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Abstract: Distributed parameter systems (DPSs) frequently appear in industrial manufacturing
processes, with complex characteristics such as time–space coupling, nonlinearity, infinite dimension,
uncertainty and so on, which is full of challenges to the modeling of the system. At present, most DPS
modeling methods are offline. When the internal parameters or external environment of DPS change,
the offline model is incapable of accurately representing the dynamic attributes of the real system.
Establishing an online model for DPS that accurately reflects the real-time dynamics of the system
is very important. In this paper, the idea of reinforcement learning is creatively integrated into the
three-dimensional (3D) fuzzy model and a reinforcement learning-based 3D fuzzy modeling method
is proposed. The agent improves the strategy by continuously interacting with the environment, so
that the 3D fuzzy model can adaptively establish the online model from scratch. Specifically, this
paper combines the deterministic strategy gradient reinforcement learning algorithm based on an
actor critic framework with a 3D fuzzy system. The actor function and critic function are represented
by two 3D fuzzy systems and the critic function and actor function are updated alternately. The
critic function uses a TD (0) target and is updated via the semi-gradient method; the actor function is
updated by using the chain derivation rule on the behavior value function and the actor function is
the established DPS online model. Since DPS modeling is a continuous problem, this paper proposes
a TD (0) target based on average reward, which can effectively realize online modeling. The suggested
methodology is implemented on a three-zone rapid thermal chemical vapor deposition reactor system
and the simulation results demonstrate the efficacy of the methodology.

Keywords: distributed parameter system; fuzzy modeling; reinforcement learning; online modeling;
3D fuzzy system

1. Introduction

Distributed parameter systems (DPSs) are prevalent in the real world, such as flexible
beams [1], transport reaction processes [2] and heat processes [3]. Modeling these systems
is crucial for the design, optimization, dynamic prediction and control. However, due to
the complex system characters, such as time–space coupling, infinite dimension and so on,
it is difficult to model these systems.

In the last several decades, many modeling methods of DPS have been proposed and
these methods may be broadly classified into two distinct types. Grey/black box modeling
with unknown partial differential equations [4–7] and first principles modeling with known
partial differential equations (PDEs) [8–13] are the two types of modeling. Obtaining
an accurate mathematical description of a system using partial differential equations is
challenging due to imperfect understanding of physical and chemical processes. Compared
with the first principles modeling method, the grey/black box modeling method is used
more widely in practice. This study concentrates on the black box modeling method,
which involves developing a model for a DPS without knowledge of the system’s partial
differential equation structure or its parameters.
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The black box modeling method drives a model for the DPSs in a data-driven style [14].
To date, the most common data-driven modeling methods [15–18] of DPSs are based on KL
decomposition, such as KL-MLP-LSTM [19], in which the infinite dimensional spatiotem-
poral coupling data are reduced to finite dimensional by KL decomposition, and the space
base function is extracted from it, then the time series model is constructed by MLP-LSTM
and finally the DPS model is completed by spatiotemporal synthesis. In Ref. [20], two
neural network modeling methods are proposed. One is to use the control quantity and
position information as the input and the output of the system is the system mathematical
model obtained by training the neural network. The other is that singular value decom-
position (SVD) is employed to separate the output data of the system in time and space,
then a neural network is used to identify the relationship between the control variables and
time coefficients and finally the finite low dimensional model of the system is generated
via space–time reconstruction. Although the KL decomposition-based methods have been
successfully employed in many applications, they neglect the influence of nonlinear space
dynamics and depend on model reduction, which can lead to precision loss.

In recent years, a novel DPS modeling method has been developed: three-dimensional
(3D) fuzzy modeling [21–23]. The preceding and resulting components of a 3D fuzzy
system are the temporal coefficient and space base function, respectively. This is a natural
implementation of time–space separation and time–space reconstruction. The time–space
separation is achieved through the computation of the preceding and resulting components,
while the time–space reconstruction is achieved through the union of all activated 3D rules.
The 3D fuzzy modeling method has two distinct advantages: linguistic interpretability and
a lack of dependence on model reduction. A novel 3D fuzzy modeling framework without
model reduction was proposed in Ref. [24], where a 3D fuzzy model is established by
employing the nearest neighbor clustering algorithm, the similarity analysis and multiple
support vector regression. The method described in Reference [25] employed spatial
multiple output support vector regression (MSVR) to construct a comprehensive 3D fuzzy
rule foundation. However, the above methods are offline modeling methods, i.e., historical
data-driven models. As the internal or external parameters of a distributed parameters
system change over time, the performance of the offline model will become worse and
worse [26].

Therefore, DPS online modeling has become a research hotspot recently. In Ref. [27],
Wang and Li proposed an online modeling method based on incremental spatiotemporal
learning. The methods of incremental learning iteratively update the space base function
and the accompanying temporal model. In reference [28], Lu et al. introduced a nonlinear
time-varying support vector machine model that depended on a spatiotemporal linear
support vector machine. This model combined the adaptable space kernel functions with
an online time factor model to reconstruct the DPS system. However, those online modeling
methods have a complex modeling process and lack language interpretability.

Compared to the traditional learning methods, the reinforcement learning-based
methods are naturally implemented in an incremental way based on immediate rewards
obtained during the interaction, enabling online learning for different tasks. Reinforcement
learning, as a very active algorithm in the field of machine learning, has been used in
many disciplines like [29], control [30,31], recognition [32], batching [33], scheduling [34]
and optimization [35,36]. Reinforcement learning algorithms learn the optimal policy
directly from interactions with the environment, i.e., DPS in this paper. The fundamental
components of reinforcement learning algorithms include policy, reward function, value
function and environment.

Reinforcement learning algorithms may be categorized into two main types: value
function-based reinforcement learning and direct policy search-based reinforcement learn-
ing, depending on the methodologies of policy updating and learning [37]. For value
function-based reinforcement learning algorithms, David Sliver proposed DQN (Deep
Q-network) [38] by combining deep neural network with reinforcement learning. There is
also FQ-learning [39] which combines a custom fuzzy system with Q-learning. As for direct
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policy search-based reinforcement learning, David Sliver et al. [33] proposed DPG (deter-
ministic policy gradient) and proved for the first time that a deterministic policy gradient
exists. DPG uses a deterministic policy and outputs deterministic actions for each state, so
it avoids expectation in the action space and greatly increases the sample utilization.

In recent years, the combination of reinforcement learning (RL) and fuzzy systems
has become an important research direction in the field of intelligent control and decision-
making systems. This combination aims to leverage the adaptive and self-optimizing
capabilities of RL and the advantages of fuzzy systems in handling uncertainty and fuzzy
information, thereby creating more intelligent and robust systems. The integration of RL
and fuzzy systems, often referred to as fuzzy reinforcement learning (FRL), combines the
learning abilities of RL with the rule-based reasoning of fuzzy systems to effectively solve
decision-making problems in complex environments. Specifically, fuzzy systems can serve
as approximators for RL’s policy functions or value functions, helping agents make smooth
decisions in continuous spaces. Additionally, RL can automatically adjust the rules and
parameters of fuzzy systems through online learning, thereby enhancing the adaptability
and performance of the system. In Reference [40], a fuzzy Q-learning method was proposed
to achieve the online tuning of a PID controller. By introducing a fuzzy system, it addresses
the issue that the traditional Q-learning algorithm cannot handle continuous state–action
spaces. The paper proposed a fuzzy Q-learning multi-agent system algorithm, where three
agents were used to control the three variables of the PID controller and experimental
results demonstrate the effectiveness of this method. In Reference [41], a method based on
fuzzy actor–critic reinforcement learning was proposed to address the tracking problem.
By using a fuzzy system, it enhanced the interpretability of network parameters, making
the mapping structure easier to trace and understand. Compared with an artificial neural
network, a fuzzy system is more explainable and it allowed the incorporation of necessary
human knowledge to construct the inference rules. In Reference [42], an Intelligent Traffic
Control Decision-Making method based on Type-2 Fuzzy and Reinforcement Learning
was proposed. In this method, the output action of the Type-2 fuzzy control system
replaced the action of selecting the maximum output Q-value of the target network in the
DQN algorithm, reducing the error caused by the max operation in the target network.
In Reference [43], a dynamic fuzzy Q-learning method was proposed, which enabled the
automatic learning of the structure and parameters of the fuzzy system based on Q-learning.
The effectiveness of the proposed method was validated through the wall-following task of
mobile robots.

