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Abstract: With the widespread application of blockchain technology across various industries,
detecting and analyzing performance bottlenecks is crucial for evaluating and optimizing blockchain
system performance. However, current research needs general performance metrics for detecting and
analyzing bottlenecks. Only some studies focus on this aspect within blockchain systems. To address
this, this paper first proposes 18 fine-grained performance metrics to evaluate performance across
various layers of blockchain systems comprehensively. Subsequently, we introduce a generalized
loosely coupled performance measurement framework to capture these metrics and construct the
causal relationship between them, i.e., the mesoscopic performance structure. This approach allows
for the detection and analysis of performance bottlenecks. Finally, numerous experimental results
demonstrate that the causality between the relevant performance metrics disappears when the system
reaches a performance bottleneck. Additionally, the framework has a performance impact of less
than 15% on ChainMaker.

Keywords: blockchain; consortium; causal inference; bottleneck analysis

1. Introduction

With the widespread application of blockchain technology across various industries,
the evaluation and optimization of blockchain systems have become particularly important.
Performance metrics for blockchain systems are critical for understanding system behavior,
identifying potential bottlenecks, and supporting performance optimization. Therefore,
while individual blockchain performance metrics are not independent, but often correlated,
and causal inference of blockchain performance metrics is imperative.

In previous studies, research on blockchain performance metrics has primarily fo-
cused on data collection, specifically monitoring the performance of individual blockchain
platforms or conducting horizontal comparisons across multiple blockchain platforms.

In previous studies, the research on blockchain performance metrics has primar-
ily focused on data collection, specifically monitoring the performance of individual
blockchain platforms [1] or conducting horizontal comparisons across multiple blockchain
platforms [2–5]. However, challenges still need to be addressed due to the limitations
of existing data collection tools. First, current data collection frameworks have certain
limitations. They usually only capture core and limited performance metrics that cannot
fully reflect the complexity and diversity of blockchain systems. Second, performance
metrics collection frameworks tailored for different blockchain platforms have deployment
difficulties that limit data collection and analysis. In addition, there has yet to be prior
work on causal inference of blockchain performance metrics, i.e., the analysis of mesoscopic
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performance structure. These challenges hinder our understanding of system behavior and
potential bottlenecks. Our experiment is indicated in Figure 1.

(a) 30 MB/s bandwidth (b) 40 MB/s bandwidth

Figure 1. TPS for different bandwidths with different transaction rates.

When using ChainMaker [6] at 30 MB/s bandwidth, the median, upper quartile, and
lower quartile of the Transactions per Second (TPSs) are the same when the transaction rate
is less than 500, indicating that the current system can efficiently process all the transactions
at the lower transaction rate, and that the system begins to encounter a bottleneck when it
is over 500. The rate of growth begins to become slower, the TPSs’ median is still increasing,
and this trend does not imply a substantial improvement in system efficiency, instead
signaling that the system is approaching its bottleneck. When the bandwidth increases to
40 MB/s, the transaction rate bottleneck rises to 600.

Causal inference represents a burgeoning field, extending across diverse domains,
including medicine [7,8], climate science [9,10], and its integration with machine learning
techniques [11,12] and Graph Neural Networks (GNNs) [13,14]. However, research on
causal inference within blockchain technology remains scarce, primarily focusing on de-
lineating causal relationships between different cryptocurrencies [15,16] and their causal
relationships with other factors [17,18]. Notably, to our knowledge, we are the first to
introduce causal inference into blockchain performance metrics causality for elucidating
causal relationships among different performance metrics.

To address the aforementioned challenges, this paper proposes a novel approach that
integrates the underlying implementation of blockchain, abstracting a set of fine-grained
performance metrics that are relatively common among different blockchain platforms
and capable of reflecting the working states of various level modules. Additionally, we
establish a generalized loosely coupled measurement framework that is not restricted to
specific blockchain platforms. Our method enables performance measurement for different
blockchain applications, and provides a comprehensive set of fine-grained performance
metrics to evaluate blockchain system performance under various conditions. We can better
identify potential system bottlenecks and provide quantitative support for blockchain
performance optimization by employing a measurement framework to obtain fine-grained
performance metrics.

