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Abstract: Urban systems are vulnerable to disturbances from both natural and human origins, which
can disrupt their normal functioning. Evaluating the resilience of these systems, particularly the
main transportation networks and their usage levels, is crucial and innovative for understanding the
impacts of such disturbances. Thus, this work aims to assess resilience in urban mobility through
the probability of a particular journey using a specific mode: “surviving” through critical travel
time. To achieve this, a methodology was developed based on the Weibull model with gamma
heterogeneity (hazard-based duration models), which was applied to a medium-sized Portuguese
municipality. Eighteen groups representing active populations were set and compared. The results
indicated that using the bus and cycling are the most resilient modes of transport, whereas walking is
the least resilient. Additionally, a specific group was identified as having lower mobility resilience,
making them more vulnerable to disruptions in the transport system. Finally, the findings of this
study demonstrate the practical application of this methodology, which relies on travel time to
assess resilience and, thus, guide political attention and actions to the less resilient mode. Future
research should aim to develop a comprehensive framework that incorporates several variables to
fully describe the complex nature of transport systems and their resilience.

Keywords: urban mobility; resilience; travel time; hazard-based duration models; Weibull model

1. Introduction

A problem that society has been facing for several years is the growth of large cities
and metropolitan areas, with an even more significant increase predicted in the coming
decades [1,2]. This growth undermines the functioning of some urban systems, such as
transportation and mobility, due to the intensive increase in demand for transportation
given the growing mobility needs of the resident population [3]. Associated with the
increase in travel resulting from urban growth and mobility patterns dominated by the use
of private cars, there has been an increase in motorized traffic volumes in cities, causing
mobility problems such as congestion, environmental pollution, noise, and accidents [4].
However, the urbanization process is a key phenomenon in the economic development of
cities, regions, and even countries [5].

Traffic congestion directly affects the quality of urban mobility, contributing to re-
ducing accessibility and urban mobility levels. In addition to increasing time wasting
and energy expenditure [6], pollution, and stress [7,8], it also decreases productivity and
increases the cost of living for society [9]. However, urban transport systems are always
exposed to other types of disturbances that can affect system functioning, such as natural
disasters, like hurricanes, floods, and fires, or human-origin events, like terrorist attacks,
cultural events, strikes, and failures in urban systems caused by human error or misman-
agement [10–14]. Thus, the concept of resilience concerning transport and urban mobility
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systems arises. According to the transportation literature, resilience relies on the system’s
ability to resist, reduce, and absorb the impacts of a disturbance while maintaining an
acceptable level of service (static resilience) and restoring regular and balanced operation
within a reasonable time and cost (dynamic resilience) [15]. In this sense, government
entities need to assess the resilience of transport and mobility systems to properly plan
transport networks and control traffic movements to ensure and mitigate mobility-related
problems [4,16,17].

In urban mobility studies, travel demand modeling is typically associated with the
perspective that transport demand is derived from a specific set of purposes, such as work,
shopping, personal business, and recreational activities, along with their characteristics.
Therefore, travel time associated with activities has been widely used as a measure to
identify factors that significantly affect transport demand [18]. However, the analysis of
travel times requires studying a complex decision-making process that deals with activity
and trip generation, mode choice, and route options, which can be modeled to estimate
travel times for specific travelers on a given urban transport network. Over the years,
in order to study travelers’ complex decisions and develop models capable of predicting
travel times (time to destination) resulting from variations in transport networks and
socioeconomic characteristics of the population, urban models have been built based on
the traditional four-step model (trip generation, trip distribution, modal split, and traffic
assignment) and have incorporated activity-based models and dynamic urban network
models [19].

As an alternative to an extensive urban transportation modeling system, a more
simplistic approach to gain insights into the factors determining individual travel times is
to model travel times directly (implicitly including the complex decision-making related
to destination, route, activity, and time of day). For this purpose, [19]) investigated the
relationships between travel time (origin–destination) and various influential factors such
as socioeconomic characteristics, income, demographics, and mode of transportation.

However, there is a gap in the literature regarding studies that analyze the resilience
of the transportation and mobility system considering its different modes. Therefore, it
becomes essential for entities managing the road network to develop transportation models
that allow them to analyze traffic congestion phenomena [20].

Therefore, for a transportation and urban mobility system to be considered resilient, it
should have the capacity to resist, maintain or recover, adapt, or transform in the face of
disturbances resulting from scenarios that limit the balanced operation of the system. For
this purpose, resilience assessment tools in the transportation and urban mobility system
should be able to identify key risks related to actions of natural or anthropogenic origin
that may block the circulation and mobility of the population in an urban area and should
be able to assess the impact of these disturbances on the overall functioning of the system
in terms of the main transportation networks and their respective levels of utilization per
transport mode. Indeed, we hypothesized that resilience varies depending on the mode of
transport used. Consequently, the objective of this work is to evaluate resilience in urban
mobility through the probability of a particular journey, using a specific mode, “surviving”
through the application of hazard-based duration models, using the travel time as the
dependent variable. This novel approach contributes to the resilience evaluation as follows:

• Providing a quantitative indicator for measuring resilience based on critical travel
time;

• The proposed methodology is supported by a robust model, i.e., hazard-based duration
model, allowing the modeling of travel time and the analysis of factors that may affect
this variable;

• The proposed resilience framework is based on a revealed-preference survey con-
ducted by a government statistical office and following the guidelines of the statistical
office of the European Union (Eurostat), which seeks to provide harmonized and
comparable statistics throughout the European territory. Therefore, this proposed
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methodology can be applied to several cities using the same kind of information and
providing a reliable comparison.

