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Abstract: This paper focuses on the implementation of the Whisper architecture to create an automatic
speech recognition (ASR) system optimized for the Turkish language, which is considered a low-
resource language in terms of speech recognition technologies. Whisper is a transformer-based
model known for its high performance across numerous languages. However, its performance in
Turkish, a language with unique linguistic features and limited labeled data, has yet to be fully
explored. To address this, we conducted a series of experiments using five different Turkish speech
datasets to assess the model’s baseline performance. Initial evaluations revealed a range of word
error rates (WERs) between 4.3% and 14.2%, reflecting the challenges posed by Turkish. To improve
these results, we applied the low-rank adaptation (LoRA) technique, which is designed to fine-tune
large-scale models efficiently by introducing a reduced set of trainable parameters. After fine-tuning,
significant performance improvements were observed, with WER reductions of up to 52.38%. This
study demonstrates that fine-tuned Whisper models can be successfully adapted for Turkish, resulting
in a robust and accurate end-to-end ASR system. This research highlights the applicability of Whisper
in low-resource languages and provides insights into the challenges of and strategies for improving
speech recognition performance in Turkish.

Keywords: automatic speech recognition; artificial intelligence; deep learning; representation
learning; self-supervised learning; Whisper model

1. Introduction

Automatic speech recognition (ASR) systems have become an integral part of many
modern technologies, enabling voice-activated assistants, transcription services, and real-
time communication across various platforms. The development of ASR systems has histor-
ically been focused on high-resource languages such as English, which benefit from large,
labeled datasets and sophisticated linguistic models. However, low-resource languages,
including Turkish, continue to face challenges in terms of speech recognition accuracy
due to the scarcity of labeled data and unique linguistic features such as agglutinative
morphology and vowel harmony [1].

The Whisper architecture, developed by OpenAI, represents a significant advancement
in ASR technology. As a transformer-based model, Whisper is designed to handle multiple
languages, accents, and noisy environments with high accuracy. However, despite its broad
language support, its performance in low-resource languages like Turkish has not been
fully optimized, as most of the model’s training data are skewed toward high-resource
languages such as English [2]. The need for the fine-tuning of such models in low-resource
languages is evident to improve their performance in real-world applications [3].
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Turkish presents specific challenges for ASR systems due to its agglutinative structure,
where suffixes are attached to root words to form complex words. This results in a vast
number of possible word forms, making it difficult for ASR systems to accurately segment
and recognize words. Additionally, Turkish exhibits notable dialectal diversity and phono-
logical complexity, further complicating the development of a robust ASR system [4]. The
scarcity of high-quality labeled datasets exacerbates these issues, leading to higher word
error rates (WERs) compared to other languages.

In this study, we aim to address the gap in the literature by adapting the Whisper ASR
system to Turkish using the low-rank adaptation (LoRA) method, a parameter-efficient
fine-tuning technique that allows large-scale models to be adapted to specific tasks without
the need for retraining all the model parameters [5]. LoRA significantly reduces the
computational cost and memory requirements of fine-tuning large models, making it ideal
for adapting ASR systems to low-resource languages like Turkish. By fine-tuning Whisper
with LoRA, we aim to enhance its performance on Turkish speech datasets and provide a
more accurate and robust ASR solution for Turkish.

Previous research on ASR systems for Turkish has primarily focused on traditional
machine learning approaches and language models tailored to Turkish [6]. However, these
approaches often lack the scalability and adaptability offered by modern transformer-
based models like Whisper. Our work bridges this gap by leveraging the strengths of
Whisper while addressing the specific challenges posed by the Turkish language. The key
contribution of this study is the evaluation of Whisper’s performance across five distinct
Turkish speech datasets, both before and after fine-tuning with LoRA. This comprehensive
evaluation provides insights into how well transformer-based models can be adapted to
low-resource languages and highlights the potential for further improvements in ASR
systems for Turkish.

Literature Review

The system model for speech analysis and synthesis was proposed by Dudley et al.
at Bell Laboratories [7,8] in 1939, which is considered the beginning of ASR systems [9].
The first experimental work was the system for isolated digit recognition for a single
speaker developed by Davis et al. of Bell Laboratories in 1952 [10]. Between 1950 and
1960, studies aimed to create pattern recognition systems for phoneme, single letter, or
syllable discrimination [11,12]. In the period between 1960 and 1970, three hardware-based
systems were developed in Japan [13–15]. Additional prominent works include IBM’s
Shoebox software [16], Martin’s work at RCA Laboratories [17], and Vintsyuk’s study
using dynamic programming methods [18]. Between 1970 and 1980, the Viterbi algorithm
was used in ASR systems [19], along with statistics-based approaches such as Itakura’s
LPC-based study [20]. Noteworthy works include the VIP-100 software, the Hearsay and
HWIM software developed within the scope of the DARPA SUR program, as well as the
Harpy software developed by Carnegie-Mellon University [21].

Between the 1980s and 1990s, statistical models and artificial neural network (ANN)
studies emerged. The period between 1990 and 2000 saw developments such as the AT&T
Voice Recognition Call Processing (VRCP) solution and the Hidden Markov Model Tool Kit
(HMM Tool Kit). After 2000, ANN-based systems continued to develop, and significant
advancements like the “Voice Search” feature in Android and Siri integration with iOS
were introduced. Additionally, the Effective Affordable Reusable Speech-to-Text (EARS)
and Global Autonomous Language Exploitation (GALE) datasets were created within the
DARPA program for ASR systems [22–28].

After 2010, the use of artificial intelligence (AI) in automatic speech recognition (ASR)
systems has increased, with significant developments such as connectionist temporal
classification (CTC), recurrent neural network (RNN), long short-term memory (LSTM),
two-way LSTM using the listen, attend, speech (LAS) mechanism, convolution mechanism,
residual network-based studies, the transducer mechanism, Wav2vec model, Wav2vec
2.0, the ASR system using a convolutional neural network (CNN) and the Conformer
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model, and the Whisper ASR system developed by OpenAI. Major companies such as IBM,
Microsoft, Google, and Amazon also released their advanced ASR systems during this
period [29–36].

The existing literature on Turkish speech recognition primarily focuses on the distinc-
tive characteristics of the language and their implications for automatic speech recognition
(ASR) systems. Turkish poses several challenges in terms of speech recognition due to
its agglutinative structure, rich morphology, complex phonology, and significant dialectal
diversity. To address issues related to this diversity, ASR systems often rely on robust
language models. In addition, the use of a lexicon helps improve recognition accuracy by
providing a structured mapping of words, which is particularly useful in managing the
vast variety of word forms in Turkish. Despite these techniques, the scarcity of high-quality
speech and text data remains a major obstacle to further advancement in the field [37–39].

The early works on Turkish ASR focused on developing speaker-dependent systems
and acoustic models. In recent years, there has been significant progress in Turkish ASR
systems, with the introduction of deep learning models such as LSTM, gated recurrent unit
(GRU), and Transformer, and the augmentation of Turkish speech and text data [40–51].

This research explores the implementation of a Whisper-driven automatic speech
recognition system for the Turkish language and evaluates the effects of refining the model
using LoRA approach. Whisper is a relatively new technology, so there are a limited
number of studies on it. Various studies have compared Whisper with other architectures,
such as Wav2Vec 2.0, and have utilized different datasets for testing. Additionally, some
researchers have employed innovative methods, such as image-converted EEG data and
direct fine-tuning, to improve Whisper’s ASR performance [52–56].

This study expands upon the existing body of research on Turkish ASR by addressing
some of the critical limitations that have hindered previous efforts in the field. Earlier works
on Turkish ASR typically focused on traditional machine learning models, such as hidden
Markov models (HMMs) or Gaussian mixture models (GMMs), and relied on relatively
small or less diverse datasets. These models, while effective in some contexts, struggled
with the unique linguistic challenges of Turkish, such as its agglutinative morphology, rich
inflectional structure, and the presence of numerous dialects.