In this paper, we conduct experiments on the causality between performance metrics
through a detailed analysis of performance metric data and further delve into the bottleneck
analysis of blockchain systems. By gaining an in-depth understanding of the interactions
and impact of performance metrics, we can better understand the state of the blockchain
system, paving the way for targeted optimization strategies.

The main contributions of this paper can be summarized as follows:

• This paper proposes 18 fine-grained performance metrics on contract, network, data,
consensus, and system layers for comprehensively evaluating the performance of
blockchain systems under different conditions.
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• Given the limitations of existing performance collection tools, this paper provides a
generalized loosely coupled measurement framework to obtain comprehensive, fine-
grained blockchain performance metrics for different blockchain implementations,
including ChainMaker [6], Ethereum [19], and FISCO BCOS [20], and the framework’s
impact on ChainMaker is less than 15%.

• This paper conducts causal inference analysis on performance metrics, constructing
the mesoscopic performance structure between performance metrics, and delves into
the relationships, providing a different perspective for understanding the behavior of
blockchain systems and potential bottleneck issues.

• Extensive experiments demonstrate that our approach can identify causality between
performance metrics when the system reaches a bottleneck.

The organizational structure of this paper is as follows: The second part will review
related research and existing performance metric frameworks. The third part will introduce
our fine-grained performance metrics, the universal loosely coupled measurement frame-
work, and causality analysis between performance metrics. The fourth part will discuss our
research findings on blockchain bottleneck analysis. Finally, the sixth part will summarize
the paper and propose prospects for future work.

2. Related Work

Anomaly detection remains a ubiquitous concern across diverse domains, and the
blockchain field is no exception. Ref. [21]’s solution based on Ethereum analyzes sum-
marized block data structures to identify suspicious accounts, effectively reducing time
complexity while maintaining high accuracy. Ref. [22] employs a dynamic attribute graph
network construction method to model each transaction, utilizing edges to provide ad-
ditional learnable transaction attribute information. This approach facilitates graph rep-
resentation learning in blockchain networks, offering a novel and effective solution for
anomaly detection on the blockchain. This research in this area has predominantly focused
on anomaly detection in the financial activities of public blockchain networks. However,
consortium blockchain platforms do not generate the kind of financial irregularities ob-
served in public chains, because no mining is required. Instead, the core functionality of
consortium blockchain platforms is closely tied to system stability, as these systems prior-
itize operational efficiency. Therefore, in this case, behaviors that affect the stability and
efficiency of the consortium blockchain system can be considered abnormal. System-level
performance bottlenecks are one of them.