This work follows the following structure: in Section 1, the introduction is presented,
indicating the main causes of interruptions in transportation and mobility systems, the
hypothesis and research, and the objectives. In Section 2, a state-of-the-art discussion of the
applicability of hazard-based duration models in the transportation and mobility sector is
presented. Section 3 describes the methodology developed and subsequently applied in
this work. Section 4 presents the case study and the description of the variables used in the
models. In Section 5, the developed methodology is applied to the case study, presenting
the development of the Weibull model with heterogeneity and the interpretation of its
results, resilience assessment, and discussion of the results. In Section 6, the discussion of
the results obtained from applying the methodology is presented. Finally, in Section 7, the
main conclusions of this research are presented.

2. Literature Review

Over the past decade, several studies applying hazard-based duration models have
been developed to study various problems in the field of transportation, with time as
the dependent variable. Many works apply hazard-based duration models to situations
where disruptive events impair the normal lives of populations and the normal functioning
of transportation systems, such as natural disasters, road accidents, and congestion. For
instance, [21] developed a random-parameter hazard-based model to understand hurricane
evacuation time. Other authors present hazard-based duration models to investigate vari-
ous relevant aspects of transportation, such as factors affecting road safety, including cyclist
and motorcyclist safety [22], motorcyclist behavior during overtaking maneuvers [23],
examining the survival risk of accident injuries regarding road environmental factors [24],
accident duration prediction [25], investigating the distance traveled by a vehicle in an
off-road accident [26], comparing braking profiles of young drivers [27], examining the
influence of various factors affecting the duration of various types of road incidents [3],
and evaluating the time it takes to detect/report, respond to, and clear road incidents [28].
Another topic investigated using hazard-based duration models is congestion duration. [29]
present a hazard-based duration model for the accurate prediction of congestion duration
for urban rail transit (URT) passenger flow. Meanwhile, [30] proposed an approach to
estimate congestion duration on a particular road segment and the probability that, given
its onset, congestion will end during the subsequent time period.

On the other hand, some research has focused on issues related to waiting time
and travel time in public transportation, specifically investigating the tolerance of public
transport users during unplanned service disruptions and identifying the factors affecting
their behaviors [31], predicting railway transportation delays [32], estimating the duration
of commercial vehicle stops in urban areas [33], and evaluating the effects of mixed traffic
flow on bus operation times at bus stops [34]. Other authors apply hazard-based duration
models to identify factors influencing the travel times and duration of social activities
for transport network users, specifically analyzing how the duration of social activities
is influenced by the characteristics of the social activity [35], investigating explanatory
factors affecting the travel behavior of the elderly [36], studying determinants of travel
time to destination in urban areas [19], exploring factors leading some individuals to spend
a significant amount of time traveling [37], and examining how congestion status, traffic
demand, road variables, and weather conditions impact travel time performance [38].
Conversely, other authors have developed a set of panel survival analyses to describe
the phenomenon that individuals’ emotional well-being may worsen after traveling for a
certain period [39].

In contrast, travel distance has recently been gaining more attention in environmen-
tal impact research and due to the increasing demand for new modes of transportation
powered by alternative energies, such as electric vehicles [40]. However, the application of
the hazard-based duration modeling approach using travel distance is still limited. This is
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because travel distance is typically considered as an outcome of the trip rather than a pro-
cess, and, therefore, the duration dependency is often ignored [41]. Some studies have been
developed applying hazard-based duration models using the time variable to identify im-
portant factors determining activity-based travel distance in urban areas [18,41], to explore
the spatial dimension of new types of alternative energy-powered public transportation use
(electric and natural gas-powered modes), to reduce environmental pollution and improve
mobility and safety in urban areas [42], to study the prediction of daily car travel distances
using socioeconomic variables, weather conditions, and vehicle characteristics [40], and to
analyze the sociodemographic and built environment effects on travel distances [41].

As one can conclude, despite the extensive literature on transportation using hazard-
based duration models, there are no studies applied to resilience.

Regarding the model used, it is observed in the transportation literature that the
log-logistic model belonging to hazard-based duration models presents a better fit to the
data for studies of congestion duration (see [23,29,30]). On the other hand, when studying
the factors influencing travel time (distance), the model that best fits the data is the Weibull
model with gamma heterogeneity (see [18,19,28,42]).

