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Abstract: In 5G vehicular networks, two key challenges have become apparent, including end-to-end
delay minimization and data privacy. Learning-based approaches have been used to alleviate these,
either by predicting delay or protecting privacy. Traditional approaches train machine learning
models on local devices or cloud servers, each with their own trade-offs. While pure-federated
learning protects privacy, it sacrifices delay prediction performance. In contrast, centralized training
improves delay prediction but violates privacy. Existing studies in the literature overlook the effect
of training location on delay prediction and data privacy. To address both issues, we propose a
novel genetic algorithm optimized federated learning (GAoFL) approach in which end-to-end delay
prediction and data privacy are jointly considered to obtain an optimal solution. For this purpose, we
analytically define a novel end-to-end delay formula and data privacy metrics. Accordingly, a novel
fitness function is formulated to optimize both the location of training model and data privacy. In
conclusion, according to the evaluation results, it can be advocated that the outcomes of the study
highlight that training location significantly affects privacy and performance. Moreover, it can be
claimed that the proposed GAoFL improves data privacy compared to centralized learning while
achieving better delay prediction than other federated methods, offering a valuable solution for 5G
vehicular computing.

Keywords: cloud-based vehicular technologies; genetic algorithm; machine learning; security; vehicular
networks

1. Introduction

In intelligent transport systems, there are many applications that require vehicular
sensing. Data collection is performed by vehicular sensors for edge, fog, and cloud com-
puting. Here, road side units (RSUs) have an active role in fog computing and sharing the
vehicular data with edge devices and the cloud [1]. In particular, end-to-end delay; i.e., from
cloud to vehicle in 5G vehicular networks, should be under a few milliseconds [2,3]. Given
that vehicular data collectively consume over 70% of the physical resources on the edge,
vehicular cloud computing can be an alternative solution, but it is imperative to develop
policies addressing acceptable delay requirements [4,5].

Moreover, privacy-preserving data computing is another problem in vehicular com-
puting [6]. The privacy of the vehicular data provider should be preserved while collecting
data from vehicular sensors or end-user devices from the edge to the cloud to improve
safety in vehicular networks. Therefore, the problem can be defined as (1) minimizing
end-to-end delay for acceptable vehicular performance and (2) preserving data privacy
for vehicular networks. There are many studies that try to consider each of them in ve-
hicular networks. For example, in [7], the cost-effective task offloading is optimized by
using the Stackelberg game approach , whereas in [1], reliable data sharing is provided by
using blockchain, and the study in [8] proposes another approach for an indistinguishable
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privacy-preserving model for vehicular cloud computing. Nevertheless, most of the solu-
tions proposed in the literature focus on either minimal delay prediction or data privacy.
Hence, we revise the corresponding literature from the underlined perspectives.

1.1. Related Works

In particular, vehicular network traffic has dynamic characteristics; therefore, the pre-
diction problems/solutions in the 5G vehicular network domain should be learned from
streaming data [9,10]. Nowadays, machine-learning-based approaches are candidate solu-
tions for dynamic delay prediction to minimize end-to-end delay [11]. Then, our literature
survey will focus on machine learning approaches in terms of end-to-end delay prediction
and data privacy perspectives. Since there is no study that considers both end-to-end delay
prediction and user data privacy by optimizing the task computing for vehicular networks,
to the best of our knowledge, we will handle the literature in these two categories separately:

i. End-to-end delay prediction: In [12], the authors proposed Online Mobile Edge Data
Caching (OL-MEDC), formulating mobile edge caching to predict delay effectively. In [13],
end-to-end delay is considered as a network bottleneck and as a negative component in
communication delay. The study handles delay prediction as a long-term time-varying
optimization problem and solves it using a cost-effective approach to balance access delay,
communication delay, and service switching cost. For instance, the study of [14] claims that
computing tasks on edge devices suffer in efficiency due to the limited capacity on edge
devices. On the other side, there is a trend to train tasks on edge networks to overcome
the latency problem while carrying the trained model from the cloud to the vehicle device.
In [15], a machine-learning-based solution is proposed to keep minimal latency requirement,
and the authors claim that this is the only way for the scenarios that have too much data
and too many parameters.