However, there is very little research on applying reinforcement learning and a fuzzy
system to modeling distributed parameter systems. As far as we know, Wang Z. et al. [44]
introduced a modeling method for DPSs based on reinforcement learning algorithms.
The fundamental concept is to represent the arrangement of measurement sensors in the
DPS as a Markov Decision Process model and then use a reinforcement learning method
based on a value function to ascertain the most advantageous sensor placement. However,
this method employs an offline modeling method, meaning that once the sensor positions
are determined, they remain fixed. When the dynamic characteristics of the distributed
parameter system change, the initially optimal sensor placement may no longer be optimal,
resulting in a substantial decrease in the accuracy of the model.

This study introduces a novel reinforcement learning-based method for online 3D
fuzzy modeling. Based on the actor–critic framework, using the deterministic strategy
gradient theory, two 3D fuzzy systems are used to represent the actor function and the critic
function, respectively, and the critic function and actor function are updated alternately.
The critic function uses TD (0) target and is updated by the semi-gradient method; the
actor function changes via incorporating the chain derivation rule to the behavior value
function. The actor function serves as the established DPS online model. Because DPS
online modeling is a continuous problem, it has been in progress without termination.
Thus, the average reward return is used and the actor can update itself for each data in real
time, so as to realize online modeling.
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The main contribution are as follows:

1. The actor–critic framework is combined with 3D fuzzy systems to construct a novel
online 3D modeling method using the deterministic policy gradient reinforcement
learning algorithm.

2. Three-dimensional fuzzy deterministic policy gradient algorithm with average reward
set is proposed to solve the continuing modeling problem of DPS. The chosen reward
set is the average rate of reward every time step, which defines the performance.

3. This online modeling method has the ability to build an online model adaptively from
scratch without human knowledge.

The subsequent sections of this work are structured in the following manner. Section 2
outlines the concept of the DPS modeling issue. Section 3 provides a comprehensive
description of the suggested method for modeling a 3D fuzzy system using reinforcement
learning in an online setting. The suggested modeling technique is used in a rapid thermal
chemical vapor deposition system and the outcome of the experiment is shown in Section 4.
Section 5 provides the final conclusion.

2. Problem Formulation

DPS commonly appears in industrial manufacturing processes. Taking the rapid
thermal chemical vapor deposition (RTCVD) system in the semiconductor industry as an
example, we introduce the characteristics and mathematical description of a DPS.

Figure 1 displays the schematic of an RTCVD system. A 6-inch silicon wafer is placed
on a rotating platform inside the chamber of the system and exposed to heat from a heating
apparatus. There are three lamp banks that make up the heating system. The first lamp
bank warms the wafer’s surface evenly. The second lamp bank heats only the wafer’s
edges and the third lamp bank warms the wafer evenly all over. Figure 2 shows the
heating lamps’ output incident radiation flux. The reactor is fed 10% concentration of
silane gas (SiH4). After breaking down, SiH4 yields silicon (Si) and hydrogen gas (H2).
After about one minute, the wafer is covered with a 0.5 µm thick layer of polysilicon
that has been deposited at temperatures of at least 800K. The support is rotated to ensure
that the temperature is distributed evenly in the azimuthal direction when the wafer is
processing. Because the wafer is very thin, the temperature change in the Z − axis direction
is ignored. Therefore, providing a uniform temperature distribution along the length of
the wafer radius becomes the decisive factor for depositing a uniform layer of polysilicon
on the wafer surface. The uniform distribution of the temperature can be controlled by
adjusting the power of the heating lamp group in the three zones. This thermal dynamic
characteristic can be described by a one-dimensional spatiotemporal coupled PDE model,
as follows:

∂T′
f /∂t′ = k0[(1/ f ′)∂T′

f /∂ f ′ + ∂2T′
f /∂ f ′2] + σ0(1 − T′

f
4
) + w f q1( f ′)u1 + w f q2(r′)u2 +w f q3(r′)u3 (1)

The above PDE is constrained by the following boundary conditions:

s.t.

 T
′
f /∂ f

′
= σed

(
1 − T′4

f

)
+ qedub when f

′
= 1

∂T
′
f /∂ f

′
= 0 when f

′
= 0

(2)

T′
f represents the dimensionless wafer temperature, expressed as Tf /Tamb. Here, Tf

represents the actual wafer temperature and Tamb represents the ambient temperature.
In this study, Tamb=300K. t′ represents the dimensionless time, expressed as t

τ . Here, t
represents the actual time and τ is 2.9s. f ′ represents the dimensionless radius position,
expressed as f

Rw
. Here, f represents the actual radius position and Rw is 7.6 cm. u1, u2 and

u3 represent the power of three heating lamp groups, respectively. q1( f ′), q2( f ′), q3( f ′)
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represent the radiation flow of the three zone heating lamp group incidents on the wafer,
respectively. The parameters in Equations (1) and (2) are listed as follows:

k0 = 0.0021, σ0 = 0.0012, σed = 0.0037, qed = 4.022, w f = 0.0256.

where k0 is the thermal conductivity of the wafer, σ0 is the emissivity of the quartz chamber,
σed is the is the emissivity of the wafer, qed is the incident radiation flux at the edge of the
wafer and w f is the density of the wafer.

Figure 1. Structure of the RTCVD.

Figure 2. The distribution of radiation flux from a bank of heating lamps with three zones.
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The RTCVD system is an infinite dimensional system with spatiotemporal coupling
properties and is an infinite dimensional system. Tf ( f , t) can be spatiotemporally separated
into an infinitely weighted summation of space base functions and time factors.

Tf ( f , t) =
∞

∑
i=1

yiωi( f ) (3)

where yi denotes a time coefficient and ωi( f ) denotes a space base function. In practice, this
means that only a limited number of sensors at f1, f2, · · · , fp may be used. Let Z̄ denote the
space domain, i.e., Z̄ = [ f1, f2, · · · , fp]. T(Z̄, t) = [Tf ( f1, t), Tf ( f2, t), · · · , Tf ( fp, t)] denotes
the spatial output.

Then, Tf ( f , t) may be essentially represented by Equation (4).

Tf ( f , t) =
n

∑
i=1

yiωi( f ) (4)

In this process, Tf ( f , t) is simplified from Equation (3) to Equation (4), which is called
dimension reduction. In the absence of the mechanism model delineated in Equations (1)
and (2), the time coefficient in Equation (4) may be determined using conventional methods.
And the space base function in Equation (4) can be estimated by the KL decomposition
technique. In fact, most current DPS modeling methods utilize the dimension-reduction
technique. However, it has a limit, ignoring dynamic aspects and ambiguities in the
identified model because of the reduced dimensionality.