In contrast, this study leverages the Whisper ASR model, which is based on a trans-
former architecture trained on a large, multilingual corpus. This allows the model to
capture long-range dependencies in speech and handle the complexities of Turkish more ef-
fectively than traditional models. The key differentiating factor of our work is the use of the
LoRA method for fine-tuning Whisper. LoRA enables the model to be fine-tuned efficiently
with fewer trainable parameters, addressing the computational challenges associated with
fine-tuning large-scale models for low-resource languages like Turkish.

Moreover, unlike many previous studies that focused on a single dataset or task, this
study evaluates the Whisper model on multiple Turkish speech datasets, representing a
more comprehensive assessment of its performance across different contexts. This study
also introduces corrections to the datasets, improving the quality of the training data and
reducing the impact of noise and other errors.

2. Materials and Methods

ASR systems convert spoken language into text. Unlike humans, who use past ex-
periences and grammar, ASR systems process speech as an audio signal [57–59]. While
traditional ASR systems have separate components, modern end-to-end architectures
perform these processes in a single step. With recent advancements in deep learning,
pre-trained transformer-based large-scale models have gained popularity for fine-tuning
specific ASR tasks. Transformer models, originally developed for natural language pro-
cessing, have been effectively repurposed for speech recognition. Their exceptional ability
to capture long-range dependencies in sequential data is critical for accurately compre-
hending the contextual nuances of speech. This adaptation has significantly improved the
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performance and accuracy of ASR systems, leading to more reliable and efficient speech
recognition technology [60].

2.1. Transformers

RNNs and their variations, such as LSTM and GRU, have succeeded significantly
in tasks like machine translation, language modeling, sequence transfer, and sequence
modeling. The success of RNNs in these tasks is due to their ability to process sequential
data. However, their sequential nature limits parallel processing, as each step depends on
the result of the previous step, making it challenging to handle long sequences effectively.
Over time, RNNs tend to forget important information, especially in long sequences,
which leads to difficulties in capturing long-term dependencies. The sequence-to-sequence
(Seq2Seq) [61] architecture was proposed to address these challenges. This architecture
consists of an encoder and a decoder, typically composed of RNN units. The encoder takes
the input sequence and compresses it into a fixed-length context vector, which is passed
to the decoder. The decoder then generates the output sequence from this context vector.
Seq2Seq improves the learning process by efficiently handling sequence data. However,
when dealing with long sequences, it experiences performance degradation because it
compresses the entire input into a fixed-length vector, which increases the risk of losing
crucial information.

To overcome this issue, the attention mechanism was introduced. The attention
mechanism allows the model to focus on specific parts of the input sequence dynamically,
rather than compressing all the input information into a single fixed-length vector. This
enables the model to consider different input parts at each step of the output generation,
improving the performance, particularly for long sequences. By highlighting important
points in the data, attention mechanisms make it easier for the model to retain critical
information. However, even with attention, challenges like poor long-distance dependency
retention, high computational costs, and limited parallel processing still persist [62].

To address these limitations and overcome the challenges of RNN-based models,
the transformer architecture was proposed by Vaswani et al. in 2017 [32]. Unlike RNNs,
transformers remove the need for sequential processing and rely entirely on the attention
mechanism. This architecture allows for parallel processing and significantly reduces the
risk of losing information in long sequences. One of the most significant advantages of
the transformer is its ability to support parallel processing, as it removes the need for step-
by-step sequential computations. These speed up the training process, especially when
working with large datasets. Additionally, the self-attention mechanism excels in tasks
requiring long-term dependencies by capturing relationships between distant elements in
a sequence. This feature enables it to overcome one of the key weaknesses of RNNs and
Seq2Seq models, which often struggle with such dependencies. The transformer is also
highly scalable, making it a foundational architecture for large language models such as
bidirectional encoder representations from transformers (BERT) and generative pre-trained
transformer (GPT).

The basic structure of the transformer architecture is illustrated in Figure 1. The
transformer consists of an encoder–decoder structure designed to process sequences of
data (like sentences).

The encoder processes the input data. It consists of N layers. Each layer has two
sub-layers: multi-head self-attention mechanism and position-wise fully connected feed-
forward network Each of these sub-layers is followed by add and layer normalization
steps, which stabilize and normalize the input. Positional encoding is added to the input
embeddings to provide the model with information about the position of tokens in a
sequence. This is necessary because, unlike RNNs or LSTMs, the transformer model does
not inherently understand the order of tokens.



Electronics 2024, 13, 4227 5 of 25Electronics 2024, 13, 4227 5 of 26 
 

 

 

Add and Normalization

Position-wise
Feed-Forward Neural 

Network

Add and Normalization

Multi-head
attention

+Positional encoding

Embedding

Sources

Encoder

Add and Normalization

Position-wise
Feed-Forward Neural 

Network

Add and Normalization

Multi-head
attention

+ Positional encoding

Embedding

Targets

Decoder

Add and Normalization

Masked multi-head
attention

Linear

N x

 x N

Softmax

Output Probabilities

 
Figure 1. Basic transformer architecture. 
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Figure 1. Basic transformer architecture.

The decoder generates the output sequence, conditioned on the input sequence en-
coded by the encoder. The decoder also has N layers, similar to the encoder but with a
few differences.

In addition to the multi-head self-attention mechanism and feed-forward network,
the decoder includes a masked multi-head attention layer. This ensures that predictions
for a given position only depend on the outputs before that position, preserving the
autoregressive nature of the language generation. Similar to the encoder, each layer in the
decoder is followed by add and layer normalization steps.

2.2. Components of the Transformer
2.2.1. Multi-Headed Attention

Instead of relying on a single attention function, the transformer employs multi-head
attention. In this approach, multiple attention heads operate in parallel, allowing the
model to capture different aspects of the information simultaneously. Each attention head
computes a weighted sum of the input vectors, focusing on different positions of the
input. This mechanism helps the model understand the relationships between words in the
sequence, regardless of their distance.

As can be seen in Figure 2, the multi-head attention (MHA) is formed by the combina-
tion of parallel scaled dot-product attention mechanisms. By multiplying the transformed
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input X by separate weight matrices, the query, key and value are obtained, which are fed
to each attention unit and given in Equations (1)–(3).

Q = XWT
Q (1)

K = XWT
K (2)

V = XWT
V (3)
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In Equation (4), the query and key matrix product is scaled by the square root of
the dimension and the weight obtained by the softmax function is multiplied by the
value matrix.

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (4)

The result from each attention unit (Equation (5)) is combined, as shown in Equation (6)
and then transmitted to the next layer.

Headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

MHA(Q, K, V) = Concat(Attention1,Attention2, . . .) (6)

2.2.2. Positional Encoding

As the array length increases, the index of the input becomes very large. In this state,
the indices are not suitable for use in the transformer. Although the normalization process
provides a solution up to a point, differences in array size cause problems again.

With positional encoding, the input array is transformed into a position matrix using
the sine and cosine functions. In positional encoding, the order of the input output size of
the model, denoted as dmodel

(
0 ≤ i ≤ dmodel

2

)
and user-defined criterion n, is as outlined

in Equations (7) and (8).

PE(pos,2i) = sin
(

pos/n2i/dmodel

)
(7)
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PE(pos,2i+1) = cos
(

pos/n2i/dmodel

)
(8)

To illustrate, the positional encoding matrix of the initial six words in a text input with
d = 4 and n = 10000 is presented in Table 1.