3. Methodology
Theorical Framework to Evaluate the Resilience in Urban Mobility

Through the analysis of the literature, it was found that there is a gap in the literature
regarding the assessment of resilience in urban mobility. Therefore, the resilience assess-
ment will be based on population data that can be obtained from mobility surveys, which,
along with other socioeconomic information of the population, will allow us to define
hazard-based duration models as a function of a cost function, which in this work will be
based on travel time, to evaluate the acceptance thresholds for maintaining or changing the
mode of transportation for the main daily trips.

From a practical standpoint, the contribution of the assessment associated with hazard-
based duration models that reflect the behavior of a population, either individually or by
population groups, regarding the use of various modes of transportation comprising a
mobility system will be challenging to achieve in a very disaggregated (individual) manner.
This is because it would require a vast amount of information about all individuals or about
a significant sample of population groups.

In this context, it is assumed that for trips with travel times (Ttravel) shorter than
the critical threshold (T50%), there is no change in the mode of transportation, and the
system, from the perspective of users’ behavior in that mode of transportation, is resilient.
This means that they contribute to the stability of the system, as it can be considered that
they absorb the impact of hazards and represent the initial phase of the resilience process,
embodying the robustness of the mobility system. This can be calculated as follows:

• Ttravel ≤ T50%—+Resilient
• Ttravel > T50%—−Resilient

The critical threshold T50% will be determined assuming the probability of 50% of
a trip “surviving”, i.e., of ending. This threshold is a mathematical choice and can be
considered for comparison purposes for other samples (i.e., cities).

In Figure 1, a synthesis of the methodological process for evaluating resilience associ-
ated with the behavioral component at the level of population mobility is presented based
on their mobility patterns, modal choice, and, more specifically, the robustness of the trips.
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Figure 1. Resilience theoretical framework.

Thus, concerning travel time, an approach that includes the assessment of the risk
associated with a given hazard makes it possible to assess the conditional probability that a
trip ends up taking place in a given mode after a certain time, δ; that is, the trip in a mode
under study does not end until time δ. In the Weibull model, the hazard function is given
by the following expression [43]:

h(δ) = f (δ)/[1 − F(δ)] (1)

where F(δ) is the cumulative distribution function and f (δ) is the density function of travel
times.

• The risk function given by expression (1) allows us to obtain the rate at which trips
will end in time δ, given that they lasted until time δ. Thus, the risk function can be
interpreted as follows [43]: dh(δ)/d δ > 0; this suggests that the conditional probability
that the trip ends soon (given it has not ended yet) increases as time increases (i.e., the
function slopes upwards as time increases);

• (dh(δ)/dδ < 0); this suggests that the conditional probability that the trip will end soon
decreases as time increases (i.e., risk function slopes downwards);

• (dh(δ)/dδ = 0); this suggests that the conditional probability of the trip ending soon is
independent of the trip time (hazard function is constant as time increases).

To assess the effect of the explanatory variables in the hazard-based models, a propor-
tional hazards approach can be used, where the explanatory variables act in a multiplicative
way in a base risk function (or baseline), resulting in [43] the following:

h( δ|X) = h0(δ) exp(βX) (2)

where X is the vector of explanatory variables, β is the vector of estimated parameters,
and h0(δ) is the baseline hazard that indicates the risk when all elements of the vector of
explanatory variables are zero. In estimating Equation (2), a common approach considers
various parametric forms of the base risk function. It is also possible not to make any
parametric assumptions, but this will make inferences related to risk probabilities difficult
as they change over time [43].

In the specific case of the Weibull model, it is possible to uniformly increase or decrease
(monotonically) the hazard functions (which implies that the probability of a trip ending
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can increase or decrease the longer the trip time). Taking into account the parameters λ > 0
and P > 0, the Weibull distribution has the following density function [43]:

f (δ) = λP(λδ)P−1 exp(−λδ)P (3)

The hazard is given by the following:

h(δ) = λP(λδ)P−1 (4)

where P and λ are the parameters to be estimated by the model. As indicated in Equation (4),
if the Weibull parameter is P > 1, the risk is uniform, increasing travel time; if it is P < 1,
the risk is uniform, decreasing travel time; and if P = 1, the risk is constant regardless of
travel time.

Equally flexible, the Weibull model with gamma heterogeneity is less restrictive re-
garding the assumption that the hazard function must be homogeneous across observations.
Thus, all variation in travel time “survivability” is no longer considered to be captured by
the variable vector X. This is important because unobserved factors that cannot be included
in X can influence travel time survival. However, this unobserved heterogeneity can lead
to specification errors, which, in turn, can lead to wrong inferences about the shape of the
hazard function (hazard) and inconsistent parameter estimates. [44,45]. If ω represents the
heterogeneity, g(ω) represents its gamma distribution in the population with a mean of
1, a variance of θ, and S(δ|w) being the conditional survival function. The unconditional
survival function is given by the following [43]:

S(δ) =
∫ ∞

0
S(δ|w)g(w)dw =

[
1 + θ(λδ)P

]−1/θ
(5)

resulting in the following hazard function:

h(δ) = λP(λδ)P−1[S(δ)]θ (6)

If θ = 0, the risk is reduced for the Weibull model and heterogeneity is not present.
Based on the Weibull model, it then becomes possible to determine the time for which

a trip has a certain probability of ending [19,23,28,29,36].