2.1. Performance Bottlenecks

There are some current research on blockchain performance bottlenecks. Initially,
some macro-level studies of the blockchain protocol layer were conducted. In the stor-
age layer, ref. [23] research focuses on the architecture of Hyperledger Fabric Blockchain
Systems (HFBS), revealing that the performance of the state database is highly dependent
on read transactions, rather than write transactions. The study identifies that the per-
formance bottleneck in read operations is attributed to CouchDB’s inability to maintain
high performance under a large volume of query operations. Within the consensus layer,
ref. [24] proposes a method to evaluate the performance of consensus algorithms in pri-
vate blockchain platforms, such as Ethereum and Hyperledger Fabric. The study yields
performance assessment results of the consensus algorithms under varying transaction
volumes through quantitative analysis of latency and throughput. The findings indicate
that consensus mechanisms can lead to performance bottlenecks. Ref. [25] investigates the
performance and scalability of Byzantine Fault-Tolerance (BFT) consensus protocols widely
used in permissioned blockchain systems. The study compares the performance of these
protocols under identical conditions through theoretical analysis (load formulas), as well
as practical implementation and evaluation. The findings reveal that scalability could be
better as the number of validators increases, identifying communication complexity as the
primary cause of this issue. Ref. [26] highlights that the insufficient performance of current
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blockchain systems is one of the critical limitations hindering the global realization of the
Web 3.0 revolution. The design of ALDER leverages the presence of multiple potential
leaders to alleviate bottlenecks in various aspects of consensus protocols. Ref. [27] analyzes
how Bitcoin’s current peer-to-peer overlay network is constrained by fundamental and
technical bottlenecks, limiting its capacity to support higher throughput and lower latency.
The findings indicate that merely adjusting block size and interval can only serve as an
initial step toward achieving the next generation of high-load blockchain protocols; signifi-
cant progress requires a fundamental rethinking of the technological approach. Due to the
performance complexity of distributed systems, many performance characteristics of the
latest version of Hyperledger Fabric—such as the performance features at various stages,
the impact of the ordering service, bottlenecks, and scalability—remain inadequately under-
stood. Ref. [28] finds that the verification stage is likely to become a system bottleneck due
to the relatively low speed of chain code verification. Ref. [29] conducts a comprehensive
empirical study of Hyperledger Fabric to characterize its performance and identify potential
bottlenecks. The research identifies three primary performance bottlenecks: endorsement
policy verification, ordering policy verification for transactions within blocks, and state
validation and commitment (when using CouchDB). Additionally, ref. [30] proposes a novel
theoretical model for calculating transaction latency under various network configurations,
such as block size and interval. The study identifies several performance bottlenecks and
provides insights from a developer’s perspective. ref. [31] investigates the performance of
private Ethereum blockchains through an in-depth analysis of functional-level bottlenecks
and conducts a series of experiments to identify bottleneck functions invoked each time a
transaction reaches an Ethereum node. ref. [32] systematically examines how the perfor-
mance of private Ethereum blockchains scales with variations in various parameters and
identifies which parameters constitute bottlenecks. The findings indicate that the effect of
changes in one parameter is highly dependent on the configuration of other parameters,
mainly when the system is operating near its limits.

2.2. Blockchain Performance Framework

Numerous studies have extensively examined the measurement and analysis of
blockchain performance. The increasing complexity of blockchain systems has heightened
the challenge of analysis. Therefore, research typically concentrates on specific blockchain
platforms or components or employs simulation methods to quantify performance analysis.
Among these, BlockBench [2] is the first evaluation framework designed for analyzing
private blockchains. It measures both overall performance and the performance of indi-
vidual components, including throughput, latency, scalability, and fault tolerance. The
results of horizontal comparisons of Ethereum, Parity, and Hyperledger Fabric indicate that
these systems still need to replace current database systems for traditional data processing
workloads. Hyperledger Caliper [33] is a more comprehensive and sophisticated tool that
focuses on fundamental performance metrics of blockchain, such as throughput and latency.
It allows users to construct complex testing scenarios to simulate real-world business logic.
ConsenSys [34] delineates crucial considerations for blockchain performance testing and
benchmarking, including methodologies, performance metrics, and benchmarking tools.
Blockmeter [3] is an application-agnostic performance benchmarking framework designed
for private blockchain platforms. This framework can measure the critical performance
indicators of any application deployed on external private blockchain applications, en-
abling enterprises to understand better how private blockchain platforms perform in their
specific application scenarios. Hyperledger Fabric [35] and Hyperledger Sawtooth [36],
across varied applications and configuration parameters. Alsahan [37] introduced a new
blockchain network simulator focusing primarily on Bitcoin’s original reference imple-
mentation. This simulator employs lightweight virtualization techniques to create finely
tuned local testing networks. The simulator can adjust Bitcoin mining difficulty to levels
below the default minimum to facilitate rapid simulation of large-scale networks without
shutting down mining services. BTCSpark [38] is introduced as an open-source tool for
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Bitcoin analysis, and it provides researchers and developers with an easy-to-use, flexible,
and high-performance environment for querying the blockchain and building blockchain
analysis tools.

3. Method

This section describes this paper’s methodology, including microscopic performance
metrics, a generalized loosely coupled measurement framework, and mesoscopic perfor-
mance metrics.

3.1. Microscopic Performance Metrics

This paper introduces microscopic performance metrics to evaluate and optimize
blockchain system performance. Performance metrics enable an in-depth understanding of
system behavior, identification of bottlenecks, and support for performance optimization.
Existing performance metrics need to capture the complexity and diversity of systems.
Therefore, we propose a set of fine-grained performance metrics aimed at comprehensively
evaluating the performance of blockchain systems while focusing on bottlenecks. By
introducing these metrics, we can accurately identify potential bottlenecks and provide
quantitative support.