ii. Data privacy: For preserving data privacy, in [16], a distributed deep learning
algorithm is proposed for popularity prediction in mobile edge computing. Although it
solves data deficiency resulting from data privacy, it does not consider the delay observed
by model training in both vehicles, RSU servers, and centralized cloud servers. To preserve
data privacy, federated learning is defined as a secure learning model in the vehicular
literature [17–19]. It has a recursive running principle between end-user devices and cloud
servers. In each iteration, end-user devices train their own model by using limited data.
Without sharing data publicly, it shares only the trained model with the cloud. Thanks
to this approach, it keeps the data privacy of the end-user. Afterwards, the cloud server
aggregates the trained models and regenerates a new model for end-users. In the next
iteration, by taking the recent model, end-user devices keep training a new model on the
dynamically changed data. However, federated learning does not completely guarantee
the protection of client privacy [20]. Therefore, the model transferring between servers is a
significant challenge while protecting vehicle privacy. Especially, the data leakage attack is a
significant problem while sharing the model parameters between servers. More specifically,
when a vehicle is attacked, the model parameters transferred to the RSU/cloud server
are not reliable and the performance of federated learning may be negatively affected.
In this study, we aim to keep the model performance at the highest level by running
our federated learning method with differential privacy algorithms given by [21–23] that
minimize the possibility of leakage attacks. On the other hand, while ensuring data privacy,
the total model training process should be completed as quickly as possible to assure 5G
requirements. Thus, some research questions should be solved by astute strategies to
respond as to whether the model should remain in the local vehicle, whether the model
parameters should be shared by the RSUs or with the cloud server, and whether the model
should be retrained by the RSUs or the cloud server. In [21–23], the authors highlight
the advantages of federated learning in vehicular scenarios for privacy and performance.
However, optimizing federated learning for latency and model accuracy remains a trade-off
problem to be attentively solved.
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The communication overhead between end-user devices and the cloud server during
the model aggregation also causes complexity [24]. In [25], the communication complexities
between distributed and centralized learning approaches are analytically analyzed. To meet
high prediction performance, the authors proposed to aggregate trained models from
end-user devices to the cloud server. Therefore, the distributed approaches have more
communication complexity than other approaches. Although pure federated learning in
distributed end-user devices has less processing delay, it lacks end-to-end delay prediction
performance due to limited data, and this brings out communication complexity between
the cloud server and the end-user/vehicular devices [26–28].

As is observed from the literature survey, the studies do not consider the location of
model training to determine its effect on the delay performance and data privacy. Since
there is no consensus on the solutions and the combination of these problems, a preliminary
analysis is needed to determine the relation between end-to-end delay and data privacy
while considering the optimal location of model training.

1.2. Preliminary Analysis

As we mentioned in the problem definition, end-to-end delay, which includes model
training and processing times in servers, and data privacy of end-users are vital in vehicular
networks [29]. In other words, from the end-user perspective, they should both be satisfied.
However, to the best of our knowledge, there is no study that considers the trade-off
between delay and data privacy on complex and dynamic scenarios in the literature.
Therefore, we execute preliminary analysis for delay and data privacy while computing
tasks in between vehicles, road side units (RSUs), and cloud servers, as shown in Figure 1.
During the analysis, the same delays have been observed at different locations of task
computing. For example, case (a), which runs 23% of tasks on RSU servers and 77% of
tasks on the centralized cloud server, and case (b), which runs 29% of tasks on vehicle and
71% of tasks on the centralized cloud server, result in the same delay which is detailed in
Section 3. Data privacy is more preserved if the tasks are mostly computed on the vehicle.
As preliminary analysis shows, case (a) does not run any task on the vehicle, but case (b)
runs 29% of tasks on the vehicle device. On the other hand, the probability of data leakage
attack is higher in case (a) than case (b) according to the privacy-preserving perspective
introduced in [21–23]. Though these two cases obtain the same end-to-end delay, case (b)
maintains the privacy of vehicle data compared to case (a). Hence, we propose a joint
consideration of end-to-end delay and data privacy while computing tasks in vehicles,
RSUs, and the cloud.

Figure 1. Preliminary analysis on end-to-end delay and data privacy.

Our preliminary analysis shows that this is a complex multiobjective problem since
the two solutions having the same amount of end-to-end delay may have completely
different data privacy. In [27], a multiobjective dynamic task allocation problem, as in our
case, is formalized by integer linear optimization and is shown to have a nondetermin-
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istic polynomial time (NP)-hard solution. As the processing constraints of 5G network
devices are considered, it is easily concluded that such an NP-hard problem cannot be
implementable by using exhaustive solutions. Optimization algorithms such as genetic
algorithm attain approximating solutions for NP-hard search spaces [30]. It is emphasized
in [31] that the genetic-algorithm-based optimization solutions have better performance
characteristics meeting 5G requirements. A genetic-algorithm-based solution is inspired
by the nature of evolution, including four main phases: parent selection, recombination,
mutation, and survivor selection. It overpasses the exhaustive searching approach in terms
of less processing time while finding the optimal solution. Therefore, there are many studies
in the literature that propose genetic-algorithm-based improvements for machine learning
models. For example, in [32], a genetic algorithm is used for online partitioning for edge
intelligent applications and it results in less time than conventional solutions to obtain an
optimal plan, which makes it implementable on edge devices. In [33], a genetic algorithm
is executed to perform parameters’ fine-tuning for machine learning on a cloud server.
Thanks to its nature, it accelerates model training and enhances the precision result. In [34],
ANN-based stock market predictions are improved by the genetic algorithm optimization
process in order to meet the timing requirements of the system. In [35], the genetic algo-
rithm is preferred to decrease training time by performing feature selection for machine
learning algorithms; therefore, it can be executable in low-capacity edge devices. Here,
thanks to the high retrainability of the genetic algorithm, the features required to train the
model can be decreased and it can be executable in local devices.