4. The Case Study and Description of the Data

The data used in this model are from the “Mobility Survey in the Metropolitan Areas
of Porto and Lisbon.” [46], which is an official data set collected by the National Statistical
Institute of Portugal (INE). It aims to obtain statistical information for transport and mobility
following the guidelines of the statistical office of the European Union (Eurostat), seeking
to provide harmonized and comparable statistics throughout the European territory. In
this revealed-preference survey, the respondents were asked to reveal the previous day’s
trip and their personal and household characteristics and identification. The data were
collected between October and December of 2017.

From the data, 4064 trips were selected considering the socioeconomic characteristics
of the population residing in the municipality of Póvoa de Varzim and its surroundings
(Figure 2). [46]. This municipality includes 7 parishes with a total of 64,320 inhabitants. The
urban city center is represented in red in Figure 2. The municipality is part of the Porto
metropolitan area, the second largest metropolitan area of Portugal.



Electronics 2024, 13, 4220 7 of 18
Electronics 2024, 13, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. Map of the area of Póvoa de Varzim, Portugal (Source: Bing Maps). 

In this sense, in order for the model to faithfully convey the characteristics of trips 
made by the active population, taking into account variations in travel time, some 
variables characterizing the population were selected. 

Therefore, the socioeconomic information includes gender, age, level of education, 
driver�s license, purpose of the trip, and mode of transportation. Gender is classified into 
two categories: male and female. Age is classified as follows: age equal to or less than 14 
years, age between 15 and 24 years, age between 25 and 44 years, age between 45 and 64 
years, and age equal to or greater than 65 years. The level of education is classified as 
follows: none or incomplete first cycle, complete basic education (first cycle, second cycle, 
or complete third cycle), complete secondary education, and complete higher education. 
Driver�s license is divided into two categories: has a driver�s license or does not have a 
driver�s license. The purpose of the trip is classified into the following categories: 
commuting to/from work, commuting to/from school or school-related activities, 
take/pick up/accompany family members or friends, leisure and sports, and purchase of 
goods and services. Finally, the modes of transportation are car, bus, walking, and bicycle. 
Table 1 lists the descriptive statistics of the selected variables, and Figure 3 presents the 
histogram of travel times. 

Table 1. Descriptive statistics of the selected variables. 

Variables Sample (or %) Mean  Minimum Maximum 
Travel time (min) 4064 20.5 0.97 120 
Gender (1 Male, 0 Female) 48.7%  0 1 
Age 14 years old or less 10.5%  0 1 
Age between 15 and 24 years 10.3%  0 1 
Age between 25 and 44 years 32.1%  0 1 
Age between 45 and 64 years 32.9%  0 1 
Age 65 years or older 14.2%  0 1 
None or incomplete 1st cycle 6.6%  0 1 
Basic education 49.2%  0 1 
Secondary education 19.7%  0 1 

Figure 2. Map of the area of Póvoa de Varzim, Portugal (Source: Bing Maps).

In this sense, in order for the model to faithfully convey the characteristics of trips
made by the active population, taking into account variations in travel time, some variables
characterizing the population were selected.

Therefore, the socioeconomic information includes gender, age, level of education,
driver’s license, purpose of the trip, and mode of transportation. Gender is classified into
two categories: male and female. Age is classified as follows: age equal to or less than
14 years, age between 15 and 24 years, age between 25 and 44 years, age between 45 and
64 years, and age equal to or greater than 65 years. The level of education is classified as
follows: none or incomplete first cycle, complete basic education (first cycle, second cycle,
or complete third cycle), complete secondary education, and complete higher education.
Driver’s license is divided into two categories: has a driver’s license or does not have a
driver’s license. The purpose of the trip is classified into the following categories: com-
muting to/from work, commuting to/from school or school-related activities, take/pick
up/accompany family members or friends, leisure and sports, and purchase of goods and
services. Finally, the modes of transportation are car, bus, walking, and bicycle. Table 1 lists
the descriptive statistics of the selected variables, and Figure 3 presents the histogram of
travel times.

Table 1. Descriptive statistics of the selected variables.

Variables Sample (or %) Mean Minimum Maximum

Travel time (min) 4064 20.5 0.97 120
Gender (1 Male, 0 Female) 48.7% 0 1
Age 14 years old or less 10.5% 0 1
Age between 15 and 24 years 10.3% 0 1
Age between 25 and 44 years 32.1% 0 1
Age between 45 and 64 years 32.9% 0 1
Age 65 years or older 14.2% 0 1
None or incomplete 1st cycle 6.6% 0 1
Basic education 49.2% 0 1
Secondary education 19.7% 0 1
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Table 1. Cont.