To take into account the universality and comprehensiveness of the performance
metrics, we expand on [2,33,34,39] to include 18 micro-performance metrics from the
consensus, network, data, contract, and system layers of the blockchain. Most of these
metrics are applicable across different blockchain implementations, such as CPU utilization,
memory utilization, TPS, latency, commit block delay, transaction queue delay, transaction
pool input throughput, block verification efficiency, average consensus time per round,
proposal time, pre-vote time, pre-commit time, commit time, peer message throughput,
average transmission latency, state data read throughout, state data write throughout, and
transaction conflict rate. Several performance metrics related to the consensus methodology,
the time spent in the four stages of the TBFT [40] consensus proposal, pre-vote, pre-commit,
and commit.

3.1.1. Consensus Layer

Transactions per Second. TPSs represent the rate at which transactions are packaged
and stored in a block per unit of time, constituting the most core performance metric in
the blockchain.

Latency, Transaction Confirmation Delay (TCD) refers to the duration from the time
a transaction (tx) enters the transaction pool at the time to the time the transaction is
stored in the block at the time, representing the entire lifecycle of the transaction from start
to completion.

Commit Block Delay. CBD indicates the time interval from a successful block proposal
to block storage. This metric is a key factor affecting latency.

Transactions Queue Delay. TQD is the elapsed time a transaction spends in the pool
waiting to be processed and packaged, specifically from the transaction that enters the pool
until it leaves. TQD is the determining factor that affects latency.

Transaction Pool Input Throughput. TPIT denotes the rate at which transactions
enter the transaction pool per unit time, representing the pace at which transactions enter
the blockchain network and await processing.

Block Verification Efficiency. BVE denotes the ratio of the time required to validate
a block to the number of transactions contained in the block. This metric evaluates the
efficiency of validation nodes in processing transactions and validating blocks in the
blockchain network.

Average Consensus Time Per Round. ACTPR represents the average time held for
each stage of consensus per unit of time and the overall average time.

The duration of consensus phases. They refer to the time taken for each step in
the consensus algorithm. Using TBFT as an example, it comprises four main stages:
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proposal, pre-vote, pre-commit, and commit. The calculation method for each stage
involves subtracting the start time from the end time.

3.1.2. Network Layer

Average Transmission Latency. ATL is the average time required for two-way com-
munication between two nodes and represents the duration from sending a message to
receiving it. First, node A sends a message to node B and records the sending moment
(t1). Node B receives the message and records the receiving moment (t2). At this point, the
transmission elapsed time of node A is (t2 − t1). The roles of nodes A and B are swapped,
and repeat the above process, at which time the transmission elapsed time of node B is
(t4 − t3). Finally, the average transmission delay is obtained by summing the transmission
elapsed time of node A and node B and taking the average value.

Peer Message Throughput. PMT The sum of message sizes sent and received by a
node over a fixed period. Specifically, it is the ratio of cumulative message size sum and
elapsed time over a fixed period.

3.1.3. Storage Layer

State Data Read Throughout. SDRT refers to the amount of status data read during a
specific time interval. This metric is derived by accumulating the ratio of status data read
in each read operation to the time taken.

State Data Write Throughout. SDWT is the amount of status data written in a given
time interval. The metric is a cumulative ratio of state data written in each write operation
to the time spent.

3.1.4. Contract Layer

Transaction Conflict Rate. TCR represents the probability or frequency of transaction
conflicts in a blockchain network. Transaction conflict occurs when multiple transactions
are for inclusion in the same block, resulting in only one being included while others may
be delayed or rejected.

3.1.5. System Layer

Resource utilization. CPU and memory utilization are crucial metrics for assessing
the usage of computational resources in a computer system. This value indicates the
extent of CPU and memory resource usage, where higher percentages signify more efficient
utilization, while lower percentages denote relatively idle resources.

3.2. Generalized Loosely Coupled Measurement Framework

The measurement framework proposed in this paper aims to overcome the limitations
of existing frameworks and fulfill the need for fine-grained performance metrics data
collection. Existing data collection frameworks usually only capture core performance
metrics, which cannot fully reflect the complexity and diversity of blockchain systems. In
addition, difficulties in deploying different blockchain platforms limit data collection and
analysis. Thus, our proposed measurement framework can capture comprehensive and
diverse performance metrics data for different blockchain implementations.