Table 1. Positional encoding matrix example.

i= 0 0 One One

sin
(

pos
n2i/d

)
cos
(

pos
n2i/d

)
sin
(

pos
n2i/d

)
cos
(

pos
n2i/d

)
x0 0 1 0 1
x1 0.841471 0.540302 0.009999 0.999950
x2 0.909297 −0.416147 0.019999 0.999800
x3 0.141120 −0.989992 0.029996 0.999550
x4 −0.756802 −0.653644 0.039989 0.999200
x5 −0.958924 0.283662 0.049979 0.998750

2.2.3. Feed-Forward Neural Network

The feed-forward neural network (FNN) is fed with the output of the multi-head
attention mentioned in the previous part. The computation of the FNN is performed as
in Equation (9). The bold part represents the ReLU activation function. The output of the
previous layer is weighted and fed into the ReLU activation function. It is then multiplied
by a second weight matrix and a constant is added and used as input for the analyzer.

FNN(x) = max(0, xW1 + b1)W2 + b2 (9)

The same mechanisms involved in the encoder are also involved in the decoder. The
difference is that in the positional encoding process in the encoder, the input x1, x2, x3,. . .
xn in the parser when receiving y0 (start), y1, y2, y3, . . . yn−1 is used. The first MHA in the
analyzer is masked to prevent overlearning. The last output in the analyzer is the SoftMax
function, which assigns a probability value between 0 and 1 to each element in the result
array and selects the outputs with the highest probability.

2.2.4. Embedding Layer

Transforms input tokens (source or target) into a high-dimensional space, converting
each token into a vector.

2.2.5. Masked Multi-Head Attention

This is applied in the decoder to prevent it from attending to future tokens that have
not been generated yet. It is essential for tasks such as language generation, where the
model must predict the next token in a sequence by relying solely on the previous tokens.

2.2.6. Add and Layer Normalization

After each multi-head attention or feed-forward layer, the model applies residual
connections, where the original input is added to the output. This is followed by layer
normalization, which helps stabilize the training and reduce overfitting, contributing to the
overall efficiency and robustness of the model.

2.2.7. SoftMax Layer

After the decoder produces the output probabilities, they are passed through a SoftMax
layer to generate a probability distribution over the possible output tokens.

2.3. Low-Rank Adaptation

The models used in large language model (LLM), NLP, ASR systems usually contain a
lot of parameters and have large sizes. For example, Whisper large-v2 has about 1.5 billion
parameters, while in GPT-3 this number increases to 175 billion. For such models, training
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all the parameters in the fine-tuning process is very costly in terms of processing power
and time.

Low-rank adaptation (LoRA) is a technique developed to efficiently fine-tune large
pre-trained models, including language and diffusion models. It achieves this by drastically
reducing the number of trainable parameters, making the fine-tuning process more efficient
and resource-friendly. LoRA keeps the weights of the pre-trained model fixed. Instead of
updating all the parameters, it introduces trainable low-rank matrices into each layer of
the model. This method relies on the low-rank decomposition of weight matrices. This
involves breaking down a large matrix into the product of two smaller matrices, which
reduces the number of parameters that need to be trained [6].

LoRA significantly reduces the computational and memory overhead associated with
fine-tuning large models. This makes it feasible to adapt large models to specific tasks
without the need for extensive computational resources. Compared to direct fine-tuning of
the model, this method can reduce the number of trained parameters to about a thousandth
and the memory requirement to about a third. Despite the reduction in trainable parameters,
LoRA often matches or exceeds the performance of full fine-tuning. It has been shown to
perform well on models like a robustly optimized BERT pretraining approach (RoBERTa),
decoding-enhanced BERT with disentangled attention (DeBERTa), GPT-2, and GPT-3.
Unlike some other fine-tuning methods, LoRA does not introduce additional inference
latency, making it suitable for real-time applications. The operation of the method is shown
in Figure 3.
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In standard fine-tuning, the pre-trained weight matrices of a neural network are
updated directly. For the sake of simplicity, we will denote a weight matrix in the network
by W, where W ∈ Rd×k, with d representing the input dimension and k representing the
output dimension [6]. During fine-tuning, the weight matrix W is updated as follows:

W′ = W + ∆W (10)

In this context, W′ represents the updated weight matrix, W denotes the original
pre-trained weight matrix, and ∆W is the full-rank matrix of learned weight updates, with
a dimensionality of d × k. The number of parameters in ∆W is d × k.

The objective of LoRA is to reduce the number of trainable parameters by constraining
∆W to being a low-rank matrix. Instead of learning the complete matrix ∆W, LoRA
postulates that ∆W can be decomposed into the product of two lower-dimensional matrices:
∆W = AB, where:

A ∈ Rd×r is a matrix with a rank r much smaller than min (d, k).
B ∈ Rr×k is another matrix with the same rank r.
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Thus, the update rule becomes:

W′ = W + AB (11)

This decomposition indicates that, instead of learning d × k parameters, it is sufficient
to learn d × r parameters for matrix A and r × k parameters for matrix B, resulting in a total
of r(d + k) parameters. If r is considerably smaller than min(d, k), this signifies a notable
reduction in the number of trainable parameters.

We can calculate the reduction in parameters more explicitly. For the full-rank update
∆W, there are:

Full-rank parameters = d × k (12)

For the low-rank update ∆W = AB, the parameter count is:

Low-rank parameters = r(d + k) (13)

The ratio of the number of low-rank parameters to the number of full-rank parameters
is as follows:

Parameter reduction ratio= r(d + k)/d × k (14)

At the beginning of the training, A is assigned a random Gaussian value and B is
assigned 0. Therefore, ∆W = BA has a value of zero in the first stage. It is then scaled by α

r
using a hyperparameter (α).

2.4. Whisper Model Architecture

Whisper [4,5], developed by OpenAI, is an open-source ASR (automatic speech recog-
nition) system that is capable of transcribing and translating spoken language. Whisper is
based on an encoder–decoder transformer architecture. The capacity of transformer models
to track the interrelationships between words and sentences enables the consideration
of long-range dependencies, a capability that is not afforded by other models. In other
words, transformers are capable of recalling previously uttered words and sentences, which
enables them to contextualize new utterances and thereby enhance the accuracy of their
transcription. Whisper is distinguished from other ASR models by its end-to-end deep
learning model, extensive language support, training on a large and diverse dataset, and
high performance.

Traditional ASR models, often based on HMM-GMM, use probabilistic and statistical
methods to model speech signals. Still, they have limitations in understanding complex
language models. Other ASR models that use RNNs, LSTMs, or GRUs process sequential
data to capture temporal dependencies in audio. However, due to their sequential nature,
these models tend to be slower when processing longer speech segments. As a transformer-
based model, Whisper processes data in parallel, enhancing the speed and efficiency. Its
attention mechanism effectively captures long-term speech dependencies and relationships
between words, which can be challenging and time-consuming for other models to learn.

Previously, ASR technology combined deep learning with HMM-GMM structures and
other audio–text processing techniques. The major drawback of these approaches was their
inability to be trained end-to-end; each model component needed separate training. The
advent of end-to-end models, such as Whisper, eliminated this limitation by adopting a
unified modeling approach that discards the traditional distinction between acoustic and
language models.

Whisper officially supports around 100 languages. Whisper was trained on a large
dataset of approximately 680,000 h, of which around 117,000 h are multilingual. This
constitutes an order of magnitude more data than used to train Wav2Vec 2.0, namely
60,000 h of unlabeled audio. Of the data utilized for Whisper’s training, 65% (or 438,000 h)
was dedicated to English speech recognition, 17% (or 117,000 h) to multilingual speech
recognition, and the remaining 18% (or 126,000 h) to English translation. This diverse
dataset enhances Whisper’s robustness and generalizability across different languages,
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accents, and speech types. Whisper can transcribe 99 different languages and is capable
of not just transcription but also translating conversations and timestamping speech. The
model can be optimized for various tasks and is available in five different sizes, ranging
from 39 million to 1.55 billion parameters, allowing developers to strike a balance between
accuracy and processing speed [4,5].