Variables Sample (or %) Mean Minimum Maximum

Higher education (Bachelor’s, Master’s,
Doctorate, Higher Professional Technical Course) 24.5% 0 1

Driving license (1 Yes, 0 No) 71.5% 0 1
Go/return from work 43.5% 0 1
Going to/from school or school activities 13.4% 0 1
Take/pick up/accompany family or friends 11.8% 0 1
Leisure activity and sport 20.3% 0 1
Purchase of goods and services 11.0% 0 1
Transportation mode—Car 74.3% 0 1
Transportation mode—Bus 5.3% 0 1
Transportation mode—Walk 19.4% 0 1
Transportation mode—Bike 1.1% 0 1
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5. Application of the Methodology to the Case Study
5.1. Results of the Weibull Model with Heterogeneity

According to the literature, the Weibull model with gamma heterogeneity is the one
that best fits the data for estimating travel time. Therefore, Table 2 presents the parameter
estimates of the hazard model estimated through the selected variables. Note that the
negative sign of a parameter affects the duration and not the risk. Thus, the explanatory
variables are defined to represent all factors that likely affect travel time.

The obtained results show that the parameter P of the Weibull model with gamma
heterogeneity is positive and greater than 1 (indicating a uniformly increasing function).
Figure 4 shows the density function corresponding to the Weibull distribution function (the
first derivative of the cumulative distribution concerning time). In addition, according to
Figure 5, the risk is not constant over the duration. It can be observed that the probability
of travel time (calculated between 0 and 1) being 1 min is approximately 1, while the
probability of travel time being greater than 100 min is almost 0. On the other hand, the
hazard function is not uniform—it increases until the travel time reaches about 15 min and
then decreases (Figure 6).
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Table 2. Parameter estimates of the hazard model.

Variables

Weibull Model with Gamma Heterogeneity

Independent Variables

Coefficients Standard Error

Constant 2.68853 *** 0.0471
Gender (male) 0.1151 *** 0.02441
Age less than or equal to 14 years −0.23406 *** 0.06452
Age between 15 and 24 years 0.11109 ** 0.05035
Age between 45 and 64 years 0.08556 *** 0.03053
Age 65 years or older 0.2914 *** 0.04128
None or incomplete 1st cycle −0.11419 ** 0.05360
Secondary education 0.15716 *** 0.03441
Higher education (Bachelor’s, Master’s,
Doctorate, Higher Professional Technical Course) 0.42754 *** 0.03195

Driving license (Yes) −0.10214 *** 0.03949
Going to/from school or school activities −0.01981 0.05140
Take/pick up/accompany family or friends −0.24173 *** 0.04019
Leisure activity and sport −0.11907 *** 0.03350
Purchase of goods and services −0.07384 0.04213
Transportation mode—Bus 0.41798 *** 0.05966
Transportation mode—Walk −0.23182 *** 0.03340
Transportation mode—Bike 0.22835 0.16849

Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Teta 0.74291 *** 0.06312
Density parameters underlying the significance of the data:
Parameter Estimated
Lambda 0.06252
P 2.08162
Median 15.26001
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From Table 2, an analysis of the relationship between variables and travel time can
be conducted based on the estimated parameters. It is observed that socioeconomic char-
acteristics affect the duration of trips. Male users have slightly longer travel times than
female users. Users aged 65 and over have the longest travel time, indicating a distinct
travel pattern for this age group. On the other hand, users aged 14 or younger have the
shortest travel time. This is because it is the population segment that is most dependent,
consisting of babies, preschool-age children, and children attending basic education, where
schools are typically located close to the residential area.
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Figure 5. Survival function–travel time (Source: NLOGIT 5 software).
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Figure 6. Hazard function–travel time (Source: NLOGIT 5 software).

The education level of individuals affects travel time linearly. Individuals with no
education or incomplete primary, secondary, or tertiary education have the shortest travel
time. This may be associated with the type of professional activity of these individuals. On
the other hand, individuals with higher education have the longest travel time. This may
be because this segment of the population has access to professional activities associated
with executive positions in companies or government, which are often associated with
longer commutes. Finally, individuals with completed secondary education and those with
completed basic education have the second and third longest travel times, respectively.
These two segments of the population are mainly composed of the working class, where
most work near their residential area.

Regarding the driver’s license, individuals who are licensed to drive motor vehicles
have shorter travel times than those who do not have this license.

In terms of trip attributes, it is observed that trips with the purpose of “Commute
to/from work” have longer travel times. This is because a significant portion of this
population usually spends some time in traffic congestion to travel to work as they typically
commute during rush hours. Trips with the purpose of “Accompanying/fetching friends
or family” have the shortest travel times. These trips typically involve accompanying
someone to the doctor, taking children to school, or picking someone up from work. Trips
for “Leisure and sports” have the second shortest travel times. These trips are usually
made in the vicinity of the residential area and often involve active modes of transportation
(walking or cycling), resulting in shorter and less time-consuming trips (avoiding traffic
congestion). Trips for “Shopping for goods and services” have the third longest travel
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times. This is because individuals tend to travel away from their residential area to go to a
particular supermarket, hospital, or public service, which are usually located in the city
center. Lastly, trips for “Commute to/from school or school-related activities” have the
second longest travel times. This is due to the centralization of schools, where primary
schools and lower and upper secondary schools are mainly located in city centers, requiring
students to travel longer distances.