The proposed generalized loosely coupled measurement framework, depicted in
Figure 2, comprises four components: the definition layer, data storage layer, configuration
layer, and processing layer.

• The definition layer defines the micro-performance metrics measurements in an object-
oriented manner and maps them to the actual stored files. Suppose the corresponding
performance metrics file does not exist in the specified directory. In that case, the
framework generates the corresponding performance metrics file and initializes the
table header according to its object definition.

• The data storage layer stores vast raw data points for calculating performance met-
rics, facilitating rapid data input sequences. Asynchronous write operations are
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safely implemented through encapsulated routines to minimize the impact of par-
allel write operations on the primary process and ensure compatibility with its
exception handling.

• The configuration layer facilitates the configuration, loading, and deployment of raw
data points sampling for each node and performance metrics through global and local
switches, offering runtime flexibility.

• The processing layer hosts an indicator measurement library and a performance
measurement thread pool, ensuring real-time calculation of raw data points obtained
by the data storage layer to derive real-time estimates of performance metrics.

Figure 2. Workflow of loosely coupled measurement framework.

The workflow of the framework is as follows: firstly, the data points in the definition
layer are added or subtracted according to the actual situation, and then the blockchain
nodes are configured, created, and started, at which time the initialization of all the data
points complete, generate the corresponding data files, and add the table headers. Next, the
configuration layer configures the framework, and in the contract invocation process, it is
possible to control whether the data are written or not by real-time adjustment of the global
and local switches when the global switch is off, any performance indicator stops written,
and when the global switch is on, and a performance indicator switch (local switch) is off,
the performance indicator stops write. In addition, we can view the status of the global
and local switches at any time. Then, when writing data, the data storage layer performs
fast asynchronous writes for large amounts of data while handling exceptions. Finally, the
processing layer computes the collected data, converts the data points into performance
metrics, and generates mesoscopic performance structures in real time.

In addition, we applied the framework on ChainMaker, Ether, and FISCO BCOS for
the application of micro-performance metrics; the framework implements all of the above
micro-performance metrics in ChainMaker. For BCOS and Ether, the metrics are consistent,
except for the contract conflict metric, which is not implemented on both platforms and the
time spent in different phases by different consensus protocols.

3.3. Mesoscopic Performance Structure

The introduction of causal inference methods for performance metrics in this paper
aims to address the current challenges in understanding the bottleneck of blockchain
systems. Although existing research has focused on performance metrics, studies on the
causality between performance metrics still need to be completed. Therefore, introducing
causal inference methods can delve deeper into the relationships between performance met-
rics and reveal potential bottleneck issues. By analyzing causal graphs, we can accurately
identify the causality between performance metrics and pinpoint crucial factors leading to
system bottlenecks.

Blockchain performance bottlenecks are characterized by performance metrics peaking
under stress, indicating saturation. Before saturation, modules interact to drive transaction
processing, and performance metrics possess correlations with each other. After saturation,
there is minimal change in the performance metrics, and the interdependencies weaken.
This causal relationship can represent performance metrics graphically, reflecting the state
of the blockchain’s operation on a mesoscopic.
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In this paper, we construct causal graphs of mesoscopic performance structures using
a combination of Bayesian and graph structure searches. First, we use the A-star algorithm
to initialize the relationships between performance metrics for all performance metrics data
to create the initial structure graph. Then, we traverse the data using a sliding window, use
A-star to obtain the causal graph for each window, add the set of causal graphs, aggregate
all the graphs in the set to obtain the set of weights, and finally reconstruct the causal graph
according to the set of weights. Please refer to Algorithms 1 and 2 for details.

