
Citation: Tsukioka, M.; Jin, G.; Deng,

M. Nonlinear Control System for Flat

Plate Structures Considering

Interference Based on Operator

Theory and Optimization Method.

Electronics 2024, 13, 4265. https://

doi.org/10.3390/electronics13214265

Academic Editors: Luis Gomes,

Weichao Sun and Weiyang Lin

Received: 3 October 2024

Revised: 23 October 2024

Accepted: 30 October 2024

Published: 30 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Nonlinear Control System for Flat Plate Structures Considering
Interference Based on Operator Theory and
Optimization Method
Masayoshi Tsukioka, Guang Jin and Mingcong Deng *

Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Tokyo University
of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan; s235150y@st.go.tuat.ac.jp (M.T.);
fs9636@go.tuat.ac.jp (G.J.)
* Correspondence: deng@cc.tuat.ac.jp; Tel.: +81-42-388-7134

Abstract: In recent years, vibration control utilizing smart materials has garnered considerable
attention. In this paper, we aim to achieve vibration suppression of a plate structure with a tail-
fin shape by employing piezoelectric actuators—one of the smart materials. The plate structure
is rigorously modeled based on the Kirchhoff–Love plate theory, while the piezoelectric actuators
are formulated in accordance with the Prandtl–Ishlinskii model. This research proposed a control
system that addresses the interference effects arising during vibration control by dividing multiple
piezoelectric elements into two groups and implementing MIMO control. The efficacy of the proposed
control method was validated through simulations and experiments.

Keywords: vibration control; operator theory; nonlinear control; right coprime factorization;
interference removal

1. Introduction

In recent years, structures such as aircraft and satellites have become increasingly
robust and lightweight through the use of polymer materials, such as carbon fiber. Notably,
the vertical stabilizer of an aircraft plays a critical role in ensuring stable flight. It is
posited that increasing the surface area of the vertical stabilizer enhances the stability of the
aircraft. However, at altitudes around 10,000 m, where aircraft typically operate, powerful
winds and turbulence can induce unforeseen vibrations in the vertical stabilizer, potentially
leading to fatigue failure. Indeed, there have been instances of aircraft accidents resulting
from damage to the vertical stabilizer, underscoring the need for effective countermeasures.
Smart materials have garnered attention for their potential in vibration control [1]. Smart
materials are those that possess actuator and sensor functionalities, as well as self-repair
and self-diagnosis capabilities. Examples include piezoelectric elements, magnetostrictive
alloys, and shape memory alloys, which are actively being researched and are anticipated
to play significant roles in fields such as vibration control and medicine [2,3]. Among these,
piezoelectric elements are particularly suited for the generation and sensing of bending
motions. Piezoelectric elements, composed of ferroelectric materials, exhibit both the
direct piezoelectric effect, where mechanical stress induces a proportional surface charge
polarization, and the converse piezoelectric effect, where the application of an electric field
induces deformation in the piezoelectric material. These properties enable piezoelectric
elements to function as sensors, converting displacement into voltage, and as actuators,
converting voltage into displacement. Moreover, piezoelectric elements are highly suitable
for vibration control due to their rapid input–output response, frictionless operation,
compact and lightweight design, and ease of application. However, piezoelectric actuators
exhibit hysteresis nonlinearity, where their output depends not only on the current input
but also on the initial state and past inputs, complicating precise control and potentially
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diminishing the expected control efficacy. In this study, the hysteresis nonlinearity of
piezoelectric actuators is formulated using the Prandtl–Ishlinskii model to achieve precise
control [4–6].

Previous research has explored vibration suppression in cantilever beams using piezo-
electric actuators and analyzed the vibrations excited in thin plates when using piezoelectric
elements [7,8]. However, these studies often linearize or ignore the hysteresis nonlinearity
in the input–output relationship of piezoelectric elements during control. Generally, when
constructing control systems for nonlinear control targets, linear approximation of the
control target is employed to apply linear control theory. This linearization can degrade
the performance of the control system in terms of response speed, tracking accuracy, and
sensitivity to characteristic variations, and may impose constraints on the controllable
region. To address these issues, research on robust designs for control targets exhibiting
nonlinearities, such as hysteresis, has been actively pursued. While H-infinity control
and sliding mode control are well-known nonlinear control theories [9–12], in the field of
vibration control, approaches such as sliding mode control, fuzzy control, and LQR-based
control have been employed. In this paper, operator theory is adopted to facilitate the con-
struction of a stable and robust control system for nonlinear systems, thereby compensating
for the nonlinearity of piezoelectric elements [13–16]. In previous studies, operator theory
has shown success in controlling vibrations in flexible arms using smart materials such as
shape-memory alloys (SMA) [17].

