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Abstract: UAV-assisted MEC networks provide extensive communication coverage and massive
computation services for mobile terminals (MTs), which are considered a promising edge paradigm
to support future air–ground integrated communications. In this paper, an energy-efficient scheme in
NOMA-based UAV-assisted MEC systems is proposed to address the system’s energy constraints
and its inability to support massive MT access. Our goal is to minimize system-weighted energy
consumption by jointly optimizing the allocation of transmission power, computation resources, and
UAV trajectory scheduling. As the formulated problem is non-convex and difficult to solve directly,
we decompose it into two manageable sub-problems and propose an iterative algorithm based on
successive convex approximations (SCA) to solve each sub-problem alternatively. Simulation results
show that the proposed joint optimization algorithm achieves a significant performance improvement
compared to other benchmark approaches.

Keywords: MEC; UAV-assisted; NOMA; resource allocation; trajectory scheduling

1. Introduction

With the rapid development of emerging applications such as virtual/augmented
reality, the Internet of Vehicles (IoV), and natural language processing, there is a growing
need for wireless networks to meet stricter requirements in terms of delay and reliabil-
ity [1–3]. These applications typically generate computation-intensive and delay-sensitive
tasks, resulting in an explosive growth of mobile data streams [4,5]. However, the limited
computing power and electrical energy of mobile terminals (MTs) are insufficient to meet
the current communication and computation demands. In this context, mobile edge com-
puting (MEC) has emerged as a promising solution that enables MTs to offload computation
tasks to computing servers closer to the network edge [6]. Traditional ground network
communication facilities hardly meet the communication and computation requirements in
hotspots or network breakdown areas due to geographical constraints and poor flexibility.
Fortunately, UAV-assisted MEC systems, as a critical component of the air–ground network,
provide additional computing power for MTs due to their high mobility and flexible de-
ployment [7]. Consequently, the development of green and energy-efficient UAV-assisted
MEC systems has garnered significant attention.

Unlike ground-based MEC systems, which do not need to consider system energy con-
sumption, UAV-assisted MEC systems face challenges such as limited onboard energy and
computing power, as well as the need for additional propulsion energy to support flight [8].
Several studies have explored energy-efficient solutions for UAV-assisted MEC systems.
For instance, Qi et al. [9] employed an alternating iterative optimization algorithm for joint
power and trajectory scheduling in a mobile UAV network, addressing quality of service
imbalances among nodes while maximizing the system’s energy efficiency. Zhang et al. [10]
proposed an energy-efficient resource management scheme for UAV-assisted MEC systems,
designing an iterative conditional self-adaptation SCA-based algorithm to jointly optimize
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offloading decisions and the allocation of communication and computation resources,
ultimately achieving min–max fairness in energy consumption among UAVs. Similarly,
Li et al. [11] investigated the computation offloading and trajectory planning problems
from the perspectives of IoT devices and UAVs. They modeled this as a Markov decision
process (MDP) and proposed a knowledge-assisted multi-agent reinforcement learning
(MARL) approach to enhance system effectiveness. To address the adaptation of UAV-MEC
systems to the heterogeneous needs of users, Zeng et al. [12] transformed the long-term
stochastic optimization problem into two deterministic online optimization sub-problems,
which were solved using the Lyapunov method. This approach effectively reduces the
system’s long-term energy consumption. Pan et al. [13] studied an integrated sensing and
communication (ISAC) system supporting OFDMA UAVs and formulated joint trajectory
planning and resource allocation problems to ensure communication service quality. UAV-
assisted MEC systems hold promise for overcoming the limitations of traditional network
communication, such as delay and coverage issues. However, current research still relies on
traditional orthogonal multiple-access (OMA) techniques like time division multiple access
(TDMA) and frequency division multiple access (FDMA). While these methods optimize
resource allocation to some extent, they do not adequately address the challenges of limited
spectrum resources and energy constraints related to the growing demands of large-scale
MT access.