Algorithm 1 A approach for constructing the causality graph of mesoscopic performance
structure
Input:

Performance metrics Data D
Output:

Causality graph Gr
1: Initialize adjacency matrix A
2: Create baseline graph using A* algorithm G = A* [41] (A, D)
3: Initialize set of causal graphs Γ = {}
4: for t = 1 to Iterate through sliding window T do
5: Gt = A*(G, A, D[t − 1, t])
6: Γ = Γ ∪ {Gt}
7: end for
8: W = AggregateWeights(Γ)
9: Gr = ReconstructCausalGraph(W)

10: return Gr

Algorithm 2 AggregateWeights

Input:
Set of causal graphs Γ

Output:
Weight sets for causal graph W

1: Weight sets for causal graph W = {}
2: for each edge (i, j) in

⋃
G∈Γ G do

3: Wi,j = ∑G∈Γ 1[(i, j) ∈ G]
4: end for
5: return W

4. Results
4.1. Experiment Setup
4.1.1. Experiment Settings

We used ChainMaker v2.3.1 and conducted experiments on the Huawei Cloud Kuber-
netes (k8s) cluster. Each node was constrained to 12 GB of memory and 3 CPU cores; the
physical machine on which each node resides is configured with Huawei Cloud’s EulerOS
2.0 operating system, using Intel Xeon Gold 6240 processors, with 32 vCPUs, 64 GB of RAM,
and 350 GB of storage capacity allocated. Experiment 1 aimed to assess the impact of the
loosely coupled measurement framework on the blockchain’s main process performance.
Stress tests were conducted on 4, 7, and 10 nodes, with transaction volumes ranging from
1000 to 50,000 transactions and a bandwidth limit of 30 MB/s.

The objective of Experiment 2 was to quantify the decay process of the blockchain
performance structure and investigate its potential correlation with system bottlenecks.
Performance variations under different transaction pressures were investigated using
four nodes. Experiments with transaction rates ranging from 100 to 700 TPS at 30 MB/s
bandwidth and experiments with transaction rates ranging from 500 to 700 TPS at 40 MB/s
bandwidth were run for 10 h.

Algorithm 1 performs causal inference on all the performance metrics data collected.
Specifically, a baseline performance structure was first established using all data. Subse-
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quently, all data were traversed using a sliding window approach with a window size
of 10,800 and a step size of 1200, resulting in 22 directed causal graphs. These graphs
were then traversed and accumulated based on the number of edges appearing between
every two nodes, and their accumulation was used as weights, with the magnitude of
the weights representing the strength of the causal relationship between the performance
metrics, resulting in a frequency-weighted directed causality graph.

4.1.2. Metrics

For Experiment 1, we choose four imperative indicators for evaluating the performance
of the blockchain to illustrate the degree of influence of the framework, the TPS peak, the
elapsed time for processing transactions, the average block confirmation latency, and
the block confirmation latency peak, which can comprehensively reflect the throughput
capacity of the blockchain system, the efficiency of the transaction processing, as well as
the speed and stability of the final confirmation, and are the key indicators for measuring
the performance of the blockchain.

For Experiment 2, we chose the median, upper quartile, and lower quartile to evaluate
the change in TPS. For the performance metric causality, we decided the number of nodes
and edges as a measure of the complexity of the causal graph and the disappearance of
edges between nodes as the emergence of its bottleneck.

4.2. Framework Evaluation

In a 10-node environment, Figure 3 illustrates the impact of the loosely coupled mea-
surement framework on blockchain main process performance. When the framework is
disabled, block confirmation latency remains stable below 40 ms. Enabling the framework
results in slightly higher confirmation latency, but it is still stable below 40 ms. As trans-
action pressure increases, block transaction confirmation latency remains stable in both
scenarios. Regarding TPS, turning off the framework offers a more significant advantage at
lower transaction volumes, with the TPS gap between enabling and disabling gradually
stabilizing as transaction volume increases.

(a) 1 k transactions (b) 2 k transactions (c) 5 k transactions

(d) 10 k transactions (e) 20 k transactions (f) 50 k transactions

Figure 3. Impact of the framework on the system at different transactions.

Table 1 shows that, for the same transaction volume, the increase in the time taken to
process these transactions is no more than 1s in the case of using the framework. While
there is a significant difference in the TPS peaks between the two instances when the
transaction volume is low, this gap gradually narrows as the transaction volume increases.
It is worth noting that the data peaks for block confirmation latency are primarily below
40 ms when the framework is enabled. In addition, the impact of framing on the average
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block confirmation latency decreases as transaction volume increases, with the effect of
framing on the total elapsed time dropping to 3.3% at a transaction volume of 50,000.