1.3. Contributions

The related works and preliminary analysis show that the existing studies do not
compare edge-AI-based learning and centralized learning approaches in terms of precision,
end-to-end delay, and data privacy. While they address handling learning models on
edge devices to maintain data privacy, they suffer from the loss of precision that could be
achieved in a centralized cloud server. In comparison to other artificial intelligence (AI)
techniques, such as neural networks or support vector machines, the genetic algorithm
was specifically chosen in the literature for its ability to efficiently handle multiobjective
optimization in distributed environments like federated learning. Other AI algorithms
could offer improvements in precision, but they would require more processing power
and time, which is a significant limitation in edge computing environments. Moreover,
the evolutionary approach in the genetic algorithm allows for better adaptability and faster
convergence when the training location (vehicle devices, RSUs, or cloud servers) needs
to be optimized. Hence, we selected the genetic algorithm to solve our multiobjective
problem, which determines the training location of the federated learning model (whether
on a vehicle device, on an RSU, or on the cloud server) by considering end-to-end delay and
data privacy. Therefore, we propose a novel genetic algorithm optimized federated learning
(GAoFL) approach for the joint consideration of the corresponding problems (i) to accelerate
the solution of well-predicted end-to-end delay and (ii) to preserve the data privacy by
minimizing the probability of data leakage attack according to the problem formulation.

When the aforementioned motivations are taken into consideration, the main contri-
butions of the study can be stated as given below:

• A novel model training delay (T) is mathematically defined by including the prop-
agation delay for taking a trained model from center to end-user and the model
training delay.

• A novel data privacy parameter (P) is mathematically defined by assigning different
weights to training models in vehicles, RSUs, and cloud servers.

• A novel dataset is generated by a genetic algorithm with three labels of T, named
nonacceptable, acceptable, and best according to 5G delay requirements.

• A novel GAoFL approach according to a novel metric, T (training delay in server)
divided by Fmeasure (training accuracy) is devised.
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The rest of the paper is organized as follows: Section 2 gives the details of proposed
system architecture in terms of the data acquisition, the evaluation metrics, and the proposed
GAoFL approach. Section 3 evaluates the performance of the proposed method by comparing
the studies in the literature. Section 4 summarizes the paper by providing conclusions.

2. Proposed System Architecture

In this section, the proposed system architecture for the GAoFL approach is given in
detail. The running principle of the proposed algorithm is illustrated in Figure 2. There are
100 vehicles, 15 RSUs, and 1 cloud server in the topology which are all connected in real
time and delineate an urban area [36–38]. Initially, each end-user device obtains its own
data and runs the federated learning tasks thanks to the implementation of the proposed
GAoFL approach by using a Java-based environment. The proposed approach is based on
4 basic steps of the genetic algorithm, stated by the number blocks in the figure: 1—parent
selection, 2—recombination, 3—mutation, and 4—survivor selection. While training data,
there is a solution pool that considers the randomly generated solutions, and each solution
determines one of the task running schedules that is given in Section 2.1.

In the proposed algorithm, each device calculates the fitness value by computing the
end-to-end delay (T) over data privacy (P) and Fmeasure values obtained from the candi-
date solution and learning rates. The calculation details are given in Sections 2.2 and 2.3,
respectively. In each learning round, devices find the best solution according to fitness
value and share it with the other devices. In the next generation round, according to the
best solution details, the RSU server is also included in the learning rounds. The same
steps are repeated for all end-user devices and also for RSU servers, and the best solution
is shared among them. According to the best solution detail, the cloud server can also
be included in learning rounds, and, in that case, the same steps are repeated until the
algorithm is converged according to fitness value. Here, including RSU and cloud servers
in the training process is determined in accordance with the solution details produced by
the genetic algorithm output. If the best solution determines the running tasks in the RSU
and/or cloud servers, then in the next round, the RSU and/or cloud servers also run the
genetic algorithm and share the best solution that they find.

Figure 2. The proposed system architecture for the GAoFL approach based on genetic algorithm with
4 steps: 1—parent selection, 2—recombination, 3—mutation, and 4—survivor selection.
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2.1. Data Acquisition

In Table 1, the features of the dataset that is generated by the proposed genetic algo-
rithm are given. There are 101 features, where the first 100 of them are real numbers, and the
last one (T) is class. The first 100 features, from S1 to S100, represent the identification
number of servers, where they are located in the cloud, RSU, or vehicles in 5G vehicular
networks. There is a cloud server for centralized learning, 15 RSUs, and 100 vehicles that
can act as computing devices for the federated learning by the Java-based environment.
If the data are between 0 and 99, it means that the federated learning is performed on the
end-user device; whereas if the data are between 100 and 114 it means that the RSU is used
for machine learning, and 115 means that the centralized learning is performed on the
cloud server.