In this context, NOMA demonstrates significant advantages due to its ability to sup-
port simultaneous user access to the same time and frequency resources, making it an
effective solution for UAV-assisted MEC systems [14–16]. In contrast, other spectrum
efficiency enhancement techniques, such as cognitive radios, have introduced increased
implementation complexity and energy overhead due to their intricate spectrum sensing
and management mechanisms, which limit their applicability. Furthermore, the number of
users who access ISAC technologies for practical applications is constrained by commu-
nication delays and network topology. Therefore, NOMA is more adaptable and feasible
in UAV-assisted MEC systems. Diao et al. [16] proposed a joint trajectory design, task
data, and computing resource allocation algorithm for NOMA-based and UAV-assisted
mobile edge computing, which effectively reduced the maximum energy consumption
and ensured fairness among users. Liu et al. [17] proposed a joint optimization algorithm
for global computational resources and communication power to minimize system energy
consumption in a UAV-assisted NOMA-MEC system, solving it using the SCA method.
Liu et al. [18] proposed a joint optimization problem for UAV communication scheduling,
transmit power, and motion parameters in a UAV-assisted IoT system. They solved this
problem using subgradient descent and the SCA method to maximize the system’s energy
efficiency. Similarly, Ishan et al. [19] developed an iterative algorithm for time and compu-
tational resource allocation in a NOMA-based UAV-assisted MEC system, optimizing UAV
trajectory with the SCA method. From these studies, it is evident that the SCA method
effectively addresses the non-convexity and coupling inherent in optimization problems.
Similarly, our proposed iterative algorithm uses the SCA method to solve each subproblem
with alternating optimization to ensure optimal system performance. However, most
existing literature focuses on single static UAVs and lacks in-depth studies on the effective
allocation of multidimensional resources in multi-UAV cooperative systems. Additionally,
many studies only consider line-of-sight (LoS) links in channel modeling, which overlooks
potential link blockage in real-world applications. This can result in an inadequate assess-
ment of communication quality and reliability between UAVs and MTs, ultimately affecting
overall system performance. Furthermore, many approaches fail to address causal and
temporal constraints in task offloading, limiting their ability to adapt resource allocation
and scheduling strategies to dynamically changing task demands. These limitations restrict
the practicality and broad applicability of current studies.

At present, research on NOMA-based UAV-assisted MEC systems is still in its early
stages [20,21]. Facing the current demand for air–ground collaboration network applica-
tions, the conflict between wireless resources and computing power resources is becoming
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more and more prominent, and NOMA technology can better adapt to this trend and
provide efficient multi-user access solutions. Given the large-scale interconnection of MT
devices generates a large amount of data, and the usual small size of MTs, limited bat-
tery life and carrying capacity challenges of UAVs, there is an urgent need to propose
an energy-efficient scheme for NOMA-based UAV-assisted MEC systems in application
scenarios requiring real-time responses [22,23]. While MTs use the NOMA protocol to
offload computation tasks to UAVs equipped with computation servers, the introduction
of NOMA introduces interference that complicates the decoding process. In addition,
the limited battery capacity of the UAV limits the operating time, while the uncertain
flight trajectory determines the channel gain of the link and the sequence of successive
interference cancellation (SIC). This makes the proper allocation of communication and
computational resources critical to the effectiveness of the system. Therefore, in order to
design low-complexity and energy-efficient schemes, it is necessary to jointly optimize
communication and computational resource allocation, as well as the trajectory scheduling
of the UAV.

Inspired by these challenges, this paper proposes an energy-efficient scheme design
for NOMA-based UAV-assisted MEC systems. Considering the limited system energy and
causal and temporal constraints, we jointly optimize the allocation of transmission power
and computation resources, as well as UAV trajectory scheduling, to minimize the system-
weighted energy consumption. Our established system model takes into account constraints
such as channel link blocking and task completion time, aiming to meet the future demands
for large-scale MTs and emergency computing offloading services. The main contributions
of this paper are as follows:

• The NOMA-based UAV-assisted MEC system is developed to support large-scale MT
access and address urgent computational requirements. The optimization objective is
to minimize the system-weighted energy consumption by jointly optimizing the allo-
cation of transmission power, computation resources, and UAV trajectory scheduling.

• Considering that the optimization problem involves the coupling of communication
resources and computing resources, it is a non-convex problem. To address this,
the problem is decomposed into two sub-problems, and an efficient iterative algorithm
is proposed to solve the sub-problem alternately.

• In the iterative process, the SCA method is first used to solve the optimal allocation
of transmission power and computation resources by linearizing the non-convex
constraints through the first-order Taylor series approximation for a given UAV
trajectory. Then, the constraints on the UAV trajectory are simplified using slack
variables and combined with the first-order Taylor series approximation to develop
the trajectory scheduling scheme based on the allocated computation resources and
transmission power. Finally, the simulation shows that the proposed optimization
algorithm effectively reduces the system-weighted energy consumption compared to
the benchmark scheme.

The rest of this paper is organized as follows. Section 2 describes the system model
and formulates the optimization problems. In Section 3, we propose a solution to the
optimization problem. The numerical results are analyzed in Section 4. Section 5 provides
the conclusions and future work.

2. System Model and Problem Formulation

In this section, we present the framework for NOMA-based UAV-assisted MEC sys-
tems, which includes the system model, channel model, and energy consumption model.
Additionally, we formulate the optimization problem.