The objective of this study is to eliminate interference in MIMO systems for vibration
suppression in flat plate structures. Previous studies have attempted to eliminate the effects
of interference in vibration suppression systems by using M-SVR, a machine learning
method that extends support vector regression (SVR) for multiple inputs and a single out-
put, to estimate and mitigate interference [18]. However, the effectiveness of this approach
depends on the accuracy of the training data and the computational cost. Therefore, this
study introduces a control system designed to eliminate the effects of interference, thereby
achieving high-precision interference suppression. While control systems capable of remov-
ing interference have been proposed in previous research, few have theoretically designed
interference elimination operators. Previous studies have demonstrated that in the non-
linear temperature control of aluminum plates using Peltier elements, robust stability and
perfect output tracking can be achieved by designing a robust tracking filter [19]. Moreover,
by employing a filter algorithm to estimate the viscoelasticity of a time-varying multi-joint
human arm, the estimation of unknown time-varying parameters in the control target was
made possible [20]. Furthermore, by combining an operator designed to eliminate the
effects of time delays in control targets with unknown time-varying delays and real-time
measured data, the successful removal of these time delays has been achieved [21].

It has been demonstrated that by designing an appropriate filter, it is possible to
achieve both the desired performance and robust stability. Additionally, it is evident that
by combining the operator with real-time measured data, factors that negatively impact the
control system can be eliminated. In this study, we focus on the primary vibration modes
occurring in the flat plate and, through the design of an operator aimed at eliminating these
modes, along with online optimization, we seek to remove the effects of interference and
disturbances in the control target.

In previous studies, research was conducted on SISO systems; however, a system
extended to a MIMO configuration has been developed. Conventional control in MIMO
systems compensated for interference using a model equation for interference. In this
paper, a control system was designed to compensate for interference, disturbances, and the
nonlinearity of piezoelectric elements through the design of the operator ϕ [18,22]. This
paper is structured as follows: In Section 2, the vibrations occurring in a flat plate structure
shaped like a tailplane, which serves as the control target, are formulated mathematically.
Additionally, the model of the piezoelectric actuators is also formalized. Section 3 addresses
the design of a control system based on operator theory, where a system capable of elimi-
nating interference and disturbances is devised, and the methodology is explained in detail.



Electronics 2024, 13, 4265 3 of 19

In Section 4, the control system designed in the previous section is evaluated through
simulations and real-world experiments to confirm its effectiveness. Finally, in Section 5,
the conclusions of this paper are summarized.

2. Modeling

In this study, we verify the vibration suppression effect on the plate using the experi-
mental system shown in Figure 1.

Figure 1. Schematic of piezoelectric actuator and servo motor mounted on a flat plate.

2.1. Modeling of Flat Plate

In this study, although the target plate structure for control takes the shape of a
trapezoid, for the sake of simplicity, we derive the equations of motion for a plate with a
simple rectangular shape. The equations of motion for the plate structure, which serves
as the control target in this research, are derived based on Classical Plate Theory. This
theory pertains to thin plates, and the Kirchhoff–Love plate theories are incorporated.
By employing the Kirchhoff–Love plate theories, the following constraints are imposed on
the plate:

• The thickness of the plate remains constant.
• Shear deformation acting in the direction perpendicular to the surface is neglected.

The equations of motion are derived for the case where stress is applied to a rectangular
plate, as illustrated in Figure 2. The parameters employed in the modeling of the controlled
object are detailed in Table 1. According to the Kirchhoff–Love plate theories, εzz, γzx, and
γyz are zero. Consequently, the strain induced in the plate can be expressed as follows.