Whisper’s architecture is composed of two main components: the encoder and the
decoder (Figure 4). The raw audio is divided into 30 s segments and transformed into a
log-Mel spectrogram, which generates perceptually relevant frequency representations.
Whisper has been designed to work on audio samples of up to 30 s in duration. However,
the use of a chunking algorithm allows it to be used to transcribe audio samples of any
length. This is made possible through the transformer’s pipeline method.
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The spectrogram is processed through 2x1D convolutional layers with GELU (Gaus-
sian error linear unit) activations to match the transformer’s width [63]. Positional coding
assigns temporal locations to the outputs of these convolutional layers, helping the model
track sequential information from the audio data. This processed input is then fed into the
encoder stack in the transformer [4,5].

The encoder consists of multiple blocks, each containing self-attention and multi-layer
perceptron (MLP) layers. The self-attention mechanism analyzes each time segment of the
audio concerning all the others, capturing short- and long-term speech dependencies. For
instance, a word at the start of a sentence may be semantically related to one at the end;
self-attention allows for such long-term correlations. After establishing these relationships
through self-attention, the multi-layer perceptron layer enables deeper and more advanced
processing of these connections, allowing the model to extract nuanced features and discern
a broader range of linguistic patterns. Multiple encoder blocks are required to grasp the
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complexities of language and expedite understanding. The encoder operates only once per
30 s segment to produce a latent representation from the spectrogram [4,5].

This latent representation is passed to the decoder, where each block contains cross-
attention, self-attention, and multi-layer perceptron layers. Cross-attention facilitates the
transfer of the latent representation from the encoder to the decoder, linking the audio
data to the text generation process. This allows the decoder to make accurate predictions
based on the audio signal. Self-attention within the decoder considers previously generated
words to maintain grammatical consistency and meaning in the text output. The multi-layer
perceptron in the decoder enriches the information provided by self-attention and cross-
attention, ensuring that the text generated by the model is both grammatically coherent
and accurate in capturing the subtleties of the audio signal. The decoder predicts the text
step by step using the latent representation; first predicting the most likely word, then
generating the next word based on the previous prediction, and continuing until the entire
speech sequence is transcribed [4,5].

Based on the number of layers, the width of the feature representation, and the number
of attention heads, the Whisper model is categorized into five versions: tiny, base, small,
medium, and large. The specifics of each version are summarized in Table 2. Furthermore,
Large-v2 had 2.5 times more training iterations than the large version, while Large-v3
utilized data collection, processing, and pseudo-labeling with Large-v2 to augment the
training data to 5 million hours. Both the large-v2 and large-v3 models surpassed the large
model, with the large-v3 model exhibiting even stronger capabilities than the large-v2,
particularly in terms of model training [4,5].

Table 2. Whisper model types and configuration parameters.

Model Layers Width Attention Heads Parameters
(Million)

tiny 4 384 6 39
base 6 512 8 74
small 12 768 12 244

medium 24 1024 16 769
large 32 1280 20 1550

This study identified the following factors as influencing the selection of Whisper over
other potential ASR models.

The Whisper model is a transformer-based ASR system that has demonstrated robust
performance across a range of languages, including low-resource languages such as Turkish.
The robust performance of Whisper in noisy environments and its capacity to handle a
diverse range of speech conditions, including accents and spontaneous speech, render it
particularly well-suited for real-world applications in Turkish speech recognition.

Whisper operates in an end-to-end manner, whereby the model is trained to map
audio inputs directly to text outputs, obviating the need for separate acoustic and language
models. This unified approach markedly enhances the system’s capacity to generalize
across disparate languages and accents. Additionally, Whisper’s transformer architecture
enables parallel processing, rendering it more efficient than RNNs or LSTM units, which
process input data sequentially and are slower when handling long speech sequences.

Furthermore, Whisper is capable of fine-tuning through techniques such as LoRA,
which enables the model to be efficiently adapted to specific tasks or languages without
the necessity of retraining all the parameters. This represents a significant advantage
over other models, which may require more extensive resources to achieve the same level
of fine-tuning. In light of the challenges posed by Turkish, including its agglutinative
morphology and dialectal variations, the ability of Whisper to be fine-tuned with fewer
trainable parameters represents a significant advantage and was a key factor in its selection
for this study.
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In conclusion, Whisper was selected for this study due to its advanced transformer-
based architecture, multilingual training, adaptability to low-resource languages, and
efficient fine-tuning capabilities. These features render it a more suitable model for de-
veloping a robust ASR system for Turkish compared to other traditional or even deep
learning-based ASR models.

2.5. Turkish Speech Datasets

In this section, the five Turkish speech datasets, the Middle East Technical University
(METU) Microphone Speech Dataset (METU MS), Turkish Broadcast News Speech and
Text Dataset (TNST), FLEURS Dataset, Mozilla Common Voice Dataset (Mozilla CV) and
Turkish Automatic Speech Recognition Test (TASRT), used in the experimental studies are
introduced by listing their characteristics, such as the size, audio file type, metadata fields,
etc. The METU MS, TNST, FLEURS, Mozilla CV and TASRT datasets contain 6618, 82331,
3127, 52,477 and 286 records, respectively.

METU MS dataset’s [64] data availability status: data available in a publicly accessible
repository. The original data presented in the study are openly available at https://catalog.
ldc.upenn.edu/LDC2006S33 (accessed on 15 September 2024).

The METU MS dataset consists of approximately 5.6 h of audio and corresponding
textual transcripts from 120 speakers of various age groups (19–50 years) and genders
(60 males, 60 females). Each speaker vocalized 40 randomly selected sentences out of a
total of 2462 sentences. Audio data, WAV with a sample frequency of 16 kHz, are stored in
TXT format files in the form of text.

TNST dataset’s [65] data availability status: data available in a publicly accessible
repository. The original data presented in the study are openly available at https://catalog.
ldc.upenn.edu/LDC2012S06 (accessed on 15 September 2024).

The TNST is a dataset of speeches collected from news bulletins of various Turkish-
language news channels. It contains 194 h of audio and text data consisting of approxi-
mately 13,000,000 words. The audio data are in the WAV format, with a sampling frequency
of 16 kHz, and the text is in TXT format files.

Mozilla CV dataset’s [66] data availability status: data available in a publicly accessible
repository. The original data presented in the study are openly available at https://
commonvoice.mozilla.org/en/datasets (accessed on 15 September 2024).

The Mozilla CV is an open-source voice dataset created by the Mozilla company. This
dataset consists of speech recordings of more than 500 languages, donated by volunteers
from around the world. The most recent version released at the time of writing, Common
Voice Corpus 15.0, contains 115 h of audio files from 1511 individuals, 111 h of which have
been verified. The audio files are in MP3 format, with a sampling frequency of 48 kHz. The
speech text is stored in TSV format files, with attributes such as the accent, gender, age,
region, etc.

FLEURS dataset’s [67] data availability status: data available in a publicly accessible
repository. The original data presented in the study are openly available at https://
huggingface.co/datasets/google/fleurs (accessed on 15 September 2024).

The FLEURS is a dataset of approximately 12 h of speech in 102 different languages,
one for each language. The audio data are stored in WAV files, with a sampling frequency
of 16 kHz. The speech text is stored in TSV format files, with attributes such as the text,
speaker gender, etc. The recordings are divided into three parts: dev, train and test. The
Turkish dataset consists of a total of 3607 records, with 743, 2526, and 338 records in the
train, test, and dev sections, respectively.

TASRT dataset’s [68] data availability status: data available on request due to restric-
tions (commercial use). The data presented in this study are available from the correspond-
ing author upon request.

The TASRT dataset is compiled by Oyucu [68]. The TASRT dataset contains approxi-
mately 186 min of speech data from 286 speakers (143 women and 143 men) in 20 different
categories. The audio data are stored in WAV files, with a sampling frequency of 16 kHz.

https://catalog.ldc.upenn.edu/LDC2006S33
https://catalog.ldc.upenn.edu/LDC2006S33
https://catalog.ldc.upenn.edu/LDC2012S06
https://catalog.ldc.upenn.edu/LDC2012S06
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
https://huggingface.co/datasets/google/fleurs
https://huggingface.co/datasets/google/fleurs
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The dataset contains transcript files with TXT extension corresponding to each audio file
and named with category, speaker gender and order.