2.1. System Model

As shown in Figure 1, NOMA-based UAV-assisted MEC systems consist of U UAVs
and M MTs, denoted as U = {1, 2, . . . U} and M = {1, 2, . . . M}. MTs are randomly and
uniformly deployed in a defined area and all of them produce a computation-intensive task
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that needs to be completed within a time interval T. For ease of analysis, the continuous
computation time T can be discretized into N time slots of length θ = T/N, denoted as
N = {1, 2, . . . N}, where θ should be small enough to ensure that the UAV’s position in
each time slot is considered static [24], as illustrated in Figure 2. It is assumed that the data
bits of the computation tasks are computed bit-by-bit and can be divided into different
groups. Considering the limited computation capacity of MTs, we adopt a partial offloading
strategy, i.e., a part of the computation tasks can be computed locally in MTs, and the other
part can be simultaneously offloaded to all UAVs via the wireless link using the uplink
NOMA protocol. This ensures that the amount of tasks on each UAV is relatively balanced
and avoids overloading or idling certain UAVs. The computational task Fm generated by
MT m is denoted as Fm = (dmt

m , f mt
m , tmt

m ), where dmt
m is the data size of the task, f mt

m is the
amount of computation required by the task, and tmt

m is the maximum task processing delay,
respectively. UAVs equipped with MEC servers as airborne base stations are required to fly
from an initial position to a final position to provide computation offloading services for
MTs. Note that the NOMA protocol allows multiple MTs to share the same frequency band
when offloading tasks to the same UAV node. To avoid transmission interference when MTs
offload computation tasks to multiple UAVs, the FDMA protocol is used for interference
management between different UAVs. Generally, MT m completes task offloading through
the following processes: (1) MTs transmit their computation task to UAV through the uplink
NOMA. (2) The UAV performs edge computing. (3) The UAV sends the computation results
back to the MTs via downlink. Considering that the computation results are relatively small
and do not consume significant system energy, the result transmission process is ignored
for simplicity. UAVs do not execute edge computing in the first and last time slots, and MTs
do not execute task offloading in the last time slot.

x

y

h

Figure 1. The NOMA-based UAV-assisted MEC systems.
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Figure 2. Time frame for task completion time T for NOMA.

A Cartesian coordinate system is established to update the position of the UAV and
MT at each time slot. Setting the UAV’s flight altitude as h, the location coordinates of
UAV u and MT m in the nth slot are given by quav

u [n] = (xuav
u [n], yuav

u [n], h), u ∈ U and
qmt

m [n] = (xmt
m [n], ymt

m [n], 0), m ∈ M, respectively. The velocity vu[n] of UAV u in the
nth slot can be expressed by the position qu[n] in the nth slot and the position qu[n − 1]
in the (n − 1)th slot. vu[n] should be lower than the maximum speed vmax, denoted as
vu[n] = (qu[n]− qu[n − 1])/θ ≜ Du[n]/θ ≤ vmax, n ∈ N , u ∈ U. Furthermore, a certain
safety distance du should be maintained between any two UAVs to avoid collision, which
can be obtained as

∥∥qu[n]− qj[n]
∥∥ ≥ du, n ∈ N , u ̸= j.
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2.2. Channel Model

In the NOMA-based UAV-assisted MEC systems, the air-to-ground channel model
between UAVs and MTs is provided by the 3GPP specification version [25]. Considering
post-disaster rescue scenarios where obstacles might obstruct the UAVs-MTs links, we
adopt an air–ground channel model that incorporates probabilistic averaging of the LoS
and NLoS links [26,27]. Thus, the average path loss L̄m,u[n] and the channel gain gm,u[n]
can be expressed as follows:

L̄m,u[n] = Pm,u
LoS [n]L

m,u
LoS + Pm,u

NLoS[n]L
m,u
NLoS, (1)

gm,u[n] = 10−L̄m,u [n]/10, (2)

where Pm,u
LoS [n] and Pm,u

NLoS[n] represent the probabilities of LoS and NLoS conditions between
MT m and UAV u in the nth time slot, respectively. Lm,u

LoS and Lm,u
NLoS denote the path loss for

LoS and NLoS conditions.

2.3. Energy Consumption Model

In NOMA-based UAV-assisted MEC systems, a critical metric that affects the sys-
tem’s sustainability is energy consumption. This consumption is comprised of three main
components: (1) computation energy consumption, (2) communication offloading energy
consumption, and (3) UAV propulsion energy consumption.

2.3.1. Computation Energy Consumption

Since the communication and computation units of MTs are separate, MTs can perform
local computing while offloading tasks to UAVs to perform edge computing [28]. In the
computation model, MTs and UAVs use the dynamic frequency scaling (DFS) technique to
adjust the CPU frequency at each time slot, which can be denoted as cmt

m [n] = ρk Imt
m [n]/θ,

cuav
m,u [n] = ρk Iuav

m,u [n]/θ. Here, Imt
m [n] and Iuav

m,u [n] denote the number of computation task
bits on MT m and UAV u in time slot n, respectively, and ρk is the task computation
density. Thus, the local computing energy consumption and the edge computing energy
consumption over all time slots can be expressed as follows:

Emt
c =

M
∑

m=1

N
∑

n=1
γϑ(cmt

m [n])3
θ

Euav
c =

U
∑

u=1

M
∑

m=1

N
∑

n=1
γµ

(
cuav

m,u [n]
)3

θ,
(3)

where γϑ and γµ are the effective switching capacitance coefficients for the MT and UAV,
respectively, which depend on the chip architecture of their processors.