εxx =
∂u
∂x

− z
∂2u
∂x2 (1)

εyy =
∂v
∂y

− z
∂2v
∂y2 (2)

γxy =
∂u
∂y

+
∂v
∂x

− 2z
∂2w
∂x∂y

(3)

Here, assuming that the stress distribution within the plate is in a state of plane stress,
in accordance with the Kirchhoff–Love plate theories, the relationship between stress and
strain can be expressed as follows.
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Table 1. Parameters for modeling of the flat plate system.

Parameter Definition Value

a Length of the plate in the ε
direction 0.31 m

b Length of the plate in the η
direction 0.27 m

l Distance from the servo motor
to the plate 0.11 m

ε Strain −
u Deflection in the x direction m
v Deflection in the y direction m
γ Shear strain −
w Deflection in the z direction m
σ Stress N/m2

E Young’s Modulus of a plate 2.98 × 109 N/m2

ν Poisson’s ratio 0.38
τ Shear stress N/m2

G Modulus of rigidity N/m2

M Bending moment N · m
ts Thickness of the plate 2.0 × 10−3 m
Ds Bending stiffness 5.80 × 105 N · m2

V Shear force N
ρ Density of the plate 1.43 × 103 kg/m3

m Moment N · m
t Time s
cs Damping coefficient 0.6

R The threshold of the Play
hysteresis operator 100

Ea Young’s Modulus of actuators 6.2 × 1010 N/m2

z

x

y

௦

(a) (b)

Figure 2. Flat plate structure: (a) simplified model, (b) shape of tail-fin.

σxx =
E

1 − ν2 (εxx + νεyy) (4)

σyy =
E

1 − ν2 (εyy + νεxx) (5)

τxy = Gγxy (6)
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By substituting Equations (1)–(3) into Equations (4)–(6), the stress distribution within the
plate can be derived.

σxx =
E

1 − ν2

{(
∂u
∂x

+ ν
∂v
∂y

)
− z
(

∂2w
∂x2 + ν

∂2w
∂y2

)}
(7)

σyy =
E

1 − ν2

{(
∂v
∂y

+ ν
∂u
∂x

)
− z
(

∂2w
∂y2 + ν

∂2w
∂x2

)}
(8)

τxy = G
{

∂u
∂y

+
∂v
∂x

− 2z
∂2w
∂x∂y

}
(9)

By integrating Equations (7)–(9) across the thickness direction, the bending moment gener-
ated by the stress distribution within the plate can be derived.

Mx =
∫ ts/2

−ts/2
zσxxdz = −Ds

(
∂2w
∂x2 + ν

∂2w
∂y2

)
(10)

My =
∫ ts/2

−ts/2
zσyydz = −Ds

(
∂2w
∂y2 + ν

∂2w
∂x2

)
(11)

Mxy =
∫ ts/2

−ts/2
zτxydz = −(1 − ν)Ds

∂2w
∂x∂y

(12)

where, in Equations (10)–(12), Ds represents the bending rigidity. From the equilibrium of
the shear forces in the X-direction, Vx, and in the Y-direction, Vy, the equation of motion in
the Z-direction is expressed as follows.

∂Vx

∂x
+

∂Vy

∂y
= ρts

∂2w
∂t2 (13)

The moments about the x-axis and y-axis can be obtained by partially differentiating the
equations shown in Equations (10)–(12).

∂Mx

∂x
+

∂Mxy

∂y
= Vx (14)

∂My

∂y
+

∂Mxy

∂x
= Vy (15)

By substituting Equations (14) and (15) into Equation (13), the equation of motion governing
the bending of the plate can be derived.

−Ds

(
∂4w
∂x4 + 2

∂4w
∂2x∂2y

+
∂4w
∂y4

)
= ρts

∂2w
∂t2 (16)

In Equation (16), by defining ∂2

∂x2 +
∂2

∂y2 = ∇2, the equation can be consolidated as shown in
Equation (17).

−Ds∇4w = ρts
∂2w
∂t2 (17)

By consolidating the previous equations, the displacement equation for a simple plate
structure can be expressed as shown in Equation (18). Here, F(t) represents the external
force exerted on the plate by the servo motor [22].