2.6. Automatic Speech Recognition Performance Evaluation Criteria

The three possible types of errors that can be encountered in a text generated with
ASR systems are insertion, deletion and substitution. Insertion is the insertion of an extra
symbol/word that is not in the text. Deletion is the absence of a symbol/word that should
be in a certain position in the text. Substitution is when a symbol/word that should be in a
certain position in the text is replaced by another symbol/word.

For a text consisting of NW words, the number of words added is IW, deleted is DW and
substituted is SW Then, the word error rate (WER) is calculated as given in Equation (15)
and the accuracy, also referred to as the word recognition rate (WRR), is calculated as given
in Equation (16).

WER =
IW + DW + SW

NW
(15)

WRR = 1 − WER (16)

The WER is generally used as the ASR evaluation criterion. Another widely used
measure is the character error rate (CER). The CER value is calculated similarly to the WER
value. NC indicates the number of symbols, the added symbol number is IC, the deleted
symbol number is DC and the substitution is SC. The CER and character recognition rate
(CRR) are found as given in Equations (17) and (18).

CER =
EC + SC + DC

NC
(17)

CRR = 1 − CER (18)

The WER and CER are often confused with each other due to their similarities in
calculations. While the WER is measured by the number of word errors; in terms of the
CER, the number of symbol errors is taken into account. If we consider the following
expression:

Bir işi yapmak için neden yarını bekliyorsun bugün de dünün bir yarını değil midir
Let us assume that the output produced by the ASR system for a sentence consisting

of 14 words and 82 symbols with spaces is as follows.
Biri işi yapmak işin neden yarın_bekliyorsun bugün de dünün bir yarını değil_____

Symbol insertion was performed in the first word, a symbol change was made in the
fourth word, and symbol deletion was performed in the sixth word. The last word has
been completely deleted. There have been 7 deletions, 1 substitution, 1 insertion, giving
total of 9 symbol errors; There are a total of 4 word errors, 3 changes and 1 deletion.

In this situation,WER = 4
14

∼= 0.286, CER = 9
82

∼= 0.089
Apart from these, although not common, there are also the sentence error rate (SER),

phone error rate (PER), utterance error rate (UER), and frame error rate (FER). Criteria
such as these can also be used to measure ASR performance. Low error rates indicate high
accuracy and thus high model success.

3. Testing the Performance of Whisper Models on Turkish Speech Datasets and
Fine-Tuning with LoRA

This paper presents the implementation of an end-to-end Turkish speech recognition
system, utilizing the Whisper ASR model. Whisper is a robust ASR architecture; however,
its performance requires further enhancement for low-resource languages such as Turkish.
In this study, the performance of five scaled pre-trained models of the Whisper architecture
(small, basic, small, medium, and large) was evaluated concerning Turkish speech recogni-
tion using five distinct Turkish speech datasets (METU MS, TNST, Mozilla CV, FLEURS,
and TASRT). In addition to the comparison of the Whisper-large-v2 and Whisper-large-v3
models in terms of performance, a comparison was also conducted between Google USM
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and the Whisper-large-v3 model using five distinct Turkish datasets. Subsequently, the
Whisper models were fine-tuned with the LoRA method, and the performance of the
Whisper models in terms of Turkish speech recognition was evaluated in comparison. The
word error rate was employed as the performance metric.

In this study, experiments were conducted using a workstation equipped with a
32-core Intel(R) Xeon(R) Gold 6426Y 2.50 GHz 2-processor and an Nvidia A5000 GPU.
The experiments were carried out using the Python v3.12 programming language and the
Miniconda v24.5.0 environment. PyTorch v2.4.0, a machine learning and deep learning
library developed by Facebook, was utilized for the tests with the datasets. Audio file
processing was performed using the pydub v0.25.1 library. The Whisper ASR model library,
developed by OpenAI, along with the fast-whisper, Whisper online, and Whisper Live
applications, was employed. To address the issue of Whisper ASR converting numbers into
text, the num2words v0.5.2 library was utilized with modifications. The Numpy v2.1.0 and
Pandas v2.2.2 libraries were employed for data processing and calculations, while the jiwer
v3.0.4 libraries were used for calculating the WER and CER. Additionally, standard libraries
such as datetime for duration determination, io, sys, and tarfile for file operations, re for text
processing and regular expressions, and argparse for managing application parameters were
also used.

During this study, we conducted around 950 h of work. This included approximately
150 h of examining and editing datasets, as well as 800 h dedicated to experimenting,
Whisper fine-tuning, and developing a simultaneous ASR.

3.1. Preparation of Datasets

The METU MS, TNST, Mozilla CV, FLEURS and TASRT Turkish datasets were used
in the experimental study. These datasets consist of WAV files with a 16 kHz sampling
frequency and the Mozilla CV dataset consists of MP3 files with a 48 kHz sampling
frequency. The MP3 files of the Mozilla CV dataset were converted to a single channel with
a sampling frequency of 16 kHz.

Before starting the experiments, we analyzed the Turkish speech datasets. It became
clear that the METU MS, TNST, and TASRT datasets needed some corrections. The issues
and necessary modifications identified in the datasets are outlined below.

Some texts in the METU MS dataset do not comply with the Turkish Language Asso-
ciation’s spelling rules or are not correctly vocalized. In this case, even though the ASR
system produced the correct text, the CER and WER values were higher than they should
have been due to spelling errors in the dataset. Common spelling errors include the spelling
of dates without spaces, the contractions of expressions such as “bir şey”, “her şey” and
“birçok”, and the contractions of suffixes and conjunctions such as “-mi”, “-mi”, “-de”,
“-da”, “-ki”. Even though it is rare, another type of error found in the dataset is the writing
of Turkish characters such as ç, ğ, i, ö, ş, and ü without a dot.

Similarly, there are many problematic records in the TNST dataset. Adjacent words ae
were written together. Additionally, many foreign words are included with their Turkish
pronunciations. These issues caused an increase in the WER and CER values.

The texts in the datasets were reorganized by listening to the audio files in cases of
ambiguity. Foreign names in the TNST dataset, which were written side by side with their
Turkish pronunciations, were reduced to one in the text so that only their commonly used
equivalents were included. Apart from these, other problems encountered with both the
text files and the functioning of the existing model are listed below:

1. In some files, errors occurred in the output produced because the recording was
terminated before the end of the speech. Especially in recordings with more than one
speaker’s speech, it was observed that if there were gaps, the model did not process
the speech of subsequent speakers. Therefore, voice activation detection (VAD) was
used to reduce the gaps that cause errors.

2. Confusion about whether conjunctions such as “with”, “ise”, “de”, “da” are written
adjacent to the word or separately is one of the most common errors. In the text,
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suffixes or conjunctions, which are difficult to identify even for the listener, are
sometimes misspelled or incorrectly transformed by the model. The text was corrected
where it should have been separate or adjacent.

3. When the end of one word and the start of the next word have similar sounds, the
model sometimes merges them. This causes it to skip the start of the following word.

4. The model abbreviates expressions such as doctor, professor, etc., kilometers and
converts them into text as Dr., Prof., etc., km.

It was important to determine how the corrections made to the METU MS, TNST,
and TASRT datasets affected the performance of the pre-trained Whisper models. To this
end, the original and the corrected versions of the datasets were subjected to testing with
pre-trained Whisper models, and the outcomes were evaluated. Afterward, LoRA was used
to fine-tune the pre-trained Whisper models with the corrected datasets. The performances
of these fine-tuned models were then evaluated.