The 3D fuzzy modeling method is a novel modeling technique that has been es-
tablished in the last few years. This method naturally integrates spatiotemporal separa-
tion and spatiotemporal reconstruction into 3D fuzzy rules without dimension reduction
and has language interpretability. This paper incorporates reinforcement learning into
3D fuzzy modeling and presents a novel method for online 3D fuzzy modeling using
reinforcement learning.

3. Reinforcement Learning-Based Online 3D Fuzzy Modeling

This section first introduces the Markov Decision Process (MDP) model as the basis
of DPS modeling utilizing reinforcement learning. Then, the core content of this paper,
3D fuzzy deterministic policy gradient (3DFDPG) reinforcement learning, is described in
detail, including the deterministic policy gradient algorithm, 3D fuzzy modeling and the
fusion of them: 3DFDPG modeling method. Finally, under an actor–critic framework, it
describes how to update the parameters of a 3D fuzzy system, including the update of
actor function parameters and critic function parameters and the calculation process of the
3DFDPG modeling method.

3.1. MDP Model of the DPS Online Modeling Problem

Given the input and output data, we can derive the Markov Decision Process (MDP)
model for the DPS, which is represented as a 5-tuple < S, A, R, T, γ >, where S and A,
respectively, represent the sets of states and actions, R represents the reward function
(R(s, a|s ∈ S, a ∈ A) denotes the expected reward when taking action a in state s), T is the
transition function (T(s′ ∈ S|s ∈ S, a ∈ A) denotes the probability of transitioning to state
s′ from s when taking action a and γ ∈ [0, 1] is the discount factor.

The output y(Z̄, t) of a DPS is determined by the past outputs [y(Z̄, t − 1), y(Z̄, t −
2), ..., y(Z̄, t−K)] and input u(t− 1), u(t− 2), · · · , u(t−G), where u(t) = [u1(t), · · · , um(t)].
For simplicity and without loss of generality, we consider the one-order case in this study,
i.e., K = 1, G = 1, where y(Z̄, t) depends on y(Z̄, t − 1) and u(t − 1). The DPS modeling
problem can be expressed as an MDP. The state st ∈ S is written as follows.

st = [u(t), y(Z̄, t)] (5)
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The action at ∈ A is defined as ŷ(Z̄, t + 1) which is the predicted DPS output at time
step t + 1, i.e.,

at = ŷ(Z̄, t + 1) (6)

The reward function R(s, a) is given by Equation (7).

R(s, a) = −
√
(ŷ(Z̄, t + 1)− y(Z̄, t + 1))2 (7)

The transition function T(s, a, s′) is determined by the inherent dynamics of the DPS,
which include its physical attributes and control inputs. γ is a fixed discounted factor.

Figure 3 illustrates the architecture of the suggested online modeling method, where
two 3D fuzzy systems are used. One is taken as the function of actor and the other is
viewed as the role of a critic. The actor 3D fuzzy system serves as the DPS model, which
takes st as input and exports the predicted value ŷ(Z̄, t + 1) as action at every time step
t, then the environment exports reward R according to Equation (7). The critic-3D fuzzy
system takes the state st and the action at as input and exports the action value Q(st, at).
The main process of the proposed algorithm is interleaving evaluation and improvement of
the actor’s policy. This work employs the temporal-difference method to assess the action
value function Q(s, a) (also known as the critic function) and thereafter enhance the actor’s
policy by adjusting the policy along the gradient of the function.

Figure 3. The structure of online 3D-fuzzy modeling using reinforcement learning.

3.2. 3D Fuzzy Deterministic Policy Gradient Reinforcement Learning for DPS Online Modeling

Given the MDP model of the DPS modeling problem, the fusion of reinforcement
learning and the 3D fuzzy system produces a novel 3D fuzzy reinforcement learning
algorithm for DPS online modeling.

In order to describe the 3D fuzzy reinforcement learning algorithm well, we first intro-
duce the principle of the deterministic policy gradient algorithm and 3D fuzzy modeling.

3.2.1. Deterministic Policy Gradient Algorithm

Deterministic policy gradient (DPG) is a specific type of policy gradient method that
aims to optimize J(θ). The fundamental concept underlying the DPG is to modify the
policy parameters θ in accordance with the gradient ∇θ J(µθ) of the performance measure.
The DPG typically relies on the actor–critic architecture, as depicted in Figure 4.
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Figure 4. The actor–critic structure.

The deterministic policy gradient theorem examines a policy function µθ(s) = µ(s|θ)
that is deterministic and has a parameter vector θ for the policy. The term ’deterministic’
indicates that the action is chosen based on a deterministic policy µθ : S− > A with
parameter θ ∈ Rn, rather than a policy represented by a parametric probability distribution,
which is known as SPG. The existence of the DPG is demonstrated in Reference [45] and the
DPG theorem is established.

Assuming that the MDP fulfills the conditions µθ(s), ∇θµθ(s), r(s, a) and ∇ar(s, a),
which are continuous in all parameters and variables s, a, s′, it can be inferred that the
conditions ∇θu(s|θ) and ∇aQu(s, a) also exist and consequently, the DPG exists. Then:

∇θ J(µθ) = Es∼ρµ [∇θµθ(s)∇aQµ(s, a)|a=µθ(s)] (8)

where Qµ(s, a) represents the action value function , ρµ(s) represents the discounted state
distribution (analogous to the stochastic case) and J(µθ) represents the performance ob-
jective. These variables are defined with regard to a deterministic policy µ and parameter
θ. Empirical evidence shows that the DPG algorithm can achieve superior performance
compared to stochastic algorithms when dealing with high-dimensional action spaces [45].
Additionally, DPG is able to circumvent the challenges associated with integrating through-
out the entire action space.

3.2.2. 3D Fuzzy Modeling

3D fuzzy modeling [21] is an innovative intelligent modeling method designed for
nonlinear DPSs in recent years. This method presents a novel fuzzy model equipped to
handle and articulate time/space-coupled information. The 3D fuzzy model is distinct
from conventional fuzzy models as it is based on the concept of 3D fuzzy sets [21].

As demonstrated in Figure 5, the 3D fuzzy model provides a cohesive structure for
effectively combining time–space separation with time–space reconstruction. Therefore,
it can be inferred that DPS modeling is achievable regardless of the necessity of model
reduction within the context of the 3D fuzzy model.
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Figure 5. Framework of 3D fuzzy modeling.

The 3D fuzzy rule in Figure 5 is rewritten as in Equation (9).
R̄∗

1 : I f y(Z̄, t − 1) is Ō11 and · · · and um(t − G) is UG1
m Then y(Z̄, t) is φ1(Z̄)

...
...

R̄∗
N : I f y(Z̄, t − 1) is Ō1N and · · · and um(t − G) is UGN

m Then y(Z̄, t) is φN(Z̄)

(9)

where φl(Z̄) denotes a space base function, Ōsl denotes a 3D fuzzy set, Uhl
g denotes a

conventional fuzzy set, h = 1, 2, ..., G, g = 1, 2, ..., m, s = 1, 2, ..., K, l = 1, 2, ..., N, N indicates
the quantity of fuzzy rules.

The preceding component in R̄∗
l is utilized to calculate temporal coefficients, while the

resulting component in R̄∗
l is utilized to depict space functions. The rule R̄∗

l intrinsically
accomplishes the role of separating time and space, similar to the traditional modeling of
time and space in DPS. The process of time–space reconstruction is achieved by combining
active 3D fuzzy rules. It has been shown that the 3D fuzzy model has the ability to
approximate any function universally [46].