2.3.2. Communication Offloading Energy Consumption

To avoid interference when computation tasks are offloaded to multiple UAVs, FDMA
is used to allocate different frequency bands to each UAV. This ensures that only MTs
offloaded to the same UAV will interfere with each other [29]. Without loss of generality,
we rank the MTs occupying the same frequency band in each time slot based on channel
gain, denoted as gj1,u[n] ≥ gj2,u[n] ≥ · · · ≥ gjk ,u[n]. Here, jk, u[n] ∈ U denotes the channel
gain index value of the kth smallest MT offloaded to UAV u in the nth time slot.

In each time slot, the SIC technique based on NOMA is utilized to demodulate signals
from multiple MTs in the uplink power domain. Specifically, MTs are first ranked by
received signal strength. The signal with the highest strength is decoded first, while the
remaining signals are treated as interfering signals. The decoded signal is then removed
from the superimposed signal, and the process continues with the next strongest signal.
Thus, the transmission rate of MT jk, u[n] offloaded to the UAV u in the nth slot is given by
the following:
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Rjk ,u[n] = Blog2

1 +
pjk ,u[n]gjk ,u[n]

k−1
∑

l=1
pjl ,u[n]gjl ,u[n] + σ2

θ, (4)

where B represents the channel bandwidth allocated to each UAV, pjk ,u[n] represents the
transmission power of MT jk,u[n] for offloading tasks to UAV u, and σ2 represents the white
Gaussian noise power.

To ensure the successful offloading of the computation task, the condition Rjk ,u[n] ≥
dmt

m /tmt
m must be satisfied. Therefore, the communication offloading energy consumption

in all time slots is expressed as follows:

Emt
off =

M

∑
m=1

N

∑
n=1

U

∑
u=1

pm,u[n]θ, (5)

2.3.3. UAV Propulsion Energy Consumption

The propulsion energy consumption of UAV u in all time slots is given by [30] and can
be expressed as follows:

Euav
u =P1

U

∑
u=1

N

∑
n=1

(√
θ4 +

Du[n]4

4v4
0

− Du[n]2

2v2
0

) 1
2

+
U

∑
u=1

N

∑
n=1

1
2

d0ρsA
Du[n]3

θ2

+ P0

U

∑
u=1

N

∑
n=1

(
θ +

3Du[n]2

θU2
tip

) , (6)

where P0 and P1 are the rotor profile power and induced power of UAV in hovering state,
U2

tip is the tip speed of the rotor, v0 is the average induced speed of the rotor, and d0 and s
are the fuselage drag ratio and the rotor stability. ρ and A denote the air density and rotor
disc area, respectively.

In summary, the system-weighted energy consumption over time T can be defined
as the weighted sum of the computation energy consumption, communication offload-
ing energy consumption, and UAV propulsion energy consumption. This is expressed
as follows:

Esum =ωmt
(
Emt

c + Emt
off
)
+ ωuav(Euav

c + ηEuav
u )

= ωuav

(
M

∑
m=1

U

∑
u=1

N

∑
n=1

γuav
m
(
cuav

m,u [n]
)3

θ + ηEuav
u [n]

)

+ ωmt

(
U

∑
u=1

N

∑
n=1

γmt
µ

(
cmt

m [n]
)3

θ +
M

∑
m=1

U

∑
u=1

N

∑
n=1

pm,u[n]θ

), (7)

where ωuav and ωmt are the weight factors for the energy consumption of MTs and UAVs,
respectively, and satisfy ωuav + ωmt = 1. We can adjust the energy consumption weight
factors according to the preference of the actual system for trade-off between the energy
consumption of UAVs and MTs. η is the flight energy consumption coefficient used to
reduce the difference in energy consumption magnitude between UAVs and MTs.

2.4. Problem Formulation

Based on the above analysis, we formulate the optimization problem P1. The goal
is to minimize the system-weighted energy consumption over a time period T by jointly
optimizing the allocation of transmission power p and computation resources cm and
cu, as well as UAV trajectory scheduling qu. The mathematical formulation is described
as follows:
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P1: min
p,cm ,cu ,qu

Esum

s.t. C1 : 0 ≤
U

∑
u=1

pm,u[n] ≤ pmt
max, ∀n, ∀m

C2 :
M

∑
m=1

cuav
m,u [n] ≤ cuav

m,max, ∀n, ∀u

C3 : 0 ≤ cmt
m [n] ≤ cmt

m,max, ∀m, ∀n

C4 :
n−1

∑
t=1

Rm,u[t] ≥
n

∑
t=1

Iuav
m,u [t], ∀m

C5 :
N

∑
n=1

U

∑
u=1

(Imt
m [n] + Iuav

m,u [n]) ≥ dmt
m , ∀m

C6 :
n−1

∑
t=1

Rm,u[t] ≥
n

∑
t=1

Ic
m,u[t], ∀m, ∀n, ∀u

C7 : (∥qu[n]− qu[n − 1]∥)/θ ≤ vmax , ∀n, ∀u

C8 :
∥∥qu[n]− qj[n]