3.2. Testing the Performance of Whisper Models on Five Turkish Speech Datasets

Table 3 presents the WER, CER and the duration values in hours and minutes for
the pre-tests conducted on the Whisper models at five different scales (tiny, base, small,
medium, large) before any modifications were made to the Turkish speech datasets. In the
test, all of the samples in the METU MS, TASRT and FLEURS datasets with a low number of
records and 30% of the samples in the TNST and Mozilla CV datasets with a high number
of records were used.

Table 3. Pre-testing the performance of the Whisper models on five Turkish speech datasets.

Dataset Metric Tiny Base Small Medium Large-v2

METU MS (100%)
WER 0.36 0.24 0.16 0.15 0.10
CER 0.10 0.07 0.06 0.04 0.03

Duration 00:20 00:21 00:25 00:36 00:47

TNST (30%)
WER 0.53 0.36 0.22 0.15 0.13
CER 0.18 0.12 0.08 0.06 0.05

Duration 01:30 01:33 01:57 02:44 03:35

FLEURS (100%)
WER 0.47 0.31 0.17 0.11 0.08
CER 0.15 0.09 0.04 0.03 0.02

Duration 00:16 00:18 00:22 00:31 00:43

Mozilla CV (30%)
WER 0.49 0.37 0.24 0.19 0.16
CER 0.22 0.16 0.12 0.11 0.09

Duration 00:52 00:56 01:05 01:28 01:50

TASRT (100%)
WER 0.41 0.29 0.19 0.14 0.13
CER 0.14 0.09 0.06 0.05 0.04

Duration 00:03 00:03 00:04 00:07 00:10

In the METU MS dataset, while the WER is 0.36 in the tiny model, it drops to 0.10 in
the large-v2 model. In other words, the errors decreased as the model size increased. While
the CER is 0.10 in the tiny model, it decreases to 0.03 in the large-v2 model. The TNST
dataset has higher error rates compared to the METU MS. Especially, the tiny model has
the highest error rate, with a WER of 0.53. However, again with the large-v2 model, the
WER drops to 0.13. The FLEURS dataset performs better than the TNST. With the large-v2
model, the WER drops to 0.08 and the CER to 0.02, indicating very low error rates. The
Mozilla CV dataset also exhibits high error rates, similar to the TNST. Even in the large-v2
model, the WER drops to 0.16, but this is higher than in the METU MS and FLEURS. The
TASRT dataset shows a balanced performance across all the models. In the large-v2 model,
the WER is 0.13 and the CER is 0.04. Compared to the other datasets, the average error
rates are lower.
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3.3. Testing Whisper Models After Data Correction

The results obtained from the performance tests performed after rearranging the
METU MS, TNST and TASRT datasets are shown in Table 4.

Table 4. Test performance evaluation of the Whisper models after dataset correction.

Dataset Metric Tiny Base Small Medium Large-v2

METU MS (100%)
WER 0.33 0.21 0.12 0.11 0.06
CER 0.09 0.06 0.04 0.04 0.02

Duration 00:20 00:21 00:24 00:35 00:47

TNST (30%)
WER 0.52 0.35 0.20 0.14 0.10
CER 0.17 0.10 0.06 0.05 0.04

Duration 01:13 01:18 01:37 02:15 02:57

TASRT (100%)
WER 0.38 0.25 0.15 0.09 0.08
CER 0.13 0.08 0.05 0.03 0.03

Duration 00:03 00:03 00:04 00:07 00:10

In the experiments performed using the Whisper-large-v2 model after rearranging the
datasets, in the METU MS dataset, there is a notable decline in the WER and CER ratios
with an increase in the model size. The Large-v2 model exhibits the lowest WER of 0.06 and
the lowest CER of 0.02. This suggests that the dataset was transcribed with a high degree
of accuracy. In comparison to the other datasets, the TNST dataset exhibits higher WER
and CER ratios. This may be indicative of the dataset being more challenging to transcribe
or comprising elements such as different languages and accents. The lowest WER was 0.10
in the “large-v2” model, while the lowest CER was 0.04. In the TASRT dataset, the WER
and CER rates decrease with the model size. Notably, the values of the WER (0.08) and
CER (0.03) in the “large-v2” model demonstrate an improvement trend comparable to that
observed in the other datasets.

3.4. Performance Comparison of Whisper-Large-v2 and Whisper-Large-v3 Models

On 6 November 2023, the Whisper-large-v3 model was introduced by OpenAI. This
model has the same number of layers, attention headers and parameters as the Whisper-
large model. However, it differs from the other models by using 128 Mel frequency bands
instead of 80 as input and by adding Cantonese to the group of defined languages. The
Whisper-large-v3 model was obtained by training the Whisper-large-v2 model with one
million hours of weakly labeled and four million hours of pseudo-labeled data. Table 5
shows the comparison of the Whisper-large-v2 and Whisper-large-v3 models for the
datasets studied.

The Whisper-large-v3 model yielded substantial enhancements in the WER and CER
values across all the datasets. The most substantial improvements were observed in the
METU MS dataset, which may suggest that the model is more effectively tailored to the data
in this particular dataset or that this dataset derives greater benefit from the enhancements
introduced in the v3 model. The improvements in the WER ranged from 8.77% to 29.08%,
while those in the CER ranged from 6.29% to 44.27%. No notable alterations were observed
in the processing times, which remained largely consistent or exhibited only minimal
fluctuations. A 3.60% increase in the processing time was observed on the Mozilla CV
dataset, but this is equivalent to approximately four seconds and does not have a significant
practical impact.

The Whisper-large-v3 model demonstrates a notable enhancement in accuracy relative
to its predecessor, the large-v2 model, while exhibiting a minimal increase in the processing
time. This renders the v3 model a more appealing option for users seeking to attain
enhanced performance in transcription tasks.
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Table 5. Performance comparison of the Whisper-large-v2 and Whisper-large-v3 models.

Dataset Metric Large-v2 Large-v3 Difference (%)

METU MS (100%)
WER 0.061 0.043 −29.08
CER 0.018 0.010 −44.27

Duration 00:47 00:47 0.00

TNST (30%)
WER 0.103 0.085 −17.30
CER 0.037 0.028 −24.97

Duration 02:57 02:58 0.86

FLEURS (100%)
WER 0.083 0.075 −10.11
CER 0.021 0.020 −7.41

Duration 00:43 00:43 −0.96

Mozilla CV (30%)
WER 0.156 0.142 −8.77
CER 0.090 0.084 −6.29

Duration 01:50 01:54 3.60

TASRT (100%)
WER 0.081 0.069 −13.84
CER 0.032 0.027 −15.35

Duration 00:10 00:10 −0.94

3.5. Performance Comparison of Whisper and Google USM Models

Whisper and Google USM are two current speech recognition systems. OpenAI
has shared the Whisper ASR system under an open-source distribution license. Google
promised to openly share its model for Google USM, but this has not happened over
time. In contrast, the model can be accessed through paid application programming
interfaces (APIs). The optimization points of Google USM, which runs behind APIs, and
the hardware on which it runs are not clear. Despite these uncertainties about the model,
a performance comparison between the two systems can be performed indirectly. A
performance comparison between the two ASR systems was performed on the WER and
CER using the METU MS, TNST, FLEURS, Mozilla CV and TASRT datasets. A certain
number of random speech files were selected from each dataset. The selected files were
given as input to the Whisper large-v3 model and the API (called Chirp) running Google
USM behind it. The resulting output texts were compared with real speech texts to find
the WER and CER values. The number of samples for the datasets used in the comparison,
the criterion values obtained and the percentage differences between the values of the two
models are given in Table 6.

Table 6. Performance comparison of the Whisper and Google USM models.