Like the neural network, the 3D fuzzy model also has the layer structure shown in
Figure 6.

Figure 6. Framework of 3D fuzzy modeling.

The 3D fuzzy model is presumed to possess two distinct categories of inputs. One
is the measured space–time coupled data [y(Z̄, t − 1), y(Z̄, t − 2), ..., y(Z̄, t − K)] with
y(Z̄, t) = [y( f1, t), · · · , y( fp, t)]; the other is traditional data u = [u1(t − 1), . . . , um(t − G)].
Within the fuzzy layer, there exist conventional fuzzy sets and 3D fuzzy sets that corre-
spond to two distinct types of inputs. Suppose a Gaussian-type membership function is
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used. The “and” operation of multiple 3D fuzzy memberships and the “and” operation of
multiple conventional memberships of the inputs are shown as Equations (10) and (11).

µφl =
p

∑
j=1

aj

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
) (10)

µGl =
m

∏
i=1

G

∏
k=1

exp(−((ui(t − k)− dl
ik)/δl

ik)
2
) (11)

where cl
ij and σl

ij denote the centroid and spread of the Gaussian 3D fuzzy set Ōil at the jth

sensor position; dl
ik and δl

ik represent the centroid and spread of the conventional Gaussian
fuzzy set Ukl

i ; aj represents the weight of the jth sensor position.
In the t-norm product layer, the active intensity of the rule is determined via combining

the membership of each input in each rule, as in Equation (12).

gl(t) = µφl µGl (12)

In the weight layer, the active rules are normalized and output is given as Equation (13).

O =

N
∑

i=1
gl(t)φl(Z̄)

N
∑

i=1
gl(t)

(13)

where O represents the output generated by the 3D fuzzy model. Weight layer is known as
the weight average defuzzification method. Up to now, 3D fuzzy modeling belongs to the
offline category. In the next subsection, we will introduce the online 3D fuzzy modeling
method based on reinforcement learning in detail.

3.2.3. 3DFDPG Modeling Method

The fusion of deterministic policy gradient algorithm and 3D fuzzy system generates
3D fuzzy deterministic policy gradient reinforcement (3DFDPG) learning. When it is used
as DPS online modeling, we call it 3DFDPG modeling for short. Figure 7 illustrates the
detailed structural framework of 3DFDPG modeling.

As seen in Figure 7, the environment is composed by a DPS. T(t) is the DPS’s
output at time step t, i.e., T(t) = y(Z̄, t). u(t) is the DPS’s input. The state st, ac-
tion at, reward rt and next state st+1 of the environment are set as st = (u(t), y(Z̄, t)),

at = ŷ(Z̄, t + 1), rt = −
√
(ŷ(Z̄, t + 1)− y(Z̄, t + 1))2 and st+1 = (u(t + 1), y(Z̄, t + 1)),

respectively. The 3DFDPG algorithm utilizes an actor–critic structure as its foundation.
The actor receives an environmental state as input and generates an action to be applied to
the environment. The environment provides a subsequent state and a reward based on the
action taken. The critic receives the actor’s action and the current state of the environment
as input and produces an action value (also known as Q-value) for the specific state–action
combination. The critic’s parameters are updated using the TD error. On the other hand,
the actor’s parameters are updated by moving in the direction of the gradient of the action
value function. Reinforcement learning may be prone to instability or be divergent when
the action value function is represented by a nonlinear function approximator. To address
this issue, the use of a replay buffer and target value method [38] is recommended.
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Online DPS modeling is a continuous problem where the ongoing interaction between
the actor and the environment is perpetual, lacking any termination states; therefore, the av-
erage reward setting [47] is needed. The average reward rate is defined as Equation (14).

R(µ) = lim
h→∞

1
h

h

∑
t=1

E[Rt|S0, A0:t−1∼π ]

= lim
t→∞

E[Rt|S0, A0:t−1∼π ]

= ∑
s∈S

τ(s) ∑
a∈A

µ(a|s) ∑
s′∈S,r

p(s′, r|s, a)r

(14)

where τ represents a stable distribution given the condition of µ, S is a set of states, A is a
set of actions, p : S × A × S × R → [0, 1] is the state transition probability which implies
the dynamics of the environment and r is the reward at every time step. In the average
reward setting, returns are defined in terms of differences between rewards and the average
reward, as in Equation (15).

Gt
.
= Rt+1 − R(µ) + Rt+2 − R(µ) + Rt+3 − R(µ) + · · · (15)

where Gt is the long time return, Rt+1 is the reward at time step t + 1 and R(µ) is the
average reward under the policy µ.
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Figure 7. Structural framework of 3DFDPG in detail.
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Then, the action value functions Q(s, a) for all s ∈ S, a ∈ A are defined as in Equation (16).

Q(s, a) = Eµ[Gt|St = s, At = a]

= E[Rt+1 − R(µ) + Gt+1|St = s, At = a]

= E[Rt+1 − R(µ) + Q(St+1, At+1)|St = s, At = a]

= ∑
a

µ(a|s)∑
s′ ,r

p(s′, r|s, a)[r − R(µ) + v(s′)]

(16)

The Bellman equation of the action value function Q(s, a) for all a ∈ A, s ∈ S is defined
as Equation (17).

Q(s, a) = E[Rt+1 − R(µ) + Q(St+1, At+1)|St = s, At = a] (17)

Then, the TD error is defined as Equation (18).

δt
.
= Rt+1 − R̄t+1 + Q̂(St+1, At+1)− Q̂(St, At) (18)

where R̄t+1 is an estimate at time t + 1 of the average reward R(µ) and Q̂(St, At) is an
estimate at time t of the action value function.

The average reward is updated by a soft style as in Equation (19).

R̄t+1 = βR̄t + (1 − β)δt (19)

where β represents the update factor.
The mathematical description of the actor and critic is shown below. The actor function

µ(s)’s structure is constructed as in Equation (9), which is rewritten as Equation (20)
R̄∗

1 : I f y(Z̄, t − 1) is Ō11 and · · · and um(t − G) is UG1
m Then y(Z̄, t) is φ1(Z̄)

...
...

R̄∗
N : I f y(Z̄, t − 1) is Ō1N and · · · and um(t − G) is UGN

m Then y(Z̄, t) is φN(Z̄)

(20)

If the Gaussian-type member function, singleton 3D fuzzification, average defuzzi-
fication and product t-norm are selected for a 3D fuzzy model, the following nonlinear
mathematical statement is provided as Equation (21).

µ(s) = ŷ(Z, t)

=

∑N
i=1

{
∑

p
j=1 al

j ∏K
i=1 exp(−((y( f j, t − i)− cl

ij)/σl
ij)

2)

×∏m
i=1 ∏G

k=1 exp(−((ui(t − k)− dl
ik)/δl

ik)
2)

}
φl(Z)

∑N
i=1

{
∑P

j=1 al
j ∏J

i=1 exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2)

×∏m
i=1 ∏G

k=1 exp(−((ui(t − k)− dl
ik)/δl

ik)
2)

}

=
∑N

i=1 gl(t)φl(Z̄)

∑N
i=1 gl(t)

(21)

where
gl(t) = µφl ∗ µGl ,

µφl =
p
∑

j=1
aj

K
∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
),

µGl =
m
∏
i=1

G
∏

k=1
exp(−((ui(t − k)− dl

ik)/δl
ik)

2
).

φl(Z̄) is the Fourier base function, which can be given as Equation (22).