Ds∇4w + ρts
∂2w
∂t2 + cs

∂w
∂t

= F(t) +
∂2mϵ

∂ϵ2 +
∂2mη

∂η2 (18)
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Up to this point, the deflection equation for a simple shape, as depicted in Figure 2a, has
been derived. Building on this, the displacement equation for a plate structure resembling a
tailplane, as illustrated in Figure 2b, is derived. The resulting displacement can be obtained
by superimposing the eigenfunctions of the plate. Hence, the results, computed with
attention to the orthogonality of the eigenfunctions, are presented in Equation (19).

l1
d2 f (t)

dt2 + l2
d f (t)

dt
+ l3 f (t) = l4Mp(t) + l5d∗(t) (19)

In Equation (19), l1 ∼ l5 are consolidated as Equations (20)–(24).

l1 =ρts

∫ a

0
ϕ2

m(ε)dϵ
∫ b

0
ψ2

n(η)dη (20)

l2 =cs

∫ a

0
ϕ2

m(ε)dϵ
∫ b

0
ψ2

n(η)dη (21)

l3 =Ds

(∫ a

0

d4ϕm(ε)

dε4 ϕm(ε)dε
∫ b

0
ψ2

n(η)dη+∫ a

0
ϕ2

m(ε)dε
∫ b

0

d4ψn(η)

dη4 ψn(η)dη +2
∫ a

0

d2ϕm(ε)

dε2 ϕm(ε)dε
∫ b

0

d2ψn(η)

dη2 ψn(η)dη

)
(22)

l4 =

(
dϕm

(
ε2pi

)
dε

−
dϕm

(
ε1pi

)
dε

) ∫ η2pi

η1pi

ψn(η)dη

+

(
dψn

(
η2pi

)
dη

−
dψn

(
η1pi

)
dη

) ∫ ε2pi

ε1 pi

ϕm(ε)dε (23)

l5 =ρts

(∫ a

0
ϕm(ε)dε

∫ b

0
ψn(η)ηdη +

∫ a

0
ϕm(ε)ϵ cos(α)dε

∫ b

0
ψn(η)dη

+l
∫ a

0
ϕm(ε)dε

∫ b

0
ψn(η)dη

)
(24)

The result obtained by solving Equation (19) is given in Equation (25). Here, ϕm(ε) and
ψn(η) denote the eigenfunctions of the plate structure.

w(ε, η, t) =
∞

∑
m=1

∞

∑
n=1

∫ t

0
Jmne−αmn(t−τ) · sin βmn(t − τ) ·

(
l4Mp(τ) + l5d(τ)

)
dτ (25)

The terms Jmn, αmn, and βmn appearing in Equation (25) are defined as shown in Equation (26).
Additionally, d(τ) represents a variable accounting for the influence of external disturbances.

Jmn = ϕm(ε)ψn(η)

l1

√
l3
l1
− l22

4l21

αmn = l2
2l1

βmn =

√
l3
l1
− l2

2
4l2

1

(26)

2.2. Modeling of Piezoelectric Actuator

In this study, vibration is suppressed using a bimorph-type piezoelectric actuator. The
bimorph piezoelectric actuator consists of a structure where one piezoelectric ceramic is
attached to both the front and back surfaces of a thin metallic material. Each piezoelectric
ceramic is affixed in such a way that their polarization directions are aligned. Utilizing the
property that the piezoelectric ceramic contracts when a forward bias voltage is applied and
expands when a reverse bias voltage is applied, the actuator generates a bending motion.
Figure 3 illustrates the structure of the bimorph piezoelectric actuator.
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Figure 3. Cross-section of piezoelectric actuator.

Piezoelectric actuators exhibit hysteresis nonlinearity in their input–output relation-
ship. In this study, in order to achieve control that accounts for the hysteresis nonlinearity
of piezoelectric actuators, the hysteresis nonlinearity that arises during actuator operation
is modeled using the Prandtl–Ishlinskii model, which is based on the Play hysteresis op-
erator [23]. The Prandtl–Ishlinskii model is expressed by the superposition of the Play
hysteresis operator Fr(v)(t).