Table 1. The dataset generated based on the genetic algorithm.

S1 (REAL) S2 (REAL) . . . S100 (REAL) P (REAL) T (CLASS LABEL)

0 0 . . . 0 1 NON-ACCEPTABLE

0 0 . . . 40 0.91 NON-ACCEPTABLE

100 10 . . . 85 0.85 ACCEPTABLE

40 115 . . . 10 0.793 ACCEPTABLE

100 10 . . . 115 0.549 BEST

115 70 . . . 115 0.192 BEST

T (in seconds) is the training duration of the models on the cloud, the RSU, or vehicles.
It is calculated as follows [39,40]:

T =
Training Data Size · CPU

Computing
+ TProp(Model Source, End User) (1)

where training data size varies between 1 KB and 1 GB, the CPU requires a CPU cycle per
bit to train the model for the server, and it is taken as 100 bits per cycle, and computing is the
capability of the server to train a model. If the federated learning is performed on a vehicle,
computing capability is assumed as 0.5 × 109 bits/s in the calculation of T. If the federated
learning is performed on an RSU, computing capability is assumed as 10 × 109 bits/s, and if
the centralized learning is performed on the cloud, computing capability is assumed as
100 × 109 bits/s [41]. TProp(target, user) defines the propagation delay to take a trained
model from the RSU or cloud servers to the vehicle. If the target is a vehicle device,
then the propagation is taken as 0. On the other hand, if the cloud server is used to
train the model, it obviously has less training delay than the RSU and the vehicle due
to having more computational capability. However, an additional propagation delay of
0.05 ms is considered to transfer the model from the cloud to the vehicle [39]. Similarly,
the propagation time between the RSU and the vehicle is taken as 0.001 ms [40]. They can
be ignored while considering the processing times on the vehicle, the RSU, and the cloud
servers. According to two thresholds on model training delay, T has three classes, using
Equation (2) as follows:

TLABEL =


NON-ACCEPTABLE, 4 ms < T
ACCEPTABLE, 1 ms < T < 4 ms
BEST, T < 1 ms

(2)

Moreover, to define the data privacy parameter (P) mathematically, we propose the
following formula:

P = Lvehicle + 0.5 · LRSU + 0.1 · Lcloud (3)
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where P is calculated by the weighted average of task loads in each device: vehicle, RSU,
and cloud server. According to Table 1, if the data are between 0 and 99, it means that the
federated learning is performed on a vehicle; Lvehicle is calculated by the ratio of tasks that
would be assigned to the vehicle. If the data are between 100 and 114, it means that an RSU
is used for federated learning and LRSU is calculated by the ratio of tasks that would be
assigned to the RSU. If the data are 115, it means that the centralized learning is performed
in the cloud server, and Lcloud is calculated by the ratio of tasks that would be assigned to
the server as given below:

Lserver =



∑N
i SLi ·TaskSizei ·(i∈vehicle)

∑N
i Si ·TaskSizei

, server is vehicle

∑N
i SLi ·TaskSizei ·(i∈RSU)

∑N
i Si ·TaskSizei

, server is RSU

∑N
i SLi ·TaskSizei ·(i∈cloud)

∑N
i Si ·TaskSizei

, server is cloud

(4)

where N is the number of tasks, which is taken as 100, and the server location, SLi, is either
0 or 1, and determines the task assignment, as shown in Table 1. TaskSizei is the size of
the task per vehicle, which is taken as 1 MB in our scenario. In Equation (3), the weight of
the training task on the vehicle is taken as 1 because it fully preserves data privacy on the
contrary executing tasks in RSU and cloud. On the other hand, the weight of the training
task on the RSU server is selected as 0.5 because end-users prefer not to share their own
data to the centralized cloud server. The L defines the loads of tasks in the devices and it
changes between 0 and 1.

2.2. Evaluation Metrics

According to the features, the models are trained in vehicles, RSUs, and cloud servers
independently. In machine learning literature, the performance of classifiers is usually
measured with accuracy metrics. However, unbalanced datasets having uneven class
distributions, as in our case, require the use of the Fmeasure metric, which can be calculated
using precision and recall, defined in Equations (5) and (6), respectively. Fmeasure is used
as the main performance metric for all the algorithms through this study and it is defined
in Equation (7) [42]:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Fmeasure = 2 · Precision · Recall
Precision + Recall

(7)

where TP, TN, FP, and FN are defined as true positive, true negative, false positive, and
false negative predictions. In the representations, TP and TN are the predictions that are
the same as the class labels through the test. On the other hand, FP and FN are false
predictions and are different to the test sample labels [43].

