Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging
1. Introduction to Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging
2. Overview of This Special Issue
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Zhu, Y.; Zhang, Z.; Wang, X.; Li, B.; Liu, W.; Chen, H. A Method for Suppressing False Target Jamming with Non-Uniform Stepped-Frequency Radar. Electronics 2023, 12, 2534. https://doi.org/10.3390/electronics12112534.
- Huang, J.; Yang, Z.; Xie, J.; Zhang, H.; Li, Z. Joint Power and Bandwidth Allocation in Collocated MIMO Radar Based on the Quality of Service Framework. Electronics 2023, 12, 2567. https://doi.org/10.3390/electronics12122567.
- Liao, Z.; Duan, K.; He, J.; Qiu, Z.; Li, B. Robust Adaptive Beamforming Based on a Convolutional Neural Network. Electronics 2023, 12, 2751. https://doi.org/10.3390/electronics12122751.
- Dong, H.; Wang, X.; Qi, X.; Wang, C. An Algorithm for Sorting Staggered PRI Signals Based on the Congruence Transform. Electronics 2023, 12, 2888. https://doi.org/10.3390/electronics12132888.
- Li, N.; Zhang, X.; Zong, B.; Lv, F.; Xu, J.; Wang, Z. Wideband DOA Estimation Utilizing a Hierarchical Prior Based on Variational Bayesian Inference. Electronics 2023, 12, 3074. https://doi.org/10.3390/electronics12143074.
- Zou, B.; Feng, W.; Zhu, H. Airborne Radar STAP Method Based on Deep Unfolding and Convolutional Neural Networks. Electronics 2023, 12, 3140. https://doi.org/10.3390/electronics12143140.
- Zhu, Y.; Zhang, Z.; Li, B.; Zhou, B.; Chen, H.; Wang, Y. Analysis of Characteristics and Suppression Methods for Self-Defense Smart Noise Jamming. Electronics 2023, 12, 3270. https://doi.org/10.3390/electronics12153270.
- Wang, X.; Chen, H.; Liu, W.; Zhang, L.; Li, B.; Ni, M. Echo Preprocessing-Based Smeared Spectrum Interference Suppression. Electronics 2023, 12, 3690. https://doi.org/10.3390/electronics12173690.
- Wang, Q.; Sheng, J.; Tong, C.; Wang, Z.; Song, T.; Wang, M.; Wang, T. A Fast Facet-Based SAR Imaging Model and Target Detection Based on YOLOv5 with CBAM and Another Detection Head. Electronics 2023, 12, 4039. https://doi.org/10.3390/electronics12194039.
- Peng, P.; Wang, Q.; Feng, W.; Wang, T.; Tong, C. An SAR Imaging and Detection Model of Multiple Maritime Targets Based on the Electromagnetic Approach and the Modified CBAM-YOLOv7 Neural Network. Electronics 2023, 12, 4816. https://doi.org/10.3390/electronics12234816.
- Chen, G.; Wang, C.; Gong, J.; Tan, M. A Fast Phase-Only Beamforming Algorithm for FDA-MIMO Radar via Kronecker Decomposition. Electronics 2024, 13, 337. https://doi.org/10.3390/electronics13020337.
- Li, Z.; Li, Y.; Wang, Y.; Zheng, T.; Qu, H. Millimeter-Wave Radar Clutter Suppression Based on Cycle-Consistency Generative Adversarial Network. Electronics 2024, 13, 4166. https://doi.org/10.3390/electronics13214166.