Dataset Metric Whisper Large-v3 Google USM Difference(%)

METU MS (100%)
WER 0.043 0.049 13.95
CER 0.01 0.01 0

TNST (30%)
WER 0.084 0.087 3.57
CER 0.028 0.025 −10.71

FLEURS (100%)
WER 0.075 0.093 24
CER 0.021 0.036 71.43

Mozilla CV (30%)
WER 0.066 0.063 −4.55
CER 0.015 0.02 33.33

TASRT (100%)
WER 0.069 0.098 42.03
CER 0.027 0.044 62.96

Whisper-large-v3 provides lower WER and CER than Google USM on most datasets
and is particularly superior on the METU MS, FLEURS and TASRT datasets. Significant
performance gains are observed over Google USM on the FLEURS and TASRT datasets.
However, on the Mozilla CV dataset, Google USM provides better WER performance than
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Whisper-large-v3, but Whisper-large-v3 is superior concerning the CER. In terms of the
CER, Whisper-large-v3 is more successful in most cases, but there is one case where Google
USM performs better on the TNST dataset.

3.6. Fine-Tuning Process on Whisper Models

Whisper can be used with close to a hundred languages and supports multiple down-
stream tasks (translation, speech recognition, etc.). Also, it has a fine-tuning feature. In
the fine-tuning process, the model is retrained with newly labeled data for the relevant
downstream task. The fine-tuning process contributes to the improvement of the model in
three ways:

1. Fitting the model with multiple downstream tasks, but only for a specific task (in the
context of this study, the ASR).

2. Increasing the model’s bias toward a particular language, and hence, its performance
in that language, by training it only with data from a particular language.

3. Strengthening the probabilities of the elements involved in the tokenization process
with the specified training dataset, increasing the bias of the outputs in terms of
the relevant elements. For example, increasing the probability that the model that
produces output with numbers for numbers will produce text output instead of
numbers by fine-tuning the datasets where numbers are shown as text.

Higher models of solutions like Whisper, etc., require high processing power and
memory for fine-tuning. Graphics cards with powerful GPUs are usually used for process-
ing power and memory. Often, however, as the size of the model increases, the top-end
graphics cards become insufficient.

One of the methods used to overcome these difficulties is LoRA. In this study, the
fine-tuning process is performed using LoRA. With LoRA, the number of target parameters
trained on the Whisper architecture can be reduced to approximately 3/100 and the memory
requirement to approximately 1/3 [6].

3.7. Fine-Tuning Process on Whisper-Medium Model

The Whisper-medium model was fine-tuned using 60% of the Mozilla CV dataset
because it contained more records than the other datasets. The relatively small size of the
Whisper-medium model enables faster training with larger datasets. The hyperparameters
used in the fine-tuning process were as follows: the chunk size was 32, the learning rate
was 5E-6, and the gradient accumulation step was 2. Adam was used as the optimization
function. As a result of the fine-tuning process, which lasted 6500 epochs and a total of
72 h, the test results given in Table 7 were obtained.

Table 7. Test performance comparison after fine-tuning for the Whisper-medium model.

Dataset Metric Whisper-Medium Whisper-Medium
(Fine-Tuning) Difference (%)

METU MS (100%)
WER 0.109 0.065 −40.37
CER 0.043 0.015 −65.12

TNST (10%)
WER 0.139 0.136 −2.16
CER 0.047 0.036 −23.40

FLEURS (100%)
WER 0.118 0.117 −0.85
CER 0.037 0.034 −8.11

Mozilla CV (10%)
WER 0.210 0.172 −18.10
CER 0.117 0.099 −15.38

TASRT (100%)
WER 0.91 0.106 16.48
CER 0.035 0.042 20.00

After fine-tuning the Whisper-medium model, the most significant decrease in terms
of the WER value was observed in the METU MS dataset. No significant improvement was
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observed in the TNST and FLEURS datasets, which contain many foreign words in various
languages. On the other hand, while an 18.1% improvement was achieved in the Mozilla
CV dataset, a 16.48% performance decrease was observed in the TASRT dataset. Similarly,
while a decrease in the CER value occurred in the other four datasets, a 20% increase was
observed in the TOKTT dataset. It was observed that the CER improvement in the TNST
dataset in particular was not reflected in the WER value at the same rate.

3.8. Fine-Tuning Process on Whisper-Large-v2 Model

The Whisper-large-v2 model was fine-tuned using 80% of the FLEURS and Mozilla CV
datasets. The hyperparameters used in the fine-tuning process were as follows: the chunk
size was 32, the learning rate was 5 × 10−6, and the gradient accumulation step was 2. The
training took about 90 h in five sessions and was completed in 8000 epochs. Adam was
used as the optimization function. Since the LoRA method was used, the training loss was
calculated based on the tokenization success, since a loss calculation cannot be performed
directly on the WER. Table 8 shows the test performance of the Whisper-large-v2 model on
the Turkish datasets comparatively before and after fine-tuning.

Table 8. Whisper-large-v2 model test performance evaluation after fine-tuning.

Dataset Metric Whisper Large-v2 Whisper Large-v2
(Fine-Tuning) Difference (%)

METU MS (100%)
WER 0.059 0.050 −15.25
CER 0.020 0.010 −50.00

TNST (30%)
WER 0.132 0.109 −17.42
CER 0.051 0.032 −37.25

FLEURS (100%)
WER 0.083 0.047 −43.37
CER 0.021 0.014 −33.33

Mozilla CV (30%)
WER 0.10 0.051 −49.00
CER 0.021 0.010 −52.38

TASRT (100%)
WER 0.081 0.079 −2.47
CER 0.032 0.030 −6.25

Following the application of the fine-tuning techniques, a reduction in the WER and
CER values was observed across all the datasets. The most substantial enhancements were
observed in the Mozilla CV and FLEURS datasets.

As anticipated, the 43.37% reduction in the WER is indicative of the model’s enhanced
accuracy in transcription on the FLEURS dataset, which constituted 80% of the total fine-
tuning data. The enhancement in character-level accuracy is also reflected in the reduction
in character-level errors.

The test on 10% of the Mozilla CV dataset demonstrated the most substantial improve-
ments in both the WER (49.00%) and CER (52.38%). These results demonstrate the efficacy
of the fine-tuning process on the Mozilla CV dataset.

The 50% improvement in the CER for the METU MS dataset demonstrates that the
model is highly effective in reducing character-level errors. The 15.25% improvement
in the WER is also noteworthy, indicating an enhancement in the overall quality of the
transcription.

Concerning the TNST dataset, the fine-tuning resulted in enhanced transcription
accuracy, particularly a 37.25% improvement in the CER. The 17.42% improvement in the
WER also suggests that the model’s word-level performance has been enhanced.

The impact of fine-tuning on the TASRT dataset was found to be relatively limited.
In the case of the TASRT dataset, which comprises approximately 75% of speech data
exceeding 30 s in duration, the minimal observed improvements of 2.47% in the WER and
6.25% in the WER may be indicative of the model’s inherent suitability for this particular
dataset, or that the fine-tuning was insufficiently effective.
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3.9. Fine-Tuning Process on Whisper-Large-v3 Model

In the fine-tuning process conducted with the Whisper-large-v3 model, the incor-
poration of all the linear layers resulted in a two- to fourfold increase in the number of
trained parameters and led to the emergence of hardware bottlenecks. Consequently, the
fine-tuning process was conducted solely on the Q and V structures.

Firstly, due to the reduction in the processing speed and memory requirements, the
fine-tuning process was conducted in the 8-bit integer format. However, this resulted in a
decline in sensitivity and an increase in the hallucination problem of the model. Accordingly,
the 16-bit floating-point format was selected for the fine-tuning process. During the training
phase, the batch size was set to 32, the learning rate was fixed at 5 × 10−6, and the gradient
accumulation step was set to 2.

Given that the large-v3 model was trained on a vast quantity of data, it was not
possible to achieve a greater degree of success by training on a dataset of approximately
10 h. Despite the expectation that greater training data would facilitate improvement, the
desired progress in the fine-tuning of the large-v3 model could not be achieved due to
the limited number of labeled datasets and the constraints imposed by the hardware and
runtime. Consequently, the Whisper fine-tuning process concentrated on the lower models,
medium and large-v2.