2.3. The Proposed GAoFL Approach

In Algorithm 1, the proposed GAoFL approach is given. It takes the current statistics
of vehicles, RSUs, and cloud servers from the physical layer. It returns the dataset and
trained model that are aggregated by each generation of the genetic algorithm. In line 1,
the algorithm initializes vehicles, RSUs, and cloud servers according to the taken statistics.
In line 2, the solution pool with 100 chromosomes is initialized randomly. An example
chromosome pool can be found in Table 2. The chromosomes are stored in an array list
throughout the execution of the genetic-algorithm-based GAoFL. The entries in the table
are feasible solutions obtained by training capacities of vehicles, RSUs, and the cloud server.
If the end-to-end delay (T) could not take the BEST label in the dataset, the Fmeasure would
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not be meaningful for the BEST label. Therefore, the fitness value of this solution cannot
be evaluated, as seen in C1 and C2. In Algorithm 1, between lines 3 and 18, the federated
learning rounds are executed, and in each of them there are 1000 iterations to create a
new generation pool of chromosomes to find the best solution that would have the lowest
end-to-end delay (T), higher data privacy (P), and higher Fmeasure. While selecting the
optimal machine learning algorithm, we compared J48 [44,45], support vector machine
(SVM) [46], decision table [47], and random forest [48]. Finally, we selected J48 to have the
lowest training delay near the best Fmeasure. Each round should be finalized under 1 s to
satisfy the 5G delay requirements. The corresponding analysis is detailed in Section 3.

Algorithm 1 Genetic algorithm optimized federated learning.

Require: Take statistics from physical topology
Ensure: Dataset and Trained model

1: Initialize vehicles, RSUs, and Cloud server to train data
2: Initialize solution pool with the feasible chromosomes by checking total training capacities of

end-servers
3: for each learning round do
4: for each iteration do
5: Calculate end-to-end delay(T) by Equation (1)
6: Train data by using J48 learning algorithm and calculate Fmeasure
7: Calculate Fitness value T/(P · Fmeasure) by Equation (8)
8: Parent Selection according to T/(P · Fmeasure)
9: Recombination by two-point cross-over

10: Mutation in one point
11: Update T/(P · Fmeasure) for each generation
12: Add solution pool to each datasets
13: Survivor Selection according to T/(P · Fmeasure)
14: end for
15: if Fitness < 1 then
16: Stop learning
17: end if
18: end for
19: return Dataset and trained model

Table 2. An example of chromosome pool in GAoFL with calculated values.

Chromosome ID
Genes of Chromosome Calculated Values of Chromosome

S1 S2 . . . S100 T P Fmeasure Fitness

C1 0 0 . . . 0 7.99 1 NAN NAN

C2 0 103 . . . 115 1.94 0.846 NAN NAN

C3 0 9 . . . 115 0.648 0.91 0.487 1.462

. . . . . . . . . . . . . . . . . . . . . . . . . . .

C100 50 101 . . . 114 0.41 0.555 1 0.738

In particular, J48 is known as the Java implementation of the J4.5 decision tree algo-
rithm. The selection criteria of J48 in the proposed GAoFL algorithm can be explained as
follows: The algorithm is favored for its high simplicity and rapid results, making it suitable
for real-time applications [49]. The divide-and-conquer strategy in J48 efficiently partitions
the data based on attributes with the highest information gain, which results in facilitating
quick decision making. In 5G, where low latency is essential, J48’s fast training process
significantly enhances the responsiveness of vehicular communication. Furthermore, J48
excels in handling multicolumn datasets typical in 5G environments as a result of efficiently
identifying relevant features and reducing complexity. Therefore, it can effectively classify
the data and enable timely responses to changing conditions, especially in dynamic sce-
narios [50]. Integrating J48 into the fitness function optimizes model performance across
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several generations, enhancing classification accuracy while minimizing training time.
Existing studies in the literature show that decision trees in vehicular networks provide low
latency and high data security. Thus, J48’s rapid adaptability and effectiveness reinforce
the GAoFL algorithm’s success in real-time 5G vehicular networks.

Afterwards, to find best solution, the proposed genetic algorithm executes the follow-
ing four phases which are listed below:

• Parent Selection: After calculating each fitness value as T by using Equation (1), each
chromosome has an estimated data train delay. Moreover, the P is calculated by using
Equation (3), and Fmeasure is calculated by using Equation (7) on the trained data.
Accordingly, the fitness function is calculated as given below:

Fitness =
T

P · Fmeasure
(8)

According to Fitness values, each chromosome is sorted from low to high, and the
best 10 chromosomes that have less T, higher P, and higher Fmeasure are selected as
parents of the new generation pool. The learning rounds are stopped when Fmeasure
is less than 1.

• Recombination: Each parent is labeled as mother and father chromosomes randomly.
They are also randomly paired. From the first gene to the randomly defined gene,
the new generation takes the mother’s genes. The remained ones are taken from the
father’s gene. After the combination, the new generation can be unfeasible. Therefore,
by checking the total training capacity of vehicles, RSUs, and cloud servers, the
solution is taken to feasible space.