Fr[v](t) =


v(t) + r, v(t) ≤ Fr(v)(ti)− r
Fr[v](ti), −r < v(t)− Fr[v](ti) < r
v(t)− r, v(t) ≥ Fr(v)(ti) + r

(27)

ti < t ≤ ti+1

0 ≤ i ≤ N − 1

0 = t0 < t1 < · · · < tN = t

In Equation (27), v(t) represents the input, and r denotes the threshold. The Prandtl–
Ishlinskii model expresses hysteresis by weighting and superimposing the Play hysteresis
operators using a density function p(r) related to the threshold r. The Prandtl–Ishlinskii
model is represented by the following equation.

v∗(t) =
∫ R

0
p(r)Fr(v)(t)dr

= DPI(v)(t) + ∆PI(v)(t) (28)

In Equation (28), DPI(v)(t) represents the reversible term, while ∆PI(v)(t) denotes the
residual term. As shown in Equation (29), DPI(v)(t) is the product of the integral of the
density function over the threshold R and the input signal. By designing the operator
that includes this DPI(v)(t) to satisfy the Bézout equation, it becomes possible to achieve
control that accounts for the effects of the piezoelectric actuator. However, rx is defined as
the largest number satisfying r ∈ [0, rx] and r ≤ |vi(t)− Fr(vi(t))|.

DPI(v)(t) = v(t)
∫ R

0
p(r)dr (29)

∆PI(v)(t) = −
∫ rx

0
Snrp(r)dr +

∫ R

rx
p(r)(Fr(v)(t)− v(t))dr (30)∫ ∞

0
rp(r)dr < ∞ (31)

p(r) = 3.2 × 10−4exp

(
−8.6 × 10−4 ×

(
r − 1

3

)2
)

(32)

The input–output relationship of the piezoelectric actuator, with the input specified as
v(t) = 10 sin(2πt), is presented in Figure 4a. Additionally, the waveforms of DPI(v)(t),
∆PI(v)(t), and v∗(t) in the output of the piezoelectric actuator are illustrated in Figure 4b.
From Figure 4b, it can be observed that the reversible term DPI and the residual term ∆PI
are out of phase with each other, resulting in a decrease in the output v∗(t).
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(a)

(b)

Figure 4. Hysteresis of piezoelectric actuator: (a) hysteresis loop, (b) elements of hysteresis.

2.3. Problem Statement

By operating the servo motor in a manner similar to a car’s windshield wiper, vibra-
tions are induced in the plate. The generated vibrations are then controlled using three
piezoelectric actuators and two piezoelectric sensors installed on the plate, and the effec-
tiveness of the vibration control is evaluated. In achieving vibration suppression, a control
system based on operator theory is designed to compensate for the stability in the nonlinear
control system that accounts for the hysteresis nonlinearity of the piezoelectric elements.
Furthermore, to enhance vibration suppression performance, a control system capable of
eliminating interference is devised. The effectiveness of the designed control system is
verified through simulations and real-world experiments.

3. Control System Design

Based on the physical models of the plate structure and piezoelectric actuator derived
in the previous section, we will design a control system using operator theory. First,
the control plant is subjected to right coprime factorization. The right coprime factorization
is illustrated in Figure 5.

Figure 5. Right coprime factorization.
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By performing right coprime factorization on Equation (25), it can be decomposed as
follows. In this study, the first mode is treated as the nominal plant, while the second and
third modes are considered as uncertainties.

[Pi + ∆Pi](ui(t))) = (1 + ∆)[J11i

∫ t

0
e−α11(t−τ) sin β11(t − τ) · (ui(τ))dτ] (i = 1, 2) (33)

Applying right coprime factorization to the equation shown in (25) results in the following
form.

[Ni + ∆Ni](wi)(t) = (1 + ∆)[J11i

∫ t

0
e−α11(t−τ) sin(β11)(t − τ) · wi(τ)dτ] (34)

Di(wi)(t) = I(wi)(t) (35)

Furthermore, based on the Prandtl–Ishlinskii model, the operator considering the input–
output characteristics of the piezoelectric actuator, as expressed in Equation (28), is rep-
resented as D̃i = D−1

PIi
Di. The control system utilizing operators that satisfy the Bézout

equation is illustrated in Figure 6.