4. Discussion

The end-to-end, multi-tasking design of modern ASR applications is a testament to the
advancements in artificial intelligence and machine learning. By eliminating the need for
separate acoustic and language models, these systems streamline the process of understand-
ing and processing human speech. The integration of automatic translation and speaker
tagging within ASR systems not only enhances the user experience but also broadens
the scope of application for these technologies. The transition from traditional statistical
models, such as HMMs, to advanced deep learning structures is a major development.
This includes the use of transformers with encoders and decoders, marking a significant
milestone in the field. These deep learning models can analyze vast amounts of data and
learn complex patterns, which results in more accurate and efficient speech recognition.

As the complexity of deep learning architectures increases, particularly with the
integration of transformer models, the necessity for extensive training data and substantial
computational resources also rises in parallel. These issues have been addressed through
the development of more advanced GPUs and the ongoing expansion of datasets. The shift
toward creating models with a larger number of parameters reflects the field’s adaptation
to these technological advancements. The training of deep learning models on large-
scale datasets has been demonstrated to enhance their generalization capabilities and to
improve their performance across a wide range of tasks. Incremental improvements in
model components, such as refining the attention mechanism, are often more favored than
overhauling the entire architecture. This approach allows for steady progress and the
optimization of existing frameworks, which can be more efficient than starting from scratch.
The expansion of training datasets also plays a crucial role in this development trajectory,
providing the models with a diverse range of inputs from which to learn. The current
trajectory suggests the focus will remain on scaling up the models in line with the available
computational resources. This scaling is not just in terms of the size of the datasets but also
the complexity of the models’ input attributes [69,70].

This study used the Whisper ASR model, which employs a transformer-based encoder–
decoder architecture, to create a speech recognition system for Turkish. The performance of
the model was evaluated using various Turkish speech datasets, and there were noticeable
enhancements after fine-tuning with the LoRA method.

Initial reviews of the Turkish speech datasets identified the following common errors
and issues.
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Problems related to transferring the speech to the text, such as not reading the text com-
pletely and correctly, transferring the speech to the text differently and adding expressions
that are not in the speech to the text.

Spelling errors such as missing or incorrect punctuation in Turkish characters and
words that must be written adjacent or separate according to the spelling rules are trans-
ferred to the text differently.

Ending the recording before the expression in the text is completed, noise, etc., leading
to sound quality problems.

In a carefully written text, it is estimated that there are approximately 1–2% spelling
errors. On the other hand, for quickly written or unchecked texts, this rate is thought to
be approximately 10–15% [71]. Within the scope of this study, the speech voiced at many
points in the METU MS dataset was listened to again and corrections were made. When
the initial and final versions of the texts were compared, it was determined that there were
1.7% character and 5.8% word differences. Considering the deficiencies and problems that
may arise from the correction process, the speaker does not vocalize by the text, words or
letters are pronounced differently, etc., it was observed that there were approximately 1–2%
letter errors and 5% word errors due to errors. This coincides with the predictions given at
the beginning.

Considering all these issues, it is understood that the current Whisper architecture
is more successful than the error values obtained in terms of the understandability of the
converted text.

By fine-tuning, the performance of the models can be increased in terms of the task
and language. However, for the TNST, METU MS, etc., although the datasets provide the
opportunity to compare different models and architectures, it has been observed that they
are insufficient for the fine-tuning process. Although the TNST dataset is rich in terms of
the number of examples it contains, it is not suitable for fine-tuning in its current form due
to the confusion caused by foreign words in its content. On the other hand, it is considered
that the METU MS dataset is not suitable for use on its own for fine-tuning due to its small
size, even if the errors it contains are eliminated.

In experiments conducted on many Turkish datasets with Whisper’s upper models, a
WER value between 0.05 and 0.15 was obtained. In particular, in the experiments conducted
with the recently released Whisper-large-v3 model, a WER value of 0.04 to 0.10 was reached.
These results show that Whisper is a successful architecture.

We performed a more comprehensive statistical evaluation of the model’s performance
on Turkish datasets. Specifically, we now provide the confidence intervals for the WER
and CER metrics, which allow for a more robust comparison between the baseline and
fine-tuned models.

The calculated confidence intervals (CIs) for the WER both before and after fine-tuning
for the Whisper models provide a 95% confidence level, meaning we are 95% confident
that the true WER lies within these ranges.

Confidence Intervals for Pre-Fine-Tuning WER:

METU MS: Mean = 0.202, CI = (0.152, 0.252)
TNST: Mean = 0.278, CI = (0.208, 0.347)
FLEURS: Mean = 0.228, CI = (0.165, 0.291)
Mozilla CV: Mean = 0.290, CI = (0.227, 0.354)
TASRT: Mean = 0.232, CI = (0.178, 0.286)

Confidence Intervals for Post-Fine-Tuning WER:

METU MS: Mean = 0.166, CI = (0.113, 0.218)
TNST: Mean = 0.262, CI = (0.202, 0.322)
TASRT: Mean = 0.190, CI = (0.137, 0.243)

These confidence intervals show the variability and reliability of the WER values
before and after fine-tuning. The reduction in the WER after fine-tuning is statistically
significant, as seen from the tighter confidence intervals and lower mean values.
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Additionally, we used statistical significance tests (e.g., t-tests) to ensure that the im-
provements observed after fine-tuning are not due to random variation but are statistically
significant. This helps solidify the reliability of our results. The results of the paired t-tests,
which compare the WER values before and after fine-tuning for each dataset, are as follows:

METU MS: t-statistic: 5.77, p-value: 0.004
TNST: t-statistic: 4.65, p-value: 0.009
TASRT: t-statistic: 6.24, p-value: 0.003

For all the datasets (METU MS, TNST, and TASRT), the p-values are well below the
common significance threshold of 0.05. This indicates that the reductions in the WER after
fine-tuning are statistically significant. These results confirm that fine-tuning the Whisper
models leads to a significant improvement in performance for Turkish ASR across the
evaluated datasets.

In the fine-tuning process, large datasets are needed to improve the performance of the
model used. In addition to being sufficient in size, the datasets to be used should contain
few errors so as not to reduce the performance in the fine-tuning process. In this respect,
although Turkish has larger datasets than many other languages, these sets are inadequate,
especially in operations such as fine-tuning. As a result of this study, it was seen that there
was a need to develop new Turkish datasets that were large and contained few errors. It is
thought that in the future, studies should be carried out on the development of datasets
with the above-mentioned features.

5. Conclusions

The integration of machine learning, particularly advanced deep learning techniques,
has had a significant impact on the field of ASR. This influence has led to groundbreaking
advancements in the accuracy and efficiency of ASR systems. In this research, the Whisper
ASR model, employing a transformer-based encoder–decoder architecture, was utilized to
develop a Turkish speech recognition system. The model’s performance was assessed across
diverse Turkish speech datasets, revealing significant improvements following fine-tuning
with the LoRA method.

Challenges and Solutions:

Data scarcity: one of the primary challenges in developing ASR systems for low-
resource languages like Turkish is the limited availability of labeled speech data. This study
addressed this issue by fine-tuning the Whisper model with LoRA, which significantly
reduced the word error rate.

Model adaptation: the transformer architecture of the Whisper model allows for effi-
cient handling of long-range dependencies in speech data, making it suitable for languages
with complex morphological structures like Turkish.

Future Directions:

Enhanced data collection: future research should focus on collecting more diverse and
extensive Turkish speech datasets to further improve the model’s performance.

Advanced fine-tuning techniques: exploring other fine-tuning techniques and hybrid
models could provide additional performance gains and robustness in ASR systems.

By addressing these challenges and leveraging advanced machine learning techniques,
development of robust and accurate ASR systems for low-resource languages such as
Turkish can be significantly accelerated.
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