• Mutation: Each new generation mutates over a randomly determined gene. This is
performed to increase the possibility of having a better generation than the parents.
Without this phase, the generation can repeat itself and the algorithm can become stuck
on a single point. After this step, the new generation pool is added into the dataset.

• Survivor Selection: After new generation is created, the better ones according to
Fitness are selected for the next iteration. The remaining 10 chromosomes are deleted.

3. Performance Evaluation

The performance of the proposed algorithm is evaluated by a Java-based environment
and Weka 3.6.12 by using a MAC OSx Intel i5 processor and 8 GB RAM. The proposed
GAoFL algorithm is compared by centralized, adaptive federated, and pure federated
learning algorithms [25]. The evaluations are repeated with respect to different task sizes,
where N is 100, 200, and 400. Moreover, J48, SVM, random forest, and decision table are
compared according to the effect on the processing time of the proposed algorithm with
respect to increasing iteration number and task sizes.

When N is 100, the number of solutions for trained data in each generation of the
algorithm is given in Table 3. Here, in 10 rounds, the proposed algorithm converges in
terms of fitness value (T/(P·Fmeasure)). In the initial case, 16,807 solutions are obtained
as nonacceptable according to the end-to-end delay (T) equation defined in Equation (1).
In the second round, the proposed GAoFL approach in end-user devices results in better T
values owing to the addition of a solution pool of 5 nonacceptable, 37 acceptable, and 1 best
solutions. In the third round, vehicles and the RSUs also generate their solution pool,
and the total solutions in the topology are achieved as 16,815 nonacceptable, 51 acceptable,
and 4 best. The cloud server provides a solution pool after the 5th round of the proposed
algorithm. In each round, the solutions of acceptable and best increase, but the nonac-
ceptable solutions might decrease. This is caused by electing some solutions labeled as
nonacceptable after the survival selection phase of the genetic algorithm. Though we are
using Fmeasure as a performance metric throughout the study, we also want to observe the
changes in the constituents of Fmeasure, i.e., precision and recall. In more precise terms,
for a classification problem, there is a trade-off between precision and recall. An acceptable
prediction performance in terms of precision–recall may vary depending on the problem
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or the class to be predicted. In our case, precision–recall both are roughly maximized,
i.e., become 1, after roughly round 8, and the results are given in Figure 3.

Table 3. The number of solutions for trained data in each genetic algorithm round when N is 100.

Round Nonacceptable Acceptable Best Data Location

1st 16,807 0 0 Vehicle

2nd 16,812 37 1 Vehicle

3rd 16,815 51 4 Vehicle, RSU

4th 16,810 61 3 Vehicle, RSU

5th 16,817 66 3 Vehicle, RSU, and cloud servers

6th 16,819 83 5 Vehicle, RSU, and cloud servers

7th 16,829 176 9 Vehicle, RSU, and cloud servers

8th 16,854 354 20 Vehicle, RSU, and cloud servers

9th 16,866 409 30 Vehicle, RSU, and cloud servers

10th 16,931 590 34 Vehicle, RSU, and cloud servers
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(b) Recall results
Figure 3. Precision and recall results of the proposed GAoFL approach for each round when N is 100.

In Figure 4, Fmeasure and end-to-end delay (T) outcomes of the proposed algorithm
for each round are given. In the left y-axis, Fmeasure is given by the bar graph, whereas
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in the right y-axis, end-to-end delay (T) is given by the line graph. According to the result,
as the rounds increase, the Fmeasure for the average of each label (nonacceptable, acceptable,
best) increases gradually. It reaches 1 when the algorithm is in the eighth round. There is
a slight decrease in the ninth round, but the algorithm converges in the tenth round with
the Fmeasure as 1. On the other hand, the proposed algorithm finds the best task training
solutions from the second round to the tenth. Namely, except the initial round where the
training is only performed on end-user devices with pure federated learning, the proposed
algorithm can give best training scheduling in terms of end-to-end delay (T) to the topology.
Moreover, the prediction performance in terms of Fmeasure reaches 1 under 10 rounds as
the round increases.

0

1

2

3

4

5

6

7

8

e
n

d
-t

o
-e

n
d

 d
e

la
y
 (

 T
 m

s
)

1 2 3 4 5 6 7 8 9 10

Rounds

0

0.2

0.4

0.6

0.8

1

F
m

e
a

s
u

re

NONACCEPTABLE

ACCEPTABLE

BEST

Figure 4. Fmeasure and T results of proposed GAoFL approach for each round when N is 100.