∥∥ ≥ du, ∀n, u ̸= j

C9 : qu[0] = qI,u, qu[N] = qF,u, ∀u

C10 : Euav
c + ηEuav

u ≤ Euav_all

, (8)

In problem P1, C1 represents the limit of the uplink transmission power. C2 and C3
are the CPU cycle limits for UAVs and MTs. C4 ∼ C6 describes the causal relationship
between task communication transmission and offloading computation. C7 ∼ C10 denotes
the flight speed, location coordinates, and battery capacity limits of the UAVs. Since UAV
trajectory scheduling qu is coupled with other variables, P1 is a non-convex optimization
problem and is difficult to solve directly. Therefore, we propose an alternating iterative
optimization algorithm to solve P1.

3. Proposed Solution

To solve the optimization problem P1, we first decouple it into two manageable
sub-problems. The first sub-problem is to optimize the allocation of transmission power
and computation resources, given a fixed UAV trajectory. The second sub-problem is to
optimize the UAV trajectory scheduling, given a fixed allocation of transmission power and
computation resources. Then, an efficient optimization algorithm is proposed to solve each
sub-problem alternately using the SCA method. This involves introducing slack variables
and employing Taylor series approximation techniques until the algorithm converges.

3.1. Optimize the Allocation of Transmission Power and Computation Resources

When UAV trajectory scheduling qu is fixed, P1 can be reformulated as follows:

P1.1: min
p,cm ,cu

ωmt
(
Emt

c + Emt
off
)
+ ωuav (Euav

c + ηEuav
u )

s.t. C1 ∼ C6
. (9)

With the UAV trajectories predetermined, the UAV’s propulsive energy consumption
remains constant. Furthermore, We can directly observe that Esum is convex with respect
to cm and cu, as shown in Equation (7). However, the concavity of Esum concerning the
variable p needs to be justified according to the equation transformation. To address this,
Equation (4) is reformulated in exponential terms as follows:

e
ln 2Rjk ,u [n]

Bθ = 1 +
pjk ,u[n]gjk ,u[n]

∑k−1
l=1 pjl ,u[n]gjl ,u[n] + σ2

. (10)
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Given that the cumulative transmitted power sum of MTs is recursive, P1.1 can be
transformed into an equivalent convex function. For ease of calculation, the constant
term and the denominator in Equation (10) can be defined as N = ln 2/Bθ, Tjk ,u[n] =
∑k

l=1 pjl ,m[n]gjl ,m[n] + σ2. Using the recursive properties of Tjk ,u[n], we can obtain Tjk ,u[n] =

eNRjk ,u [n]Tjk−1,u[n]. By Defining xk,u[n] = ∑k
l=1 Rjl ,u[n], Tjk ,u[n] and pjk ,u[n] can be expressed

as follows:  Tjk ,u[n] = σ2eNxk,u [n], ∀u

pjk ,u[n] =
Tjk ,u [n]−Tjk−1,u [n]

gjk ,u [n]
, ∀u

. (11)

The cumulative transmission power sum of all MTs is expressed as follows:

U

∑
k=1

pjk ,u[n] =
U

∑
k=1

σ2

gjk ,u[n]

(
eNxk,u [n] − eNxk−1,u [n]

)
= σ2

U

∑
k=0

(
1

gjk ,u[n]
− 1

gjk+1,u[n]

)
eNxk,u [n].

. (12)

Considering that gjk+1,u[n] ≥ gjk ,u[n], the coefficients of each exponential function in
Equation (12) are non-negative. Defining εk,u = 1/gjk ,u[n], Equation (12) can be redefined
as follows:

U

∑
k=1

pjk ,u[n] = σ2
U

∑
k=0

[
(εk,u[n]− εk+1,u[n])eNxk,u [n]

]
. (13)

At this point, the verification of P1.1 regarding the convexity of the variable p is
complete. In addition, let w(m,u,n) denote the order in which MT m is offloaded to UAV
u in the n th time slot. The amount of data transfer in the nth time slot is Rm,u[n] =
xw(m,u,n),u[n]− xw(m,u,n)−1,u[n]. P1.1 is reformulated as follows:

P1.2: min
x,cm ,cu

σ

s.t. C2 ∼ C5

C1′ : 0 ≤
U

∑
u=1

e
Nxw(u,m,n) ,u [n] − e

Nxw(u,m,n)−1,u [n]

gw(u,m,n),u [n]
≤ pm

max
σ2

C6′ :
n−1

∑
t=1

(
xw(m,u,t),u [n]− xw(m,u,t)−1,u [n]

)
≥

n

∑
t=1

Ic
m,u[t]

. (14)

In problem P1.2, C2 ∼ C5, C6′ are all affine transformations on variables, which are still
convex constraints. However, the constraint C1′ is not guaranteed to be convex; therefore,
we propose to use the SCA method to transform C1′ into a convex constraint through first-
order Taylor series approximation, thereby converting the optimization problem P1.2 into a
standard convex problem. In this process, SCA generates a solvable convex problem by
performing a linear approximation of the non-convex function around the current solution,
ensuring the feasibility of the constraints and the optimization of the objective function at
each iteration.