Regarding the transportation mode variables of the trip, the pedestrian mode has the
shortest travel times. This is because this mode of transportation is used for short-distance
trips with short durations. The bus mode is the transportation mode with the longest travel
times. This is because this mode of transportation makes several stops (bus stops) along
its route to pick up or drop off passengers and has a lower circulation speed compared to
the car mode, dealing with the same congestion issues. The bicycle mode has the second
longest travel times. This is because individuals who opt for this mode of transportation
tend to take longer trips than walking, often as long as bus and car trips, resulting in longer
travel durations.

5.2. Determination of Critical Threshold (T50%) and Resilience Analysis

After defining the hazard-based duration model (Weibull with gamma heterogeneity),
and in order to better understand how population characteristics influence travel over
time, several typical users of the transportation and mobility system were selected. These
users characterize the active population in the municipality of Póvoa de Varzim and its
surroundings, as they represent the fraction of the population that most frequently uses the
transportation and mobility system, typically exhibiting the same travel patterns. Therefore,
Table 3 presents the eighteen main characteristic users of this population group in order
to subsequently assess the resilience, more specifically the characteristic of robustness,
associated with a potential change in the mode of transportation, namely car, when traveling
from home to work.

Table 3. Main types of individuals belonging to the active population.

User
Variables

Gd A1 A2 A4 A5 EL1 EL2 EL3 DL PT2 PT3 PT4 PT5

Man 1 1 0 1 0 0 0 1 0 1 0 0 0 0
Man 2 1 0 1 0 0 0 0 1 1 0 0 0 0
Man 3 1 0 1 0 0 0 0 0 1 0 0 0 0
Man 4 1 0 0 0 0 0 1 0 1 0 0 0 0
Man 5 1 0 0 0 0 0 0 1 1 0 0 0 0
Man 6 1 0 0 0 0 0 0 0 1 0 0 0 0
Man 7 1 0 0 1 0 0 1 0 1 0 0 0 0
Man 8 1 0 0 1 0 0 0 1 1 0 0 0 0
Man 9 1 0 0 1 0 0 0 0 1 0 0 0 0

Woman 1 0 0 1 0 0 0 1 0 1 0 0 0 0
Woman 2 0 0 1 0 0 0 0 1 1 0 0 0 0
Woman 3 0 0 1 0 0 0 0 0 1 0 0 0 0
Woman 4 0 0 0 0 0 0 1 0 1 0 0 0 0
Woman 5 0 0 0 0 0 0 0 1 1 0 0 0 0
Woman 6 0 0 0 0 0 0 0 0 1 0 0 0 0
Woman 7 0 0 0 1 0 0 1 0 1 0 0 0 0
Woman 8 0 0 0 1 0 0 0 1 1 0 0 0 0
Woman 9 0 0 0 1 0 0 0 0 1 0 0 0 0

Gd—Gender (1 is male, 0 is female); A—Age, in which A1 is an age less than or equal to 14 years, A2 is an age
between 15 and 24 years, A4 is an age between 45 and 64 years, A5 is an age of 65 years or older; EL—education
level in which EL1 is none or an incomplete first cycle; EL2 is basic education; EL3 is secondary education
(Bachelor’s, Master’s, Doctorate, Higher Professional Technical Course); DL—driver license (1 is with driver
license, 0 otherwise); PT—purpose of the trip (PT2 is commuting to/from school or school-related activities, PT3
is take/pick up/accompany family members or friends, PT4 is leisure and sports, and PT5 is purchase of goods
and services.



Electronics 2024, 13, 4220 12 of 18

As can be concluded from Table 3, we defined population groups assuming both gen-
ders and all ages, all education levels, and both alternatives for driving licenses, therefore
covering most of the population characteristics of the municipality.

The analysis of the travel time was applied for these eighteen population groups, al-
lowing for a comparison between the groups and providing the computation of a weighted
average of the travel time.

Considering the various types of users from the active population presented in Table 3,
the probability of a trip ending after a certain time was analyzed based on the results
obtained from the Weibull model with gamma heterogeneity. Therefore, Figure 7 depicts the
variation of the probability of a trip ending over time for different modes of transportation,
considering the characteristics of the selected users. Figure 7 is in line with the tendency
of the survival function shown in Figure 6, as the longer the travel time, the higher the
probability that it has already ended.
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From the results obtained in Figure 7, the critical times (Tc) (P = 50%) for trip survival
were calculated for each mode of transportation.

Subsequently, considering the travel time of each group of individuals (Table 4), the
critical time (Tc) of the network was determined by the mode of transportation for each
population group. Finally, in order to obtain a unique value per transport mode, the
weighted average (average time) of the critical time for a given mode was calculated by the
percentage of individuals from each group in the total sample, as shown in Table 4.
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Table 4. Critical travel time for modes of transportation.