Tables 4–6 give the overall results of the proposed GAoFL approach for task distribu-
tion among computational locations in vehicular networks when the number of tasks (N)
is increased to 100, 200, and 400. All of end-to-end delay (T), data privacy (P), Fmeasure
and fitness values are jointly analyzed in these tables. As shown by the results in Table 4,
there are different best solutions for training tasks as the rounds increase. In particular, the
Fmeasure can be calculated after the fifth round for the label BEST, although the average of
Fmeasure is nearly 0.5, as seen in Figure 4. Fmeasure for BEST label also reaches 1 after the
eighth round, and the proposed algorithm converges in the tenth round. Here, predicting
the performance of the BEST label is more vital than the other labels because it means keep-
ing the end-user quality of service under 1 ms, according to 5G key performance indicators.
The proposed algorithm also considers the data privacy parameter (P) while choosing the
example solution. Between the fourth and the seventh rounds, the fitness value of the
algorithm fluctuates despite it outputting the same delay and privacy. The GAoFL leads to
a penalty on fitness in each iteration to not become stuck in local optimum values. In fact,
in the seventh round, the time and privacy parameters take nearly the best values, but Fmea-
sure for BEST is not at around 1. On the other hand, the Fmeasure value convergences to 1 in
the tenth round of the algorithm, where 11% of the task training is assigned to the vehicle,
89% of the task training is assigned to the RSU servers, and none of the task training is
assigned to the cloud server. It finally produces a 0.41 ms end-to-end delay (T) which is
under BEST threshold and a 0.555 data privacy parameter (P) when Fmeasure is 1, which
results in the minimum fitness value of 0.738. In Tables 5 and 6, the algorithm reaches the
minimum fitness value in the 11th and 15th rounds when the task numbers are 200 and 400,
respectively. As the task numbers increase, running the task locally results in unacceptable
time because of the increased load on each server. Therefore, finding a solution with the
BEST label becomes harder in each round and iteration. When N is 200, the algorithm stops
with 0.41 ms end-to-end delay (T) and 0.655 data privacy parameter (P) when the Fmeasure
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is 1, which results in the minimum fitness value of 0.74. When N is 400, the algorithm runs
15 rounds to find the minimum fitness value, and it results in a 0.13 ms end-to-end delay
(T) and a 0.157 data privacy parameter (P) when Fmeasure is 1. Due to the extreme task
load, the tasks can be mostly executed on the cloud server, resulting in low data privacy.
To handle this, the capacity of RSUs or vehicles should be increased.

Table 4. Example BEST solutions for different rounds in the proposed algorithm when N is 100.

Round
Example Solution for Training

T (ms) P [0–1] Fmeasure
for BEST Fitness

Lvehicle LRSU Lcloud

1 1 0 0 7.99 1 NAN NAN

2 0.29 0 0.71 0.698 0.37 NAN NAN

3 0 0.77 0.23 0.237 0.408 NAN NAN

4 0 0.23 0.77 0.677 0.192 NAN NAN

5 0 0.77 0.23 0.237 0.408 0.398 1.459

6 0.29 0.23 0.48 0.69 0.453 0.487 3.127

7 0.29 0.47 0.24 0.761 0.549 0.847 1.636

8 0.29 0.47 0.24 0.761 0.549 1 1.386

9 0.29 0 0.71 0.677 0.361 0.943 1.98

10 0.11 0.89 0 0.41 0.555 1 0.738

Table 5. Example BEST solutions for different rounds in the proposed algorithm when N is 200.

Round
Example Solution for Training

T (ms) P [0–1] Fmeasure
for BEST Fitness

Lvehicle LRSU Lcloud

1 1 0 0 16 1 NAN NAN

2 0.11 0.88 0 0.83 0.5575 NAN NAN

3 0.06 0.83 0.105 0.61 0.488 NAN NAN

4 0.065 0.83 0.105 0.63 0.49 NAN NAN

5 0.05 0.845 0.105 0.59 0.483 0.23 5.311

6 0.115 0.885 0 0.7 0.5575 0.398 3.154

7 0.04 0.795 0.165 0.53 0.454 0.487 2.397

8 0.05 0.515 0.435 0.37 0.351 0.645 1.634

9 0.04 0.795 0.165 0.53 0.454 1 1.167

10 0.045 0.765 0.19 0.501 0.4465 1 1.122

11 0.55 0.15 0.3 0.485 0.655 1 0.74

In Figure 5, the overall comparison of the proposed GAoFL approach and the conven-
tional learning approaches, including centralized learning, adaptive federated learning,
and pure federated learning, are given. These results were obtained when N is 100. The
left y-axis shows the end-to-end delay (T) calculated by Equation (1), whereas the right
y-axis shows the data privacy parameter (P) calculated by Equation (3). The red line plot
shows the end-to-end delay, whereas the green line plot shows the data privacy parameter
according to four different learning approaches. The bar graph represents the training task
details for each of the learning approach results. In centralized learning, there is the deep
learning approach, which aggregates data from the whole topology without considering the
data privacy parameter and the training model in the centralized cloud server. Therefore, it
is the best solution ever to minimize end-to-end delay (T); however, it suffers from data
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privacy since P is around 0.1, a relatively low value. In the proposed GAoFL approach,
the predicted solution results in end-to-end delay under the BEST label. It trains 11%,
89%, and 0% of the tasks in vehicles, RSUs, and cloud servers, respectively. Owing to
considering both delay and data privacy, the P value reaches nearly 0.55, which is quite
higher than the one obtained in the centralized learning approach. The other federated
learning approaches suffer in terms of end-to-end delay performance. They cannot predict
the best solution. They can advise only nonacceptable solutions. Therefore, providing
a data privacy parameter around 0.8 and 1 does not make sense against the end-to-end
delay damages. Here, adaptive learning proposes to train 77% and 23% of the tasks in
end-user devices and the cloud server, respectively. In the pure federated learning, only
end-user devices are used for the task training, which results in the worst end-to-end
delay performance.