If f (x) = eNx, it can be observed that f (x) is a convex function of x. The global
lower bound of a convex function is its first-order Taylor expansion, which can be obtained
as eNx ≥ eNx0 + NeNx0(x − x0). Take the above equation into C1′ and reformulate P1.2
as follows:
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P1.3: min
x,cm ,cu

σ

s.t. C2 ∼ C5, C6′

C1′′ : 0 ≤
U

∑
u=1

1
gw(m,u,n),u [n]

×
[

f
(

xw(m,u,n),u [n]
)

− f̃
(

xw(m,u,n)−1,u [n] | x̂ζ−1
w(m,u,n)−1,u

[n]
)]

≤ pm
max
σ2

, (15)

where x̂ζ−1
k,u [n] is the result of the (ζ − 1)th iteration for xk,u[n]. The constraint C1′′ is

expressed as the difference between exponential and affine functions, so it is guaranteed to
be convex, thus ensuring the convexity of P1.3. We find the solution using classical convex
optimization tools like the CVX toolbox [31].

3.2. Optimize UAV Trajectory Scheduling

Given the allocation of transmission power p and computation resources on the MTs
and UAVs cm and cu, we aim to optimize qu, where P1 can be formulated as follows:

P2.1: min
qu

Eall

s.t. C7 ∼ C10
. (16)

Considering that the allocation of transmission power p and computation resources
cm and cu are fixed, we only need to focus on the UAV propulsion energy consumption

Euav
u . The first term P1 ∑U

u=1 ∑N
n=1

(√
θ4 + Du [n]4

4v4
0

− Du [n]2

2v2
0

) 1
2

in Euav
u is non-convex, leading

to the fact that P2.1 is non-convex as well. To address this, we introduce the slack variables

f[n] =
(√

θ4 + Du [n]4

4v4
0

− Du [n]2

2v2
0

) 1
2

to solve P2.1. Thus, P2.1 can be reformulated as follows:

P2.2: min
qu

ωuav ηEuav
u [n]

s.t. C7 ∼ C10

C11 :
θ4

f [n]2
≤ f [n]2 +

Du[n]2

v2
0

C12 : f [n] ≥ 0, n ∈ N

. (17)

Since the right-hand side of C11 is a concave function with respect to qu[n], we use
the SCA method to solve it [32]. See the Appendix A for the first-order Taylor expansion of
the right-hand side term of the C11 inequality, who is an affine function on f [n] and qu[n].
f [n](l) and qu[n](l) are the lth iteration values of f [n] and qu[n], respectively. P2.2 can be
reformulated as follows:

P2.3: min
f [n],qu [n]

φ

s.t. C7 ∼ C9, C11, C12

C10′ :
θ4

f [n]2
≤ F(l)

n (qu[n])

. (18)

Thus, P2.3 is transformed into a convex optimization problem, which can be solved
using CVX.

3.3. Overall Algorithm Design and Analysis

By solving the two sub-problems alternately, we obtain the complete procedure of
the P1, as described in Algorithm 1. In each iteration, σt and φc are monotonically non-
increasing sequences of t and c, respectively, and are lower bounds of the respective
sequences. Thus, the Algorithm 1 is convergent.
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Algorithm 1 Iterative optimization algorithm for P1.

Input: m, u, B, σ2, Utip, v0, d0, σ, s, Vmax, ϑ, v
Output: p, cm, cu, qu
1: Initialize pt, ct

m, ct
u; set iteration index t = 1

2: repeat
3: Set qu = qt

u and solve P1.3 to obtain pt+1, ct+1
m , ct+1

u
4: Update iteration index: t = t + 1
5: Compute initial system weight energy consumption σ0
6: repeat
7: Initialize qc

u, cc; set iteration index c = 1
8: Set p = pc, cm = cc

m, and cu = cc
u, solving P2.2 to obtain qc+1

u
9: Update iteration index: c = c + 1

10: Compute system weight energy consumption φc
11: until |φc − φc−1| ≤ ν
12: until |σt − σt−1| ≤ ϑ

The computational complexity of Algorithm 1 depends on both the decision vari-
ables and the number of constraints in each sub-problem. According to reference [33],
the computational complexity for achieving optimal accuracy µ in a convex optimiza-
tion problem is O

(
log(1/µ)n3.5), where n is the number of decision variables. The num-

ber of decision variables in two sub-problems are denoted as n1 = 2MUN + MN and
n2 = 2U(N − 1), respectively. Therefore, when the number of iterations of the two sub-
problems are K1 and K2, respectively, the overall complexity of Algorithm 1 is denoted as
K2(K1O

(
log(1/µ)n3.5

1
)
+ O

(
log(1/µ)n3.5

2
)
).