Figure 6. Control system satisfying right coprime factorization.

By designing controllers A and B such that the derived D̃ and N satisfy the Bézout
equation, the resulting operators take the form shown in Equations (36) and (37). Here, Kmi

in Equation (37) denotes the design parameter, while DPI represents a constant related to
the piezoelectric element.

Ai
yi 7−→bi

:

 xAi (t) = yi(t)

bi(t) =
1−Kmi
J11i

β11
(ẍAi (t) + 2α11 ẋAi (t) + (α2

11 + β2
11)xAi )

(36)

B−1
i

ei 7−→ui

: ui(t) =
1

Kmi DPI
ei(t) (37)

The Bézout equation is an equation of the form shown in Equation (38). In this equation, Mi
represents a unimodular operator, which is defined as the identity operator in this study.

Ai Ni + BiD̃i = Mi (38)

In this study, three piezoelectric actuators and two piezoelectric sensors are divided into
two groups, each controlled separately. Group 1 consists of one piezoelectric actuator
and one piezoelectric sensor, while Group 2 comprises two piezoelectric actuators and
one piezoelectric sensor. The control system is illustrated in Figure 1. To control the
MIMO system, the signals from Group 1 influence Group 2, and likewise, the signals
from Group 2 affect Group 1. In order to achieve a more efficient vibration suppression
system compared to conventional methods, it is essential to eliminate the effects of this
interference. The interference occurring in the control system is assumed to result in mutual
influence, as illustrated in Figure 7. In this paper, a system in which interference is present,
as illustrated in Figure 7, is examined.
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Figure 7. Coupling effect.

In Figure 7, G21 and G12 represent the interference operators that account for the effects
of interference, and are expressed as follows, based on previous research.

G12(u2)(t) = (−1.92171 × 10−3|u2(t)|2 + 1.27310|u2(t)|)sgn(u2(t)) (39)

G21(u1)(t) = (−1.20445 × 10−3|u1(t)|2 + 0.681111|u1(t)|)sgn(u1(t)) (40)

To theoretically eliminate the effects of interference as shown in Equations (39) and (40), a
vibration suppression system is implemented using the control system depicted in Figure 8.
In the control system depicted in Figure 8, it is possible to eliminate the effects of disturbance
and interference, denoted as d(t) = (d1(t), d2(t)). Here, A = (A1, A2) and B = (B1, B2). By
inputting the signal, which includes interference, into the operator ϕ = (ϕ1, ϕ2) designed
to eliminate the effects of interference and disturbance, it becomes feasible to eradicate
these influences.

Figure 8. The proposed control system.

In Figure 8, when y(t) becomes zero, it is equivalent to the elimination of disturbances
and interferences. The signal y(t) is represented by Equation (41).

z∗i (t) = DPI(ui(t)) + di(t)− αi(t)

z∗i (t) = DPI(ui(t)) + di(t)− ϕ−1
i Aiyi(t)

ϕ−1
i (Aiyi(t)) = DPI(ui(t)) + di(t)− z∗i (t)

Aiyi(t) = ϕi(DPI(ui(t)) + di(t)− z∗i (t)) (41)

By designing ϕi(·) to approach zero, the formulation can be consolidated as shown in
Equation (42).

Ai(yi(t)) → 0 (42)
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When yi(t) → 0, Equation (42) is satisfied, thereby eliminating the interference. Figure 9
illustrates the control system that has undergone an equivalent transformation, adapted for
the actual system based on Figure 8 and Equation (42).

Figure 9. Details of the proposed control system.

Design of the Operator ϕ

It has been confirmed in Equation (42) that by appropriately designing the operator
ϕ, the effects of interference and disturbances in the MIMO system can be eliminated.
Traditionally, when utilizing the control system shown in Figure 8, the operator ϕ was
determined through trial and error, posing challenges in the design process. Therefore,
in this paper, we proposed a method for determining the operator ϕ that exclusively
removes interference and disturbances. From previous experiments, it has been confirmed
that the vibrational components arising in the control target are predominantly governed
by the first mode.