φl(Z̄) = alsin(bl Z̄) + clcos(bl Z̄) + dl (22)
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The action value function Q(s, a) is constructed with the structure as expressed in
Equation (23).

R̄∗
1 : I f ŷ(Z̄, t) is Ō01 and y(Z̄, t − 1) is Ō11 and · · · and um(t − G) is UG1

m

Then Q(s, a) is Q1

...
...

R̄∗
N : I f ŷ(Z̄, t) is Ō0N and y(Z̄, t − 1) is Ō1N and · · · and um(t − G) is UGN

m

Then Q(s, a) is QN

(23)

where Uhl
g represents a conventional fuzzy set, Ōsl represents a 3D fuzzy set, Ql represents

a constant, g = 1, 2, ..., m, s = 0, 1, ..., K, l = 1, 2, ..., N, h = 1, 2, ..., G and N indicates the
quantity of fuzzy rules.

Similar to the actor function, Equation (24) is provided for the mathematical expression
of the action value function Q(s, a).

Q(s, a) =

N
∑

l=1



P

∑
j=1

al
j exp(−((ŷ( f j, t)− cl

0j)/σl
0j)

2
)

P

∑
j=1

al
j

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

×
m

∏
i=1

G

∏
k=1

exp(−((ui(t − k)− dkl
i )/δkl

i )
2
)


N
∑

l=1



P

∑
j=1

al
j exp(−((ŷ( f j, t)− cl

0j)/σl
0j)

2
)

P

∑
j=1

al
j

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

×
m

∏
i=1

K

∏
k=1

exp(−((ui(t − k)− dkl
i )/δkl

i )
2
)


Ql

=
∑N

i=1 hl(t)Ql

∑N
i=1 hl(t)

(24)

where
hl(t) = µdl µφl µGl ,

µdl = exp(−((ŷ( fi, t)− cl
0j)/σl

0j)
2),

µφl =
p
∑

j=1
aj

K
∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
),

µGl =
m
∏
i=1

G
∏

k=1
exp(−((ui(t − k)− dl

ik)/δl
ik)

2
).

3.3. Update Process of Parameters for 3D Fuzzy Systems

For a discrete state–action space with restricted options, the action value of each state
may be enumerated, that is, tabular reinforcement learning. In the tabular reinforcement
learning, the action value Q(s, a) is updated by the Bellman equation [47]. Then, the policy
optimization is completed by taking the maximum action a corresponding to different states.
As the action value function Q(s, a) is a continuous function, it is challenging to determine
the utmost value when the state action space is continuous. Instead, a straightforward and
computationally appealing alternative is to shift the policy in the direction of the gradient
of Q(s, a), rather than globally maximizing Q(s, a).

The action value function is specified by the following Equation (25):

Q(s, a) = E[Gt|St = s, At = a] (25)
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Equation (25) shows that Q(s, a) is the expected return after taking action a and
following strategy µ from state s. The goal of reinforcement learning is to find an optimal
strategy to maximize Q(s, a) for each state action pair, which is equivalent to maximizing
the total expected return Gt. Equation (26) gives the return Gt as the sum of future rewards:

Gt = Rt+1 − R(µ) + Rt+2 − R(µ) + Rt+3 − R(µ) + · · ·+ Rt+N − R(µ) (26)

where Rt+1, Rt+2, Rt+3, · · · is the immediate reward for the future time step and R(µ) is the
average reward under strategy µ. Since R(µ) remains unchanged under the same strategy
µ, in order to maximize Gt, it is necessary to maximize every reward Rt+1, Rt+2, · · · , Rt+N
in the future. According to Equation (7), it is established that when the immediate reward
Rt reaches its maximum value, the discrepancy between the predicted output of the online
3DFDPG model and the actual system output is zero. If the immediate reward Rt is not at
its peak value, then a bigger Rt results in increased model accuracy, but a lower Rt leads to
decreased accuracy. Therefore, the 3DFDPG algorithm maximizes the action value function
Q(s, a) by updating the strategy µ, which is equivalent to maximizing the expected return
Gt by maximizing the immediate reward.

So the performance objective J(µθ) is defined as in Equation (27).

J(µθ) = Es∼µθ
[Q(s, a)] (27)

By the chain rule, the update of policy’s parameters is shown as Equation (28).

θ
µ
k+1 = θ

µ
k + α

1
N ∑∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θ

µ
k
µ(s|θµ)|st (28)

where θ
µ
k is the parameters of the policy µ, N is the number of samples and α is the

learning rate.
The critic function takes TD(0) as the target; the loss function is shown as Equation (29).

Loss =
1
N ∑

1
2
(yt − Q(s, a)|θQ)2 (29)

where yt is the TD(0) target defined as Equation (30).

yt = rt − R̄t + Q′(st+1, µ′(st+1|θu′
)|θQ′

) (30)

The update of the action value function’s parameters is shown as Equation (31).

θQ
k+1 = θQ

k + α
1
N ∑(yt − Q(s, a)|θQ)∇θQ Q(s, a|θQ) (31)

where θQ
k is the parameters of the action value function; the detail of the parameter’s

updating is given in the following subsection.
In this paper, because of the instability that directly uses the 3D fuzzy system as

the nonlinear approximators, the target critic and the target actor are adopted. Rather
than updating the target parameters by directly copying the original 3D fuzzy model’s
parameters, Equation (32) is utilized to modify the parameters of the target 3D fuzzy model.

θQ′
= γθQ + (1 − γ)θQ′

θµ′
= δθµ + (1 − δ)θµ′ (32)

where γ and δ are the update factors.
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3.3.1. The Parameter Updating of the Actor Function in Detail

The actor described in Section 3.2.3 is updated by the performance objective as
Equation (27). Equation (27) is subjected to the chain rule, resulting in the derivation
of Equation (33).

∇θ J(µθ) = E[∇aQ(s, a)|a=µ(s)∇θµ(s)] (33)

where a = (ŷ( f1, t), ŷ( f2, t), · · · , ŷ( fp, t)). Then, the partial derivative with respect to a
yields Equation (34).

∇aQ(s, a) = (∇ŷ( f1,t)Q(s, a),∇ŷ( f2,t)Q(s, a), . . . ,∇ŷ( fp ,t)Q(s, a)) (34)

∇ŷ( f j ,t)Q(s, a) =
N

∑
l=1

∂Q
∂hl(t)

∂hl(t)
ŷ( f j, t)

(35)

From Equation (24), the term ∂Q/∂hl(t) and the term ∂hl(t)/ŷ( f j, t) can be determined
by Equations (36) and (37).

∂Q
∂hl(t)

=
Ql − Q

∑N
i=1 hl(t)

(36)

∂hl(t)
ŷ( f j, t)

= µφl µGl aj exp(−((ŷ( f j, t)− cl
0j)/σl

0j)
2
)
−2(ŷ( f j, t)− cl

0j)

(σl
0j)

2 (37)

Substituting Equations (36) and (37) into (35), the gradient of Q in relation to a is given
as in Equation (38).

∇ŷ(zj ,t)Q(s, a) =
N

∑
l=1

Ql − Q

∑N
i=1 hl(t)

µφl uGl aj exp(−((ŷ(zj, t)− cl
0j)/σl

0j)
2
)
−2(ŷ(zj, t)− cl

0j)

(σl
0j)

2
(38)

According to the same process as above, we can obtain ∂µ(s)/∂θu. θµ is the parameter
vector of the actor function, described by Equation (39).