Table 6. Example BEST solutions for different rounds in the proposed algorithm when N is 400.

Round
Example Solution for Training

T (ms) P [0–1] Fmeasure
for BEST Fitness

Lvehicle LRSU Lcloud

1 1 0 0 32 1 NAN NAN

2 0.8 0.16 0.037 20.6 0.886 NAN NAN

3 0.715 0.155 0.13 16.3 0.8055 NAN NAN

4 0.7025 0.157 0.14 15 0.795 NAN NAN

5 0.4 0.095 0.5 5.2 0.5 NAN NAN

6 0.3 0.645 0.052 3.59 0.63 NAN NAN

7 0.29 0.665 0.045 3.39 0.627 NAN NAN

8 0.295 0.69 0.015 3.5 0.641 0.48 11.36

9 0.28 0.695 0.025 3.2 0.63 0.8 6.349

10 0.195 0.047 0.75 1.2 0.294 1 4.074

11 0.17 0.057 0.765 1.03 0.282 1 3.642

12 0.17 0.04 0.79 0.78 0.274 1 3.573

13 0.11 0.035 0.855 0.41 0.213 1 1.924

14 0.072 0.027 0.9 0.2 0.176 1 1.134

15 0.055 0.02 0.925 0.13 0.157 1 0.825

In Figure 6, different machine learning algorithms used in the proposed GAoFL
approach are analyzed in terms of the processing time of GAoFL. The number of tasks (N)
is increased from 100 to 400; namely, the total data task size to train the model is increased
from 16,000 to 67,000 when there are 100 vehicles in the topology. The processing time
should be under 1 s. If it exceeds 1 s, this means that the system capacity is full, and
a capacity increase is required on the servers. In each round, vehicles, RSUs, and cloud
servers should terminate the training process within 1 s. Therefore, each iteration per device
should be finished under this determined time interval of the rounds. We compared J48,
SVM, random forest, and decision table [44–48] in terms of processing time with different
iteration numbers of the genetic algorithm where there are 100 chromosomes in the solution
pool. In the figure, y-axes show the processing time, whereas x-axes show the increased
iteration number of genetic algorithm in each round. The bar labels show the different task
training sizes in the topology. Different machine learning algorithms result in the same
Fmeasure for different training tasks. All machine learning algorithms can give a response
under 1 s when the iteration number of the genetic algorithm is 10 and the number of
vehicles is 100. However, as the number of tasks increases, random forest and decision
table cannot satisfy the response time requirements. On the other hand, in order to enhance
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genetic algorithm performance to find the optimal solution that minimizes end-to-end
delay by preserving data privacy, the iteration number should be 1000. Therefore, only J48
is capable of responding under the timing requirements in each round. As a result, J48 and
SVM are usable when the number of tasks and iteration number are low, whereas J48 is
the only choice in the proposed GAoFL approach when the number of tasks and iteration
number are high.
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of increased iteration number and tasks.

4. Conclusions

In this paper, we proposed a GAoFL approach that jointly considers minimizing
end-to-end delay and preserving data privacy for vehicular computing. The proposed
algorithm determines the location of model training among vehicles, RSUs, and the cloud
server, respectively. To evaluate the performance of the proposed method computationally,
a novel dataset based on a genetic algorithm was generated where the end-to-end delay
(T) is labeled as nonacceptable, acceptable, and best. First, in the proposed method, the
end-to-end delay and data privacy are analytically defined. Then, depending on the newly
defined fitness function (end-to-end delay/data privacy·Fmeasure), the proposed genetic
algorithm finds the optimal solution that determines model training locations by executing
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four evolutionary phases: parent selection, recombination, mutation, and survivor selection.
Accordingly, the proposed GAoFL approach is evaluated on the generated data to solve
delay prediction and data privacy optimization problems. Moreover, it is also compared
with the centralized, pure-federated, and adaptive-federated learning approaches from the
literature of vehicular computing. The experimental results have shown that our algorithm
is better than the algorithms proposed in the literature in terms of high delay prediction
performance while preserving data privacy. As a future work, we will focus on model
training and the joint optimization according to the different requirements of 5G contents
in vehicular networks, including eMBB, URLLC, and mIoT.
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