Furthermore, from the mathematical analysis of the interference effects shown in
Equations (39) and (40), it can also be verified that the interference is primarily concentrated
around the first mode. In Figure 10, a simulation-based comparison is made between
the amplitude spectra in the presence and absence of interference effects. Consider the
case where Group 1 is subjected to disturbances at the resonance frequency and 9 Hz,
while Group 2 is subjected to distinct disturbances at the resonance frequency and 3 Hz.
From Figure 10, it is evident that when different disturbances are applied to Group 1 and
Group 2, the interference is also influenced by these disturbances. However, it can be
observed that a substantial portion of the vibration components due to the interference
aligns with the vibrations occurring in the flat plate. The operator for eliminating the effects
of interference is presented in Equation (43).

ϕi
α 7−→γ

:


xϕi (t) = αi(t)
ÿϕi (t) + 2ζiωi ẏϕi (t) + ω2

i yϕi (t) = ẍϕi (t) + 2diζiωi ẋϕi (t) + ω2
i xϕi (t)

γi(t) = yϕi (t)

(43)

By appropriately designing the parameters in Equation (43), it becomes possible to eliminate
signals at the desired frequency. The parameters determined based on ζi, ωi, and di become
optimal operators for eliminating the effects of interference and disturbances through
successive optimization using the gradient descent method. When implementing the
operator ϕi, Equation (43) is converted using the bilinear transformation, as shown in
Equation (44).
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(a)

(b)

Figure 10. Frequency of vibration and interference effects on a flat plate: (a) Group 1, (b) Group 2.

γi[t] =
1

D0i
(N2i · αi[t − 2] + N1i · αi[t − 1] + N0i · αi[t]

− D2i · γi[t − 2]− D1i · γi[t − 1]) (44)

In Equation (44), N0i ∼ N2i and D0i ∼ D2i are expressed as follows.

N2i = 1 − (
Tωi

2
)di2ζi + (

Tωi
2

)2

N1i = 2(
Tωi

2
)2 − 2

N0i = 1 + (
Tωn

2
di2ζi) + (

Tωi
2

)2

D2i = 1 − (
Tωi

2
)2ζi + (

Tωi
2

)2

D1i = 2(
Tωi

2
)2 − 2

D0i = 1 + (
Tωi

2
2ζi + (

Tωi
2

)2)
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The evaluation function and update equations for optimizing N0i ∼ N2i and D0i ∼ D2i are
presented in Equations (45)–(47). N′

0i ∼ N′
2i and D′

0i ∼ D′
2i represent the parameters after

the update.

Ei(t) = ϕ2
i (t) (45)

N′
li = Nli − ηi

∂Ei
∂Nli

(l = 0, 1, 2) (46)

D′
ki = Dki − ηi

∂Ei
∂Dki

(k = 0, 1, 2) (47)

4. Simulation and Experiment
4.1. Simulation Results

This section presents the simulation results of the proposed control system. The
parameters used for the simulation are listed in Table 2. The simulation results of the
proposed control system are illustrated in Figure 11. In the simulation, distinct disturbances
at the resonance frequency and 9 Hz were applied to Group 1, while Group 2 was subjected
to disturbances at the resonance frequency and 3 Hz. Figure 11a depicts the vibrations for
Group 1, and Figure 11b shows those for Group 2. It can be observed that the vibrations
decrease significantly immediately after the control input is applied. Figure 11c shows
the control input for Group 1, and Figure 11d represents the control input for Group 2.
Although a large input of approximately 100 V is required initially upon the commencement
of control, it is evident that, after 10 seconds from the start of the simulation, the input
voltage stabilizes within a certain range. The simulation results indicate that, despite
the presence of interference from varying frequencies in each group, sufficient control
effectiveness was achieved.

Table 2. Simulation parameters.