θµ = (cl
ij, σl

ij, dl
ik, δl

ik, al , bl , cl , dl)(j = 1, . . . , p; i = 1, . . . , m; l = 1, . . . , N) (39)

Then, the partial derivative of the policy with respect to the parameter θ is shown in
Equation (40).

∇θµ(s) = (
∂µ

cl
ij

,
∂µ

σl
ij

,
∂µ

dl
ik

,
∂µ

δl
ik

,
∂µ

al
,

∂µ

bl
,

∂µ

cl
,

∂µ

dl
) (40)

where cl
ij and σl

ij denote the centroid and spread of the Gaussian 3D fuzzy set Ōil at the jth

sensor position; dl
ik and δl

ik represent the centroid and spread of the conventional Gaussian
fuzzy set Ukl

i , al , bl , cl , dl denote the coefficients of the base function in Fourier space.
From Equations (21) and (22), we can derive the partial derivative of the policy ∂µ

cl
ij

, ∂µ

σl
ij

,

∂µ

dl
ik

, ∂µ

δl
ik

, ∂µ
al

, ∂µ
bl

, ∂µ
cl

, ∂µ
dl

, shown as Equations (41)–(48).

∂µ

cl
ij
=

φl(Z̄)− µ(s)
N
∑

i=1
gl(t)

uGl ajexp(−((y( f j, t − 1)− cl
ij)/σl

ij)
2
)

2(y( f j, t − 1)− cl
ij)

(σl
ij)

2 (41)

∂µ

σl
ij
=

φl(Z̄)− µ(s)
N
∑

i=1
gl(t)

µGl aj

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

2(y( f j, t − i)− cl
ij)

2

(σl
ij)

3 (42)
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∂µ

dl
ik

=
φl(Z̄)− µ(s)

N
∑

i=1
gl(t)

µφl

m

∏
i=1

G

∏
k=1

exp(−((ui(t − k)− dl
ik)/δl

ik)
2
)

2(ui(t − k)− δl
ik)

(δl
ik)

2 (43)

∂µ

δl
ik

=
φl(Z̄)− µ(s)

N
∑

l=1
gl(t)

uφl

m

∏
i=1

exp(−((ui(t − 1)− dl
ik)/δl

ik)
2
)

2(ui(t − 1)− dl
ik)

2

(δl
ik)

3 (44)

∂µ

al
=

gl(t)
N
∑

l=1
gl(t)

sin(bl Z̄) (45)

∂µ

bl
=

gl(t)
N
∑

l=1
gl(t)

al Z̄cos(bl Z̄)− cl Z̄sin(bl Z̄) (46)

∂µ

cl
=

gl(t)
N
∑

l=1
gl(t)

cos(bl Z̄) (47)

∂µ

dl
=

gl(t)
N
∑

l=1
gl(t)

(48)

3.3.2. The Updating of the Parameters of the Critic Function in Detail

The critic function adopts the same structure as the actor function, as shown in Figure 6.
Different to the actor function’s performance objective, the loss function of the critic function
is as in Equation (18). To describe this clearly, here we write the equation again.

θQ
k+1 = θQ

k + α
1
N ∑(yt − Q(s, a)|θQ)∇θQ Q(s, a|θQ) (49)

where, θQ is the parameter vector of the critic function. N is the sample batch size. α is
the learning rate. yt is the TD(0) target defined as Equation (30), and θQ is defined as
Equation (50).

θQ = (cl
0j, σl

0j, cl
ij, σl

ij, dl
ik, δl

ik, Ql)(j = 1, . . . , p; i = 1, . . . , m; l = 1, . . . , N) (50)

Then the partial derivative of Q(s, a) with respect to θQ is shown in Equation (51);
the detailed formulas are shown in Equations (52)–(58).

∇θQ Q(s, a|θQ) = (
∂Q
cl

0j
,

∂Q
σl

0j
,

∂Q
cl

ij
,

∂Q
σl

ij
,

∂Q
dl

ik
,

∂Q
δl

ik
,

∂Q
Ql

) (51)

∂Q
cl

0j
=

Ql − Q
N
∑

i=1
hl(t)

µGl aj exp(−((ŷ( f j, t)− cl
0j)/σl

0j)
2
)

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

2(ŷ(zj, t)− cl
0j)

(σl
0j)

2 (52)

∂Q
σl

0j
=

Ql − Q
N
∑

i=1
hl(t)

µGl aj exp(−((ŷ( f j, t)− cl
0j)/σl

0j)
2
)

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

2(ŷ(zj, t)− cl
0j)

2

(σl
0j)

3 (53)

∂Q
cl

ij
=

Ql − Q
N
∑

i=1
hl(t)

µGl aj exp(−((ŷ( f j, t)− cl
0j)/σl

0j)
2
)

K

∏
i=1

exp(−((y( f j, t − i)− cl
ij)/σl

ij)
2
)

2(y( f j, t)− cl
ij)

(σl
ij)

2 (54)
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∂Q
σl

ij
=

Ql − Q
N
∑

i=1
hl(t)

µGl aj exp(−((ŷ( f j, t)− cl
0j)/σl

0j)
2
)exp(−((y( f j, t − 1)− cl

ij)/σl
ij)

2
)

2(y( f j, t)− cl
ij)

2

(σl
ij)

3 (55)

∂Q
dl

ik
=

Ql − Q
N
∑

i=1
hl(t)

µφl

m

∏
i=1

exp(−((ui(t − 1)− dl
ik)/δl

ik)
2
)

2(ui(t − 1)− dl
ik)

(δl
ik)

2 (56)

∂Q
δl

ik
=

Ql − Q
N
∑

i=1
hl(t)

µφl

m

∏
i=1

exp(−((ui(t − 1)− dl
ik)/δl

ik)
2
)

2(ui(t − 1)− dl
ik)

2

(δl
ik)

3 (57)

∂Q
Ql

=
hl(t)

∑N
i=1 hl(t)

(58)

3.3.3. The Process of the Proposed 3DFDPG

The proposed 3DFDPG is executed as follows.
Input: Batch size N, number of 3D fuzzy rules of policy µ(s) and action value function

Q(s, a), replay buffer size N′, actor’s learning rate αa and critic’s learning rate αc.
Step 1: Initialize critic Q(s, a|θQ) and policy µ(s|θu) with parameters θQ = (cl

0j, σl
0j, cl

ij,

σl
ij, dl

ik, δl
ik, Ql) and θµ = (cl

ij, σl
ij, dl

ik, δl
ik, al , bl , cl , dl) randomly.

Step 2: Initialize target µ′ and Q′ with parameters θµ′
= θµ and θQ′

= θQ. The average
reward R̄ = 0.

Step 3: Initialize replay buffer RB.
Step 4: Loop forever:
Step 5: Perform action at on the DPS and analyze the resulting reward rt and subse-

quent state st+1 of the DPS.
Step 6: Preserve the transition (st, at, rt, st+1) to RB.
Step 7: Randomly select a small quantity of N′ transitions from RB.
Step 8: Set yi = ri − R̄ + Q′(st+1, µ′(st+1|θµ′

)|θQ′
).

Step 9: Set R̄ = βR̄ + (1 − β)δ.
Step 10: Minimize the loss function Loss = 1/N∑(yt −Q(s, a)|θQ)2 to update the critic.
Step 11: Utilize the policy gradient that was sampled to update the policy.

∇θµ J ≈ 1
N ∑∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θµ µ(s|θµ)|st

Step 12: If the estimate error is less than a threshold δ, update the policy parameters
and directly use the error via stochastic gradient descent.