Table 1. Impact of the framework on the blockchain under 10 nodes at different transactions.

Transactions
Tps
Peak
(tx/s)

Block
Confirmation

Latency
Peak (ms)

Average Block
Confirmation
Latency (ms)

Time (s)

1 k open 798 44 39 (+14.7%) 2 (+0)
close 600 36 34 2

2 k open 1500 42 39 (+14.7%) 2 (+0)
close 1300 36 34 2

5 k open 2182 44 39 (+18.2%) 4 (+33.3%)
close 2000 35 33 3

10 k open 2100 44 37 (+12.1%) 7 (+16.7%)
close 2100 42 33 6

20 k open 2100 51 39 (+11.4%) 13 (+8.3%)
close 2000 39 35 12

50 k open 2000 52 40 (+11.1%) 31 (+3.3%)
close 2000 38 36 30

In summary, the loosely coupled performance measurement framework has a dis-
cernible impact on blockchain performance, albeit diminishing as transaction volume
increases. While enabling the framework may result in slight performance declines in
particular metrics, its overall impact remains minimal.

Given that ChainMaker defaults to a transaction pool size of 50,000, this study evalu-
ated the framework’s impact under various node counts using this transaction volume. As
shown in Figure 4, block confirmation latency tends to increase with the number of nodes
when the performance measurement framework is enabled, peaking at 40 ms, 48 ms, and
52.5 ms. However, in most cases, block confirmation latency remains below 40 ms. The TPS
gap between different configurations diminishes with increasing node count, indicating a
minor impact of the performance framework on blockchain performance.

In conclusion, although the performance measurement framework may affect block
confirmation latency and TPS to some extent, its overall impact on blockchain performance
is minor, especially under conditions of a large number of nodes and high transaction vol-
umes. Therefore, this measurement framework proves suitable for real-time performance
measurement during blockchain operation.

(a) 4 nodes (b) 7 nodes (c) 10 nodes

Figure 4. Impact of the framework on the system at different transaction rates.

4.3. Bottleneck Analysis

As can be seen in Figure 5, from the results of seven experiments with different
transaction rates, at 30m bandwidth, when the transaction rate is lower than 500, the
weights of the edges between TPS and the TPIT are 22 and have performed 22 sliding
window operations on each batch of data to reason about the causal relationship between
the performance metrics, i.e., we determine the existence of a causal relationship between
the two metrics in each of the reasoning, which indicates that there is a very stable causality.
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When the transaction rate is over 500, the causal relationship between the two indicators
disappears. We speculate that there is a bottleneck in the system at this point. To verify
the speculation, trends in transaction pressure, node count, and edge count were plotted
from the frequency-weighted graph, as shown in Figure 6a. The graph illustrates that as
transaction rates increase, the number of nodes and edges represent causal relationships
between performance. The graph illustrates that as transaction pressure increases, the
number of nodes and edges representing causal relationships between performance metrics
rises, peaking at a transaction rate of 500.

(a) 100 tx/s (b) 200 tx/s (c) 300 tx/s (d) 400 tx/s

(e) 500 tx/s (f) 600 tx/s (g) 700 tx/s

Figure 5. ChainMaker frequency-weighted causality graph comparison with transaction rates range
from 100 tx/s to 700 tx/s with a bandwidth of 30 MB/s. The nodes represent performance metrics,
the edges represent the existence of a causal relationship, and the greater the weight of an edge
between two nodes, the stronger the causal relationship between these two performance metrics.

(a) 30 MB/s bandwidth (b) 40 MB/s bandwidth

Figure 6. Number of nodes and edges at different transaction rates for different bandwidths.

In addition, we can see a visual comparison of the transaction pressure data across
the seven experiments, as shown in Figure 1a. The TPS increases with the transaction rate,
with an abrupt change at transaction rates greater than 500. Specifically, the median, upper
quartile, and lower quartile of TPS are the same in the range of transaction rates from 100 to
500, indicating that the system can efficiently process all transactions at lower rates. At this
point, TPS and transaction rate show a linear relationship. TPS increases as the transaction
rate increases because the system resources still need to be maximally utilized. When the
transaction rate further increases to 600, the system reaches a bottleneck. At this time, even
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if the transaction rate continues to increase, the increase in TPS will slow down, which may
indicate that the system is approaching its limit.

