towards Near-Imperceptible Steganographic Text. arXiv 2019, arXiv:1907.06679.
23. Wilson, A.; Ker, A.D. Avoiding Detection on Twitter: Embedding Strategies for Linguistic Steganography. Electron. Imaging 2016,

28, 1–9. [CrossRef]
24. Qiang, J.; Zhu, S.; Li, Y.; Zhu, Y.; Yuan, Y.; Wu, X. Natural Language Watermarking via Paraphraser-Based Lexical Substitution.

Artif. Intell. 2023, 317, 103859. [CrossRef]
25. Xiang, L.Y.; Ou, C.F.; Zeng, D.J. Linguistic Steganography: Hiding Information in Syntax Space. IEEE Signal Process. Lett. 2023, 31,

261–265. [CrossRef]
26. Yang, T.; Wu, H.; Yi, B.; Feng, G.; Zhang, X. Semantic-preserving Linguistic Steganography by Pivot Translation and Semantic-

aware Bins Coding. IEEE Trans. Dependable Secur. Comput. 2024, 21, 139–152. [CrossRef]
27. Ding, C.; Fu, Z.; Yang, Z.; Yu, Q.; Li, D.; Huang, Y. Context-Aware Linguistic Steganography Model Based on Neural Machine

Translation. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 32, 868–878. [CrossRef]
28. Wen, J.; Zhou, X.; Zhong, P.; Xue, Y. Convolutional Neural Network Based Text Steganalysis. IEEE Signal Process. Lett. 2019, 26,

460–464. [CrossRef]
29. Yang, Z.; Wang, K.; Li, J.; Huang, Y.; Zhang, Y.-J. TS-RNN: Text Steganalysis Based on Recurrent Neural Networks. IEEE Signal

Process. Lett. 2019, 26, 1743–1747. [CrossRef]
30. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
31. Liu, Y.H.; Ott, M.; Goyal, N.; Du, J.F.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.
32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In

Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
33. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding.

arXiv 2018, arXiv:1810.04805.
34. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
35. Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.Q.; Artzi, Y. BERTScore: Evaluating text generation with BERT. arXiv 2019,

arXiv:1904.09675.
36. Rashmi, K.V.; Shah, N.B.; Ramchandran, K.; Kumar, P.V. Information-theoretically Secure Erasure Codes for Distributed Storage.

IEEE Trans. Inf. Theory 2018, 64, 1621–1646. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-074
https://doi.org/10.1016/j.artint.2023.103859
https://doi.org/10.1109/LSP.2023.3347153
https://doi.org/10.1109/TDSC.2023.3247493
https://doi.org/10.1109/TASLP.2023.3340601
https://doi.org/10.1109/LSP.2019.2895286
https://doi.org/10.1109/LSP.2019.2920452
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/TIT.2017.2769101

	Introduction
	Preliminary Work
	(k, n) -Threshold Secret Sharing over GF(2m)
	RoBERTa-Masked Language Modeling

	Proposed Linguistic Secret Sharing
	Text Share Generation
	Token Selection Algorithm and Data Embedding Rule
	Secret Share Generation
	Secret Data Recovery

	Experimental Results
	Experimental Setting
	Applicability Demonstration
	Performance Analysis
	Comparison
	Theoretical Analysis for IoT Implementation
	Limitations

	Conclusions
	References