Parameter Definition Value

T Sampling time 1.0 × 10−2 s
η1 Learning rate 5.5 × 10−8

η2 Learning rate 1.25 × 10−7

ω1 Parameter for ϕ1 32.72 rad/s
ζ1 Parameter for ϕ1 0.1
d1 Parameter for ϕ1 0.1
ω2 Parameter for ϕ2 32.72 rad/s
ζ2 Parameter for ϕ2 0.1
d2 Parameter for ϕ2 0.1

Km1 Designed parameters for B1 0.25
Km2 Designed parameters for B2 0.125
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(a)

(b)

(c)
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(d)

Figure 11. Simulation results: (a) displacement of Group 1, (b) displacement of Group 2, (c) input
voltage of Group 1, and (d) input voltage of Group 2.

4.2. Experiment

This section presents the results of experiments conducted using the actual equipment.
In the experiments, a comparison was made with the PD control, which is commonly
employed in vibration control. The parameters used for the experiments are shown in
Table 3, and the results of the control applied to the actual equipment are depicted in
Figure 12. The results confirm that the proposed method effectively suppresses vibrations
with comparable voltage levels to the commonly used PD control.

Table 3. Experimental parameters.

Parameter Definition Value

T Sampling time 1.0 × 10−3 s
η1 Learning rate 5.0 × 10−15

η2 Learning rate 5.0 × 10−15

ω1 Parameter for ϕ1 61.54 rad/s
ζ1 Parameter for ϕ1 0.1
d1 Parameter for ϕ1 0.1
ω2 Parameter for ϕ2 61.54 rad/s
ζ2 Parameter for ϕ2 0.08
d2 Parameter for ϕ2 0.08

Km1 Designed parameters for B1 0.285
Km2 Designed parameters for B2 0.23

KP1
Designed parameters for PD

system at Group 1 9.0

KP2
Designed parameters for PD

system at Group 2 7.0

KD1
Designed parameters for PD

system at Group 1 230

KD2
Designed parameters for PD

system at Group 2 150

Figure 12a depicts the vibrations occurring in Group 1, and Figure 12b shows the
vibrations in Group 2. In the actual experiments, the control input was applied three
seconds after the commencement of data acquisition. It can be observed that the vibrations
occurring in the plate significantly attenuate immediately after the application of the control
input. To evaluate control performance, the index of “vibration suppression efficiency”
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is defined as shown in Equation (48). In Equation (48), σA denotes the variance of the
vibrations prior to the initiation of control, while σB represents the variance of the vibrations
after the control has been applied

Csup = 1 − σB
σA

(48)

Figure 12c represents the control input for Group 1, and Figure 12d indicates the control
input for Group 2, revealing that the input voltage decreases as the vibrations in the control
target are suppressed. Table 4 summarizes the vibration suppression effects achieved by
utilizing the proposed control system.

Table 4. Experimental result.

Control Group σA σB Csup

Group 1 9.4332 × 10−9 1.5946 × 10−9 83.10%
Group 2 4.5921 × 10−8 6.2379 × 10−9 86.42%

(a)

(b)
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(c)

(d)

Figure 12. Experimental results: (a) displacement of Group 1, (b) displacement of Group 2, (c) input
voltage of Group 1, and (d) input voltage of Group 2.

Figure 13 illustrates a comparison of the vibration components occurring in the flat-
plate structure before and after the initiation of control. Figure 13a presents the results
for Group 1, while Figure 13b displays the results for Group 2. From the results, it can
be confirmed that the disturbance at 10 Hz imparted by the servo motor has been effec-
tively eliminated.

(a)
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(b)

Figure 13. Comparison of amplitude spectra before and after control: (a) Group 1, (b) Group 2.

5. Conclusions

In this paper, we developed a MIMO vibration control system tailored for managing
the vibrations of plate structures utilizing multiple piezoelectric actuators and demon-
strated its effectiveness through both simulations and experiments. Compared to the
commonly used PD control in vibration suppression, the proposed control system demon-
strated enhanced vibration attenuation performance by designing an interference cancella-
tion operator. Furthermore, by iteratively optimizing the parameters of the interference
suppression operator using the gradient descent method, we confirmed that the system
can appropriately eliminate interference and disturbances even in the presence of plant
uncertainties. In this paper, simulations and experimental validations were conducted to
assess the effectiveness of controlling vibrations occurring in the low-frequency region near
the first mode. Currently, higher-order modes are considered as uncertainties; however,
methods to actively control these modes will also be explored in future work.
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