Error =
1
2
(y(Z̄, t)− ŷ(Z̄, t))2

Step 13: Update the target θQ′
= γθQ + (1 − γ)θQ′

, θµ′
= δθµ + (1 − δ)θµ′

.
Step 14: Output the policy µ(st|θµ) as the model of the DPS at every time step.

4. Applications

The typical distributed parameter system (RTCVD) depicted in Section 2 is considered
to assess the efficacy of the suggested algorithm 3DFDPG. To obtain sufficient dynamic
knowledge about the system, the system manipulates the input variable u1, u2 and u3 to
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add the interference signal whose amplitude is not more than 10%. Therefore, three input
variables with interference signals can be given in the following ways.

u1(t) = u10 + ∆1 ∗ u10 ∗ normrnd(0, 1)

u2(t) = u20 + ∆2 ∗ u20 ∗ normrnd(0, 1)

u3(t) = u30 + ∆3 ∗ u30 ∗ normrnd(0, 1)

(59)

where u10, u20 and u30 are the steady-state input when the furnace temperature is 1000K,
∆1, ∆2 and ∆3 are the disturbance amplitudes of u10, u20 and u30. In this study, u10, u20
and u30 are 0.2028, 0.1008 and 0.2245, respectively; ∆1, ∆2 and ∆3 are set to 10%. Eleven
sensors are arranged equally along the radial direction. To replicate the effect of noise,
eleven sets of separate random noise signals are then included into the data gathered by
those eleven sensors. The sample period was set as ∆t = 0.1s and the experiment lasted for
500 s. The data generated from the experiment are shown in Equation (60).

S = {xk, yk
z} = {(xk

z, xk
u), yk

z|xk
z ∈ R11×1, xk

u ∈ R1×3, yk
z ∈ RP×1, k = 1, · · · , 5000} (60)

where,
xk = (xk

z, xk
u);

xk
z = [T(Z̄, k − 1)];

xk
u = [ua(k − 1), ub(k − 1), uc(k − 1)];

yk
z = T(Z̄, k) = [Tf ( f1, k), · · · , Tf ( f11, k)].

Unlike offline modeling algorithms, online modeling algorithms use data generated in
real-time by the DPS simulation system. At a given time t, the 3DFDPG model predicts the
output at time t based on the output and input of the DPS system at time t − 1, as shown in
Equation (61).

y(t) = f (y(z, t − 1), u(t − 1), θ) (61)

The hyperparameters for the 3DFDPG are specified in Table 1.
In this paper, we use Matlab2023b software to realize the simulation of RTCVD, the

realization of 3D fuzzy modeling, and the comparison of different modeling methods.

Table 1. The hyperparameters of the 3DFDPG.

Parameters Value Description

Mini-batch Size 20 Mini batch Size
Buffer Size 40 Replay buffer size

Num of the Q value function
3D fuzzy rules 20 The number of the Q value 3D

fuzzy rules

Num of the policy rules 20 The number of policy 3D
fuzzy rules

α1 0.001 Critic’s learning rate
α2 0.001 Actor’s learning rate

β1 0.9
The hyperparameter for
exponential decay in the

Adam optimizer

β2 0.999
The hyperparameter for
exponential decay in the

Adam optimizer
ϵ 1 × 10−8 Adam’s stability constant

4.1. Simulations

Ideally, an off-line model based on the historical data with sufficient information can
show the dynamic characteristics of the actual system well. However, when the dynamic
characteristics of the actual system change, such as equipment aging, local equipment
damage and large changes in operating conditions, the off-line model cannot express
the dynamic characteristics of the change. However, an online model makes up for this
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deficiency. In this study, two scenarios of the RTCVD system are investigated to simulate
external or internal environmental changes, including change in the system’s radiation
coefficient σ0 and change in wafer density w0.

(1) The parameters σ0 are changed
Parameters σ0 are reduced by 10% after 350 s to simulate the external change of the

real system environment. To illustrate the modeling performance in response to changes in
the DPS’s circumstances, we show the 400 data between 330 s and 370 ts.

As shown in Figure 8, when the system’s radiation coefficient σ0 decreases, heat dif-
fusion in the furnace slows down, causing a sudden temperature increase in the system,
After a certain period, the system’s temperature stabilizes, that is the DPS’s actual output
y(Z̄, t). As the predicted output ŷ(Z̄, t) illustrated in Figure 9, the model established in
this paper is able to follow this change in the system. Figure 10 shows that the higher the
immediate reward, the higher the model’s accuracy, with the peak reaching 0 at around
60 s, indicating that the proposed online modeling method has high modeling efficiency.
Figures 11–13 illustrate the real and anticipated values from sensors s3, s5 and s7, respec-
tively, to elucidate the modeling accuracy of 3DFDPG under varying system conditions. It
can be seen from the figures that the 3DFDPG model can promptly track changes in the
system, proving the effectiveness of the proposed modeling method. Figures 14 and 15
illustrate the prediction error and relative error of the 3DFDPG method, with the prediction
error spanning from [−6, +6] and the relative error measuring 0.006. It indicates that the
proposed online modeling method has good model accuracy.

Figure 8. The actual output of the DPS under σ0 changed. t is the sample time, z is the spatial position
and y(z, t) is the DPS’s output.
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Figure 9. The predict output under σ0 changed. t is the sample time, z is the spatial position and y(z, t)
is the predict output.

Figure 10. The immediate reward under σ0 changed. t is the sample time.
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Figure 11. Actual and predict value of S3 under σ0 changed. t is the sample time and y is the output
of the model and DPS.

Figure 12. Actual and predict value of S5 under σ0 changed. t is the sample time and y is the output
of the model and DPS.
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Figure 13. Actual and predict value of S7 under σ0 changed. t is the sample time and y is the output
of the model and DPS.

Figure 14. The predict error of the 3DFDPG under σ0 changed. t is the sample time and z is the
spatial position.
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Figure 15. The relative error of the 3DFDPG under σ0 changed. x is the time step and z is the
spatial position.

(2) The parameters w0 are changed
Parameters w0 are reduced by 10% after 350s to simulate the internal change of the

real system environment. To illustrate the modeling performance in response to changes in
the DPS’s circumstances, we show the 400 data between 330s and 370s.

As shown in Figure 16, when the wafer density w0 decreases, the wafer temperature
drops, causing a sudden decrease in the system’s temperature, which then stabilizes after
reaching a certain level. As illustrated in Figure 17, the model established in this paper is
able to follow this change in the system. Figure 18 illustrates that an increase in immediate
reward correlates with enhanced model accuracy, peaking at 0 around 60 s. This indicates
that the proposed online modeling method has excellent modeling efficiency. Figures 19–21
correspondingly illustrate the actual and expected values from sensors s3, s5 and s7. These
figures indicates that the 3DFDPG model can swiftly monitor system changes, hence
validating the efficacy of the proposed modeling method. Figures 22 and 23 illustrate the
prediction error and relative error of the 3DFDPG algorithm, with the prediction error
spanning from [−6, +6] and the relative error at 0.006. This indicates that the proposed
online modeling method maintains commendable model accuracy despite variations in
wafer density w0.
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Figure 16. The actual output of the DPS under w0 changed. t is the sample time, z is the spatial
position and y(z, t) is the DPS’s output.

Figure 17. The predict output under w0 changed. t is the sample time, z is the spatial position
and y(z, t) is the predict output.
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Figure 18. The immediate reward under w0 changed. t is the sample time.