Gender Man Woman

Age 15–24 Years 25–44 Years 45–64 Years 15–24 Years 25–44 Years 45–64 Years

Education Level EL2 EL3 EL4 EL2 EL3 EL4 EL2 EL3 EL4 EL2 EL3 EL4 EL2 EL3 EL4 EL2 EL3 EL4

Sample Percentage
(%) 4.0 2.1 0.3 8.2 6.2 11.0 12.9 5.0 5.9 7.0 1.7 1.6 4.0 6.8 10.6 9.5 3.5 9.3

Mode Car

Time (min) 14.0 16.3 21.3 12.5 14.6 19.1 14.0 16.0 19.1
(b) 12.5 14.6 19.0 11.1

(a) 13.0 17.0 12.1 14.1 17.0

Average time (min) 16.6

Mode Bus

Time (min) 21.1 24.7 32.4
(b) 19.0 22.1 29.0 20.6 24.1 29.0 19.0 22.0 29.0 17.0

(a) 19.7 26.0 18.4 21.5 26.0

Average time (min) 25.1

Mode Walk

Time (min) 11.0 13.0 17.0
(b) 9.9 11.6 15.1 11.0 12.6 15.1 9.9 11.6 15.1 9.0

(a) 10.3 13.5 9.6 11.3 13.5

Average time (min) 13.1

Mode Bike

Time (min) 17.5 20.4 27.0
(b) 15.6 18.3 24.0 17.0 20.0 24.0 15.6 18.3 24.0 14.0

(a) 16.4 21.5 15.3 17.8 21.5

Average time (min) 20.7

(a) Minimum value; (b) maximum value.

Table 4 shows that there is a common population group with the lowest time for all
transport modes, which represents women between 25 and 44 years old with secondary
education. According to our criteria, this group is the least resilient in all kinds of transport
modes, being, for that reason, the first group to be affected by a disruptive event. In
contrast, men between 15 and 24 years old with higher education are the most resilient
group when traveling by bus, bicycle, or walking. In the case of traveling by car, the most
resilient group is described as men between 25 and 44 years old with higher education.

In addition, from the results presented in Table 4, it can be observed that the general
critical times, based on the weighted average, for the various modes of transportation are as
follows: for the car, it is 16.6 min; for the bus, it is 25.1 min; for pedestrian, it is 13.1 min; and
for bicycle, it is 20.7 min. Therefore, according to the methodology, resilience associated
with potential modal changes (the robustness of trips) will be evaluated based on this
critical time, reflecting the characteristics of the active population of the municipality of
Póvoa de Varzim, as identified in Table 4.

After defining the critical time, the percentages of resilient trips were analyzed for
each mode of transportation (Table 5).

Table 5. Percentage of resilient trips by mode of transportation.

Mode Critical Time (min) Resilient Trips

Car 16.6 1793 (59.4%)
Bus 25.1 126 (58.9%)

Walk 13.1 413 (52.4%)
Bike 20.7 28 (63.6%)

Indeed, we can observe that the mode of transportation with the highest percentage of
robust trips is the bicycle, at 63.6%. However, due to the small sample size, its influence
on the population is limited. Note that the bus has the highest critical time (in weighted
average) followed by the bicycle, denoting that the trips made by bus and bike have the
highest probability of surviving. The car mode presents the second highest percentage
of robust trips, at around 59.4%. This indicates that approximately 40.6% of trips have a
strong possibility of transitioning to another mode of transportation, such as the bus or
bicycle, in the case of a critical event. Next, the mode with the third highest percentage of
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robust trips is the bus, at around 58.9% of trips. It is also noticeable that the percentages
of robust trips in the car and bus modes are very close. Finally, the mode with the lowest
percentage of robust trips is the pedestrian mode (52.4%). Also, walking is associated with
the lowest critical time in the weighted average, representing the lowest probability of
surviving. This indicates that walking is the least resilient mode of transportation for the
average active population. This finding suggests that in a medium-sized city, with a city
center where there is a high density of inhabitants contrasting to the neighboring parishes
but with low job opportunities, walking does not fulfill the needs of an active population.

6. Discussion

The travel time per transport mode has been widely used as a measure to identify
factors that significantly affect transportation demand. Several studies in this area have
investigated the relationships between travel time and various influencing factors using
risk-based analysis. However, a gap was observed in the literature regarding mobility
resilience, which is known as the ability of travel to withstand, recover from, and adapt to
disruptions. Therefore, the purpose of this work was to assess resilience in urban mobility,
more specifically the characteristic of robustness, using the municipality of Póvoa de
Varzim, Portugal, as a study case to explore the proposed novel methodology by applying
risk-based duration models for travel time, the Weibull model with gamma heterogeneity.

Several key factors have played an important role in determining travel duration
over time. The factors that showed differences in travel duration were the age group of
individuals (<=14 years, 15–24 years, 25–44 years, 45–64 years, and >= 65 years), the gender
of individuals (male and female), the educational level of individuals (none or incomplete
1st cycle, completed basic education, completed secondary education, completed higher
education, and education level not applicable), driving license (yes and no), the purpose of
the trip (going to/from work, going to/from school or school-related activities, leisure and
sports, and purchase of goods and services), and the mode of transportation (traveling by
bus, car, walking, or bicycle)

Based on the critical time value (Tc) calculation, trips were evaluated considering
that users will remain in the mode for trips with a duration shorter than the critical
value, demonstrating high resilience. Trips with a duration longer than the Tc value were
considered less resilient than those with a lower value and, therefore, had a high potential
for transformability.