4. Simulation Results

In this section, we will evaluate the performance of the proposed algorithm through
simulation analysis. The simulation results are divided into three parts: (1) validating
the convergence of the proposed algorithm; (2) comparing the differences in UAV flight
trajectories and system-weighted energy consumption between the proposed algorithm in
NOMA systems and the widely used OMA systems; (3) comparing the proposed algorithm
to other NOMA-based resource allocation and trajectory schedule algorithms to verify its
performance under various parameter configurations.

In the simulation, we consider a scenario with m = 10 MTs randomly distributed
within a square area of 1× 1 km2. Each MT is assigned a computation-intensive task of
150 Mb that needs to be completed within a given time period. Smaller time slot lengths
can improve the smoothness, flexibility, and task efficiency of trajectory planning but also
increase the computational burden. On the contrary, larger time slot lengths can simplify the
computation but may lead to unsmooth trajectories and reduce the system’s responsiveness
to the dynamic environment. Therefore, we use a widely representative value of T = 100 s
and N = 40 for simulation [34]. The UAV’s flight altitude and maximum speed are h = 20 m
and vmax = 15 m/s, respectively. The initial and final locations of the UAV are qI,u = [0, 0, h]
and qF,u = [1000, 0, h], [0, 1000, h]. The system bandwidth is B = 20 MHz. According to
the principle that closer energy consumption weight factors result in lower system energy
consumption [20], we set ωmt = 0.6 and ωuav = 0.4. The remaining system parameters are
summarized in Table 1.

In Figure 3, the system-weighted energy consumption is depicted for different num-
bers of MTs to verify the algorithm’s convergence, with the parameter u = 2. As the
number of MTs increases, the complexity of NOMA decoding rises significantly, poten-
tially impacting the algorithm’s applicability in real-world scenarios. Consequently, in our
initial experiments, we prioritized verifying the algorithm’s convergence within a nar-
rower interval, specifically with the number of MTs ranging from 8 to 16. This approach
helps ensure the algorithm’s effectiveness and practicality. It is evident from Figure 3 that
the system-weighted energy consumption rises as the number of MTs increases. Initially,
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the system-weighted energy consumption decreases rapidly with different numbers of
MTs, eventually stabilizing at a specific value after approximately seven iterations. This
observation confirms the convergence of the proposed algorithm.

Table 1. Parameter settings.

Parameters Value

γµ, γϑ 10−28

ϑ, ν 10−3

σ2 10−9 W
ρk 103 cycle/bit
cmt

max, cuav
max 1 GHz, 10 GHz

η 10−4

e 105 J
a, b, ηLOS, ηNLOS 9.16, 1.16, 1 dB, 20 dB
UAV: P0, P1, Utip, d0, ρ, s 79.9 W, 88.63 W, 120 m/s

0.6, 1.225 km3, 0.05 m3
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Figure 3. Convergence of the proposed algorithm under different numbers of MTs.

To validate the advantages of our proposed algorithm in NOMA systems, we selected
a reference scheme, namely, OMA-RM, which adopts the classical OMA model during
the offloading process and maintains the same system configuration as our proposed
system [10]. In this reference scheme, joint optimization of offloading decisions, commu-
nication, and computational resource allocation is performed to minimize system energy
consumption, utilizing an efficient iterative algorithm based on SCA for solution finding.
This scheme is widely used in UAV communication, providing a solid basis for comparison
with our proposed algorithm. Without considering the interference, the bandwidth of each
MT in OMA mode is reduced to 1/m in NOMA mode. Therefore, the relationship between
transmission rate and transmit power is as follows: ROMA

m,u = B·θ
m log2

(
1 + pm,u [n]gm,u [n]

σ2/m

)
pOMA

m,u = σ2

mgm,u [n]

[
exp
(

mln2
Bθ Rm,u[n]

)
− 1
] . (19)

We analyzed the UAV trajectories under different numbers of UAVs in both NOMA
and OMA modes when m = 10 and N = 40, as shown in Figure 4. The results indicate that
the UAV trajectories in both access modes are generally similar. When deploying multiple
UAVs compared to a single UAV, each UAV is responsible for offloading tasks within a
smaller communication range and collaborates with others to complete the offloading tasks.
In contrast to the OMA mode, UAVs operating in the NOMA mode can dynamically adjust
their flight paths in real-time based on user demands and the changing network topology.
This allows them to approach MTs more effectively, thereby improving channel conditions
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between the MTs and UAVs and significantly reducing energy consumption for uplink
communication offloading. These advantages demonstrate that trajectory optimization for
UAVs in the NOMA mode not only enhances system performance but also strengthens
their applicability in complex environments.
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Figure 4. Flight trajectories for different numbers of UAVs.