References
- Wang, Z.; Du, L.; Mao, J.; Liu, B.; Yang, D. SAR target detection based on SSD with data augmentation and transfer learning. IEEE Geosci. Remote Sens. Lett. 2019, 16, 150–154. [Google Scholar] [CrossRef]
- Wenying, W.; Yao, W.; Xuanxuan, Z.; Hui, Y.; Ruqi, W. Classifying aircraft based on sparse recovery and deep-learning. J. Eng. 2019, 2019, 7464–7468. [Google Scholar] [CrossRef]
- Li, K.; Jiu, B.; Wang, P.; Liu, H.; Shi, Y. Radar active antagonism through deep reinforcement learning: A Way to address the challenge of mainlobe jamming. Signal Process. 2021, 186, 108130. [Google Scholar] [CrossRef]
- Chen, X.; Su, N.; Huang, Y.; Guan, J. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs. IEEE Sens. J. 2021, 21, 9099–9111. [Google Scholar] [CrossRef]
- Lepetit, P.; Ly, C.; Barthes, L.; Mallet, C.; Viltard, N.; Lemaitre, Y.; Rottner, L. Using deep learning for restoration of precipitation echoes in radar data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5100914. [Google Scholar] [CrossRef]
- Devcom, U.S.A.; Affairs, A.R.L.P.; Tech, V. Army fast-tracks adaptable radars for congested environments. Army Commun. 2020, 6, 1–6. [Google Scholar]
- Elbir, A.M.; Mishra, K.V.; Eldar, Y.C. Cognitive radar antenna selection via deep learning. IET Radar Sonar Navig. 2019, 13, 871–880. [Google Scholar] [CrossRef]
- Belloni, C.; Balleri, A.; Aouf, N.; Le Caillec, J.M.; Merlet, T. Explainability of deep SAR ATR through feature analysis. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 659–673. [Google Scholar] [CrossRef]
- Pan, M.; Jiang, J.; Kong, Q.; Shi, J.; Sheng, Q.; Zhou, T. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1609–1613. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Wang, Y.; Wang, J.; Long, T. Polarimetric HRRP recognition based on ConvLSTM with self-attention. IEEE Sens. J. 2021, 21, 7884–7898. [Google Scholar] [CrossRef]
- Guo, C.; He, Y.; Wang, H.; Jian, T.; Sun, S. Radar HRRP target recognition based on deep one-dimensional residual-inception network. IEEE Access 2019, 7, 9191–9204. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, C.; Lang, Y.; Sakamoto, T.; He, Y.; Xiang, W. Omnidirectional motion classification with monostatic radar system using microDoppler signatures. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3574–3587. [Google Scholar] [CrossRef]
- Kim, B.K.; Kang, H.S.; Park, S.O. Drone classification using convolutional neural networks with merged Doppler images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 38–42. [Google Scholar] [CrossRef]
- Wengrowski, E.; Purri, M.; Dana, K.; Huston, A. Deep CNNs as a method to classify rotating objects based on monostatic RCS. IET Radar Sonar Navig. 2019, 13, 1092–1100. [Google Scholar] [CrossRef]
- Mason, E.; Yonel, B.; Yazici, B. Deep learning for SAR image formation. In Proceedings of the SPIE 10201, Algorithms for Synthetic Aperture Radar Imagery XXIV, Anaheim, CA, USA, 28 April 2017; Volume 10201, p. 1020104. [Google Scholar]
- Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. Enhanced radar imaging using a complex-valued convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 35–39. [Google Scholar] [CrossRef]
- Yang, T.; Shi, H.; Lang, M.; Guo, J. ISAR imaging enhancement: Exploiting deep convolutional neural network for signal reconstruction. Int. J. Remote Sens. 2020, 41, 9447–9468. [Google Scholar] [CrossRef]
- Dai, Y.; Jin, T.; Li, H.; Song, Y.; Hu, J. Imaging enhancement via CNN in MIMO virtual array-based radar. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7449–7458. [Google Scholar] [CrossRef]
- Dai, Y.; Jin, T.; Song, Y.; Du, H.; Zhao, D. CNN-based multiple-input multiple-output radar image enhancement method. J. Eng. 2019, 2019, 6840–6844. [Google Scholar] [CrossRef]
- Chen, S.; Luo, C.; Wang, H.; Deng, B.; Cheng, Y.; Zhuang, Z. Three-dimensional terahertz coded-aperture imaging based on matched filtering and convolutional neural network. Sensors 2018, 18, 1342. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q.; Zeng, Y.; Deng, B.; Wang, H.; Qin, Y. High-quality interferometric inverse synthetic aperture radar imaging using deep convolutional networks. Microw. Opt. Technol. Lett. 2020, 62, 3060–3065. [Google Scholar] [CrossRef]
- Mu, H.; Zhang, Y.; Ding, C.; Jiang, Y.; Er, M.H.; Kot, A.C. DeepImaging: A ground moving target imaging based on CNN for SAR-GMTI system. IEEE Geosci. Remote Sens. Lett. 2021, 18, 117–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Hu, X.; He, X. Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging. Electronics 2024, 13, 4251. https://doi.org/10.3390/electronics13214251
Feng W, Hu X, He X. Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging. Electronics. 2024; 13(21):4251. https://doi.org/10.3390/electronics13214251
Chicago/Turabian StyleFeng, Weike, Xiaowei Hu, and Xingyu He. 2024. "Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging" Electronics 13, no. 21: 4251. https://doi.org/10.3390/electronics13214251
APA StyleFeng, W., Hu, X., & He, X. (2024). Artificial Intelligence (AI)-Based Radar Signal Processing and Radar Imaging. Electronics, 13(21), 4251. https://doi.org/10.3390/electronics13214251