By reproducing these trip characterizations, it was possible to analyze the resilience of
travel patterns in urban mobility concerning time in the municipality of Póvoa de Varzim
and its surroundings (active population), more specifically the robustness of travel. It is
concluded that as the duration of trips increases, their robustness tends to decrease because
the longer the trip in a particular mode of transportation, the higher the probability of it
undergoing a modal change. The assumption is that short trips under a transport mode
are more robust. Note, however, that the definition of “short” may vary depending on
the transport mode and population characteristics, as shown in this study case, but also
on urban context (i.e., transport infrastructure, urban morphology, etc.), which was not
analyzed in the present study.

Consequently, considering the results, we can conclude that the mode of transporta-
tion with the highest percentage of robust trips is the bicycle, at 63.6%, but the bus is the
transport mode associated with the highest critical time followed by the bicycle. The car
mode presents the second highest percentage of resilient trips, at around 59.4%. Next, the
mode with the third highest percentage of resilient trips is the bus, with approximately
58.9% of trips. Finally, the mode with the lowest percentage of robust trips is the pedestrian
mode. Also, walking is associated with the lowest critical time in the weighted average,
representing the lowest probability of surviving. These findings were based on the weight-
ing considering the eighteen groups representing the active population. When comparing
these groups, we found that women between 25 and 44 years old with secondary education
are the traveling group with the least resilience in all kinds of transport modes. In contrast,
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men between 15 and 24 years old with higher education are the most resilient group when
traveling by bus, bicycle, or walking. When traveling by car, the most robust is the group
described as men between 25 and 44 years old with higher education.

Finally, a comparative analysis is conducted on the critical times of various modes of
transportation in the case study, comparing them with average travel times obtained in
other countries in urban contexts. Therefore, Table 6 presents travel times in some cities
worldwide.

Table 6. Average travel time by mode of transportation in some cities/countries.

City/Country
Transportation Mode—Average Travel Time (min)

Author(s)
Car Bus Bike Walk

Randstad/Netherlands 44.2 68.5 21.7 21.5 [47]
-/Singapura 30 37 30 8 [48]

Nanjing/China 31 40.3 21.8 13.2 [49]
Tarnow/Poland 15.6 21.2 14.3 13.4 [50]

-/United Kingdom 27.8 38.7 25.8 14.5 [51]
Case Study—Critical Time 16.6 25.1 20.7 13.1

The examples presented show that the critical times calculated in the case study (see
Table 5) are significantly lower than the average travel times practiced in other cities/countries
worldwide in almost all cases. It is worth noting that the scale of the case study is much
smaller than the examples presented in Table 6. Also, the methodology used in each study
to compute the travel time is distinct from ours.

7. Conclusions

The objective of this work was to assess resilience in urban mobility, more specifically
the characteristic of robustness, using the municipality of Póvoa de Varzim, Portugal, as
a case study. The proposed novel methodology was explored by applying hazard-based
duration models for travel time, including the Weibull model with gamma heterogeneity
across different transport modes (bus, car, walking, and bicycle).

The resilience assessment framework for urban mobility proposed in this study was
developed by evaluating the “survival” probability of trips for each transport mode and
considering various groups of the active population. The study measures resilience by
calculating a “critical time” (Tc), which indicates when a trip using a specific mode has less
than a 50% chance of being completed. Trips shorter than Tc are considered more resilient,
while longer ones are deemed less resilient. Bicycles had the highest percentage of resilient
trips (63.6%), followed by cars (59.4%) and buses (58.9%). Walking showed the lowest
resilience. The least resilient group was women aged 25–44 with secondary education,
while the most resilient group was men aged 15–24 with higher education. A comparison
of critical times revealed that Póvoa de Varzim’s travel times were generally lower than the
average travel times in other cities, although factors like city size and methodology varied.

It should be noted that the findings about resilience are only supported by the as-
sessment of one variable—travel time. Urban mobility and its resilience are very complex
concepts, and aspects such as transport infrastructure and transport mode characteristics
(e.g., car depends on fuel or other source of energy in contrast to walking) may be affected
differently depending on the type of disruption of the system. Therefore, a comprehensive
framework is needed to embrace several variables. In addition, the study is based on a
revealed-preference survey, which the government office conducted for national statistics of
Portugal with distinct purposes from the present study. Other variables not included in the
study, such as annual average daily traffic (AADT), weather, and infrastructure characteris-
tics, may affect the mode choice and therefore, may be relevant to the resilience analysis.

Nevertheless, the present study empirically illustrates the applicability of the proposed
innovative methodology based on calculating risk based on travel time using hazard-based
duration models to assess resilience in urban mobility, more specifically the robustness



Electronics 2024, 13, 4220 16 of 18

of trips and, consequently, the transportation system. It is expected that this proposed
methodological approach and the research results will assist future research to better
understand travel behavior in urban environments and future assessments of the resilience
capacity of the system.
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