Figure 5 further analyzes the proportion of system-weighted energy composition in
both NOMA and OMA modes when u = 2 and m = 10. Specifically, there is a reduction
of 18.91% in system-weighted energy consumption, 40.54% in communication offloading
energy consumption, and not much difference in flight propulsion energy consumption due
to the similarity of trajectories in the two modes. This is due to the fact that computation
tasks prefer to perform task offloading at MEC servers with more computing power
compared to local computing. In addition, more MTs in the NOMA mode will reuse the
same spectrum, which makes MTs use larger bandwidth and less transmission power to
accomplish task offloading, thus reducing communication offloading energy consumption.

Local 
Computing

Offloading

Edge
 Computing

UAV 
Propulsion

0 10 20 30 40 50 60

Weighted energy consumption 

 OMA-RM
 NOMA

Figure 5. Weighted energy consumption composition for NOMA and OMA.

In addition, we evaluate the performance of the proposed resource allocation and
trajectory optimization scheme within NOMA-based and UAV-assisted MEC systems,
comparing it to two other NOMA-based benchmark schemes: a UAV fixed trajectory
scheme (Fixed trajectory) [35], in which the UAV flies directly from the initial position to the
endpoint, and a computational resource equivalent allocation scheme (Equal resource) [19].
Figure 6 illustrates the system-weighted energy consumption for varying numbers of
MTs with u = 2. It is evident that the system-weighted energy consumption increases
progressively with the number of MTs. Specifically, when the number of MTs reaches 14,
the energy consumption of the proposed scheme is reduced by 61.9% and 43.3% compared
to the fixed trajectory and equal resource schemes, respectively. In the fixed trajectory
scheme, the UAV can only follow a predetermined linear path, resulting in poorer channel
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conditions for MTs located off that path. This limitation causes the computation tasks to
rely more heavily on local computing, ultimately leading to an increase in system-weighted
energy consumption. These findings further validate that the proposed scheme effectively
supports a greater number of user accesses while minimizing the system-weighted energy
consumption by jointly optimizing transmission power, computational resource allocation,
and UAV flight trajectory scheduling in the NOMA mode.
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Figure 6. Weighted energy consumption versus number of MTs.

Figure 7 shows the system-weighted energy consumption of different algorithms
under task completion times T when the number of UAVs is 2. We can see that the system-
weighted energy consumption of each scheme shows a decreasing trend with the increase
of the task completion time T. At T = 100 s, the system-weighted energy consumption of
the proposed algorithm is reduced by 27.2% and 63.5% compared to the equal resource and
fixed trajectory schemes, respectively. This is because as T increases, the proposed scheme
can be more flexible in allocating the transmission power and computation resources
as well as optimizing the flight trajectory scheduling, which reduces the overall energy
consumption of the system. Specifically, in the case of longer task completion time T,
the data transmission power can be carried out at a lower power, which reduces the
transmission energy consumption. Additionally, the UAV’s flight trajectory is optimized for
energy savings, further decreasing flight energy consumption. These facts further confirm
that our proposed joint optimization algorithm can effectively manage the balance between
delay and energy consumption as task completion time increases, thus achieving a gradual
reduction in system-weighted energy consumption.
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Figure 7. Weighted energy consumption versus task completion time T.
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5. Conclusions

In this paper, we carry out an energy-efficient scheme design for NOMA-based UAV-
assisted MEC systems, which are used to solve system energy constraints and massive MT
access challenges. Our goal is to minimize the system-weighted energy consumption by
jointly optimizing the allocation of transmission power and computation resources as well
as UAV trajectory scheduling. Since the formulated problem is non-convex and difficult to
solve directly, we design an efficient iterative algorithm using SCA . We evaluated the effec-
tiveness of the proposed algorithm in terms of multiple dimensions such as convergence,
UAV trajectory, weighted energy consumption composition, and task completion time.
Simulations showed that the proposed algorithm achieved lower system-weighted energy
consumption and revealed the system’s trade-off between delay and energy consumption.
In future work, considering the challenges of strong interference in the NOMA system and
the high complexity of SIC decoding when a large number of MTs share the same channel,
we will consider the study of user grouping and user group scheduling order in a hybrid
multiple-access system.

Author Contributions: Conceptualization, S.W. and Z.L.; writing—original draft preparation, S.W.;
writing—review and editing, Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under
Grant 2021YFB2900200, the Ministry of Education of China University Innovation Funds under Grant
2021ZYA05003, and the Key Natural Science Foundation of Shenzhen under Grant JCYJ20220818102209020.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The first-order Taylor expansion of the right-hand term of the C11 inequality can be
expressed as Equation (A1).The specific derivation to the process is as follows:

f [n]2 +
Du[n]2

v2
0

≥ f [n](l) + 2 f [n](l)
(

f [n]− f [n](l)
)
+

∥∥∥qu[n + 1](l) − qu[n](l)
∥∥∥2

v2
0

+

2
v2

0

(∥∥∥qu[n + 1](l) − qu[n](l)
∥∥∥)(∥qu[n + 1]− qu[n]∥ −

∥∥∥qu[n + 1](l) − qu[n](l)
∥∥∥)

≜ F(l)
n (qu[n]). (A1)
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