Based on the above conclusion, we can further speculate that when the network
bandwidth increases, the transaction rate that causes the system to reach the bottleneck
should also increase, i.e., the bottleneck threshold will be greater than 500, so we conducted
experiments at transaction rates of 500, 600, and 700 at 40 MB/s bandwidth, and as can be
seen in Figure 7, similarly to that of 30 MB/s bandwidth, the experimental results show
that there is a stable causal relationship between TPS and TPIT for transaction rates of
500 and 600, and the causal relationship disappears when the transaction rate exceeds 600.
Similarly, we can observe that edges and nodes peak at 600 from Figure 6b, and the change
in TPS slows down the growth rate at greater than 600 from Figure 1b. This means that the
system bottleneck will reach a transaction rate of 600.

(a) 500 tx/s (b) 600 tx/s (c) 700 tx/s

Figure 7. ChainMaker frequency-weighted causality graph comparison: transaction rates range from
500 tx/s to 700 tx/s, with a bandwidth of 40 MB/s. The nodes represent performance metrics, and
the edges represent the existence of a causal relationship. The greater the weight of an edge between
two nodes, the stronger the causal relationship between these two performance metrics.

From the experimental results, we can draw a clear conclusion: under varying network
bandwidth and transaction rate conditions, the system exhibits a stable causal relationship
between performance metrics and a distinct bottleneck phenomenon. Specifically, under
30 MB/s bandwidth, when the transaction rate is below 500, a stable causal relationship
exists between TPS and TPIT. However, as the transaction rate exceeds 500, this causal
relationship disappears, indicating that the system has reached a bottleneck. When the
transaction rate further increases to 600, the growth of TPS noticeably slows down, confirm-
ing the system’s resource constraints. Similarly, under 40 MB/s bandwidth, the system’s
bottleneck transaction rate shifts from 500 to 600, suggesting that an increase in bandwidth
can delay the system from reaching its bottleneck. Therefore, we conclude that the system’s
performance bottleneck is closely related to the transaction rate and network bandwidth.
While the system’s processing capacity improves with increased bandwidth, a bottleneck
will still emerge at higher transaction rates.

5. Conclusions

This study introduces a novel causality-based approach to analyzing performance
bottlenecks in blockchain systems, addressing a critical gap where general performance
metrics for comprehensive evaluation were lacking. We provide a more holistic view of
blockchain performance by proposing 18 fine-grained performance metrics spanning multi-
ple layers of blockchain systems. Developing a generalized loosely coupled measurement
framework enables us to capture these metrics and construct a mesoscopic performance
structure, uncovering causal relationships between performance indicators under different
operational conditions. This approach facilitates the detection of bottlenecks and provides
deeper insights into how performance deteriorates under stress.
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One of the most significant results of this work is the discovery that as blockchain
systems experience increased transaction pressure and approach performance bottlenecks,
the causal relationships between crucial performance metrics begin to degrade and ulti-
mately collapse. This finding highlights the intricate interdependencies within blockchain
performance, offering a new lens for understanding system behavior in high-load scenarios.
Additionally, our framework imposes a minimal overhead of less than 15% on the Chain-
Maker blockchain, demonstrating its practical feasibility for real-world implementation
without severely impacting system throughput.

These results underscore the importance of considering causal structures in perfor-
mance analysis, providing a new methodology that can be applied beyond blockchain
systems to other distributed systems. The insights gained from this study pave the way for
more robust blockchain optimization strategies, including proactive bottleneck detection
and performance tuning before critical failures occur.

The current study has limitations, and future work could further extend this frame-
work to other blockchain platforms to validate its generality. In addition, we will also
explore the changes in the causal relationships between performance metrics in the event
of other system anomalies (such as an increase or decrease in the number of nodes or a
change in bandwidth), promoting the broader application of blockchain technology in
high-performance scenarios.
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