Figure 19. Actual and predict value of S3 under w0 changed. t is the sample time and y is the
DPS’s output.
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Figure 20. Actual and predict value of S5 under w0 changed. t is the sample time and y is the
DPS’s output.

Figure 21. Actual and predict value of S7 under w0 changed. t is the sample time and y is the
DPS’s output.
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Figure 22. The predict error of the 3DFDPG under w0 changed. t is the sample time and z is the
spatial position.

Figure 23. The relative error of the 3DFDPG under w0 changed. t is the sample time and z is the
spatial position.
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4.2. Comparison and Analysis

The accuracy of the model is measured by relative error, the time normalized absolute
error (TNAE) and the relative L2 standard error (RLNE) as Equations (62), (63) and (64),
respectively.

Relative error = | ŷ(Z̄, t)− y(Z̄, t)
y(Z̄, t)

| × 100% (62)

TNAE(Z̄) = ∑ |ŷ(Z̄, t)− y(Z̄, t)|/ ∑ ∆t (63)

RLNE(t) = (
∫

(ŷ(Z̄, t)− y(Z̄, t))2dZ̄)1/2 /(
∫

y(Z̄, t)2dZ̄)
1/2

(64)

Then, we compared the proposed 3DFDPG with KL-LS-SVM [48] as a traditional
offline DPS modeling method and online LS-SVM [28] as a newly proposed online DPS
modeling method. Figures 24 and 25 compare the TANE obtained from the two on-
line modeling methods. Figures 26 and 27 compare the RLNE obtained from the two
modeling methods.

Figure 24. The TANE of the two modeling methods under σ0 changed. z is the spatial position.

Table 2 presents the mean RMSE and the standard deviation of the three models
by changing the random seed and conducting 10 trials. In both cases, the modeling
error of the offline model (KL-LS-SVM) is much larger than that of the other two online
models. The offline model is unable to cover the data in the new scenario when the DPS’s
circumstances change. But since the online modeling method uses incremental learning, it
can still appropriately assess the DPS in different scenarios. In addition, we conduct t-test
and p-value analyses for the two online modeling methods. The T-test calculation equation
for the two online models is as follows:

T =
X̄1 − X̄2√

s2
1

n1
+

s2
2

n2

(65)
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where X̄i, si and ni represent the mean of RMSE, the standard deviation of RMSE and the
number of samples from the ith online model, respectively, i = 1 represents the 3DFDPG
model and i = 2 represents the online LS-SVM model. Substituting the data from Table 2
into Equation (65) yields the T value. Then, we obtain the p value by consulting the
corresponding statistical distribution table, that is T = −35.27, p < 0.01 with σ0 changed
and T = −13.47, p < 0.01 with w0 changed. Since the p value is less than 0.05, we reject the
null hypothesis and conclude that there is a significant difference between the means of the
two groups. This demonstrates that the proposed 3DFDPG model outperforms the Online
LS-SVM model under the two application scenarios.

Figure 25. The TANE of the two modeling methods under w0 changed. z is the spatial position.

Figure 26. The RLNE of the two modeling methods under σ0 changed. t is the sample time.



Electronics 2024, 13, 4217 30 of 33

Figure 27. The RLNE of the two modeling methods under w0 changed. t is the sample time.

Table 2. Mean RMSE and its standard deviation of the three models.

Modeling Method Mean RMSE with σ0
Changed

Standard Deviation of
RMSE with σ0

Changed

Mean RMSE with w0
Changed

Standard Deviation of
RMSE with w0

Changed

KL-LS-SVM 28.4719 0.03 29.9498 0.03
Online LS-SVM 2.31787 0.0417 2.0164 0.0454

3DFDPG 1.7686 0.0550 1.7915 0.0270

TNAE and RLNE represent the prediction errors of the 3DFDPG model and the online
LS-SVM model in spatial and temporal dimensions, respectively. As shown in Figures 24–27,
in both cases, the errors of the 3DFDPG model are smaller than those of the online LS-SVM
model. The reason is that the 3D fuzzy system naturally achieves temporal-spatial separation
and temporal-spatial synthesis, allowing for the spatiotemporal modeling of DPS without
the need for model reduction. Therefore, the 3DFDPG modeling method outperforms the
online LS-SVM model. The online LS-SVM updates its model from an initial offline model. In
contrast, the proposed 3DFDPG starts from scratch, relying on the interaction between the
agent and the environment, with model parameters being updated adaptively.

5. Conclusions

In this paper, we proposed a 3DFDPG modeling method for online modeling of the
DPSs. Reinforcement learning is learning from interactions between an environment and
an agent; the 3D fuzzy system has the ability to deal with spatiotemporal data and has
the universal approximation property. The reinforcement learning algorithm and the 3D
fuzzy system were combined to realize the online learning. The average reward set was
utilized to implement the online modeling of the DPS, so that the modeling process can run
forever and have the ability to catch the situation change of the DPS. The simulation results
confirmed the efficacy of the proposed 3DFDPG algorithm and its exceptional modeling
performance is further emphasized by comparison with existing DPS modeling methods.

Due to practical constraints, this paper applied the proposed 3DFDPG modeling
method to an RTCVD simulation system, aiming to simulate the real system as closely as
possible by varying parameters and adding disturbances. When applied to the real system,
the benefits are as follows:
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1. It develops a very accurate model for the actual system to serve as a reference for
system optimization, control and cost reduction.

2. This work proposes an online modeling technique capable of swiftly indicating inter-
nal or external component failures inside the system, hence furnishing engineers with
accurate fault-localization data.

3. The proposed online modeling method can model the real system from scratch without
human intervention, facilitating system modeling.

Although the proposed online modeling algorithm achieved good results, there are
two limitations, which need to be solved in future work. Firstly, the 3D fuzzy system
used in this paper has a fixed structure and lacks flexibility. In future work, a dynamic
variable structure 3D fuzzy system will be investigated. Secondly, the reinforcement
learning algorithm based on DPG used in this paper is somewhat insufficient in terms
of action exploration and may become trapped in local optimal policies. In future work,
the feasibility of using reinforcement learning algorithms based on stochastic policies will
be explored. Finally, we plan to apply the proposed online modeling method to a real
industrial system, for instance a rotary hearth furnace system.
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Nomenclature

Symbol Describtion Symbol Describtion
S The states set. A The actions set.

T(s, a, s′)
The probability of transitioning to state s′ from

γ The discount factor.
s when taking action a.

st The state at time step t. at The action at time step t.
rt Immediate reward at time step t. R(s, a) The reward function.
µθ(s) The policy function with the parameter θ. Qµ(s, a) The action value function under the policy µ.
J(µθ) The performance objective under the policy µ. ρµ The discounted state distribution.
y(Z̄, t) The output of the DPS. u(t) The input variables of the DPS.
Ōsl Denotes a 3D fuzzy set. Uhl

g Denotes a conventional fuzzy set.
R̄∗

l The fuzzy rules. aj The weight of the jth sensor position.
cl

ij Centroid of the Gaussian 3D fuzzy set Ōsl . σl
ij Spread of the Gaussian 3D fuzzy set Ōsl .

dl
ik Centroid of the conventional Gaussian Uhl

g . δl
ik Spread of the conventional Gaussian Uhl

g .
aj Represents the weight of the jth sensor position. R(µ) The average reward under the policy µ.
Gt The long time return. Gt The long time return.
v(s) The state-value function. Q(s, a) The action value function.
R̄t The estimate of the average reward at time step t. s ∼ µ The distribution of state under the policy µ.
θ

µ
k The parameters of the policy µ. θQ

k The parameters of the action value function.
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