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Abstract: The past 40 years have seen automotive Electronic Control Units (ECUs) move from being
purely mechanical controlled to being primarily digital controlled. While the safety of passengers
and efficiency of vehicles has seen significant improvements, rising ECU numbers have resulted in in-
creased vehicle weight, greater demands placed on power, more complex hardware and software, ad
hoc methods for updating software, and subsequent increases in costs for both vehicle manufacturers
and consumers. To address these issues, the research presented in this paper proposes that virtualisa-
tion technologies be applied within automotive electrical/electronic (E/E) architecture. The proposed
approach is evaluated by comprehensively studying the CPU and memory resource requirements to
support container-based ECU automotive functions. This comprehensive performance evaluation
reveals that lightweight container virtualisation has the potential to welcome a paradigm shift in E/E
architecture, promoting consolidation and enhancing the architecture by facilitating power, weight,
and cost savings. Container-based virtualisation will also enable efficient and robust online dynamic
software updates throughout a vehicle’s lifetime.

Keywords: automotive E/E architecture; automotive ECU; containers; embedded system; performance
and virtualisation

1. Introduction

The 21st-century automotive electrical and electronic (E/E) architecture is unable to
manage the increasing demands being placed on it [1]. This arose as we witnessed the
automotive technology move from a solely mechanically controlled device to a digitally
connected system in the last four decades. These digital systems primarily consist of
electronic control units (ECUs), which are small, often bespoke embedded systems that
monitor and control the basic operations of the vehicle, as well as provide safety, efficiency,
comfort, and infotainment functions and services [2]. The first single-function ECU was
introduced in the late 1970s [3], and today, most premier vehicles incorporate in excess of
100 ECUs.

Current increased ECU numbers are fueled by technological advancements, together
with increased demand for new consumer features and functions for occupant/vehicle
interaction, as well as increased safety and vehicle operational efficiency. Increasing
computerisation of the automobile requires complex computing hardware, application,
and operating software, as well as multiple in-vehicle networking solutions, enabling
communication between often disparate subsystems. Together with the number of ECUs
and interconnection hardware, an exponential increase has been seen in the number of
peripheral components, including sensors and actuators [4].

Non-standard ad hoc inclusion of new features packaged as niche ECUs, together with
the requirement of safety and reliability, has resulted in the evolution of a more distributed
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vehicular software architecture. Such a distributed architecture, though it has provided its
benefits during the early development phase, has now evolved into a complex and intricate
mesh of ECUs, incurring a number of disadvantages. These include the following:

• Increased cost: There is a marked increase in cost and overheads with each new addi-
tion of hardware and its associated software from development to maintenance [5].

• Increased complexity: The complexity of the modern automotive E/E architecture has
arisen from the ever-increasing interactions between various components parts. The
introduction of multiple in-vehicle networking solutions such as CANBus, LIN, and
Flexray has aided in overall system complexity, as more automotive functions require
data across multiple automotive domains of responsibility [5,6].

• Reduced scalability: embedded systems are not inherently scalable by design. They
are bespoke pieces of hardware that have been highly optimised on an architectural
level to ensure that only the necessary components are included [7].

To deal with the issues mentioned above, stemming from the growing complexity of
the E/E architecture that has developed over the years, and to encourage system consolida-
tion, multiple independent automotive functions must be combined with fewer hardware
devices. Therefore, a new approach to automotive E/E architecture is needed. This empiri-
cal research investigates how a particular lightweight virtualisation technique can be used
in the automotive industry to address many of the current hardware and software issues
that have been identified.

2. Virtualisation in the Automotive Domain

The automotive E/E architecture has developed very similarly to the traditional data
centre. Clients within a data centre access services and systems residing in dedicated
servers. Drawing parallel to the E/E architecture, sensors (such as those of the anti-lock
braking system (ABS)) and actuators (such as the ABS actuators that control the brake
pressure to prevent wheel locking) are the clients accessing services, data, and systems from
the ECUs, which are analogous to servers. Both systems have evolved through the need for
new business functions being met by a new dedicated server, thus leading to the increase
in hardware components that are underutilised [8,9]. Hence, conventional data centres
have suffered from issues such as decentralisation of the hardware, consequent increases
in the cost of their implementation and operation, and increased complexity and space
constraints. The data centre community has successfully addressed these issues through
the adoption of the virtualisation technology.

Virtualisation technology, dating back to the 1960s, abstracts physical resources like
servers, storage, and networks into virtual machines (VMs) for efficiency. Full-system
virtualisation can be Type 1 or Type 2, which is managed by a hypervisor or virtual machine
monitor. The automotive ECU design lacks essential technologies for hypervisor support.
Container virtualisation, a lightweight form of virtualisation, allows applications to run in
isolated containers on a shared operating system, making it more efficient than traditional
virtual machines. The container runtime, such as Docker Engine or containerd (as used in
this research), is responsible for managing container operations and resource allocation.

To address the disadvantages highlighted in Section 1 within the automotive sector,
there has been a move in recent years towards a more centralised automotive E/E architec-
ture. To facilitate centralisation, multiple automotive functions must be combined into a
lesser hardware platform, moving away from dedicated hardware for every function. Given
the parallels with the traditional data centres, virtualisation has been seen as a mechanism
for achieving a centralised and streamlined architecture [10] to consolidate hardware and
reduce costs, such as in areas having client/server architecture [11,12]. In addition to cost
reduction due to reduced hardware, virtualisation offers function isolation features, which
can increase system redundancy, security, and productivity [13]. Architectural centralisa-
tion and virtualisation combine a group of physically separate hardware resources such
as ECUs to facilitate the execution of multiple applications simultaneously on a single
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system. Such ECU consolidation gives the impression of several separate physical systems
or user environments.

Virtualisation allows dynamic load balancing and improved throughput and con-
tinuity, which is particularly necessary for system-critical applications. Another one of
the key advantages is temporal and spatial separation [14]. However, full-system vir-
tualisation and hypervisors can incur considerable system resource overheads [15]. To
overcome such limitations, lightweight virtualisation solutions, such as containers, are
being adopted [16–18].

Operating system virtualisation via containers offers a number of benefits to the
automotive E/E architecture. Containerised applications can start almost instantly. With
full-system virtualisation, a single hardware platform running multiple virtual machines
requires an operating system for each virtual machine to support installed applications. In
contrast, containers run within a single operating system environment, with each container
sharing parts of the OS kernel. A containerised application includes in a single package
all the required dependencies, libraries, binaries, and configuration files for that program
to run. Containers offer a much-reduced footprint of megabytes rather than gigabytes.
Similar to full-system virtualisation, each container’s available resource is in isolation from
other containers on the same host system. This resource isolation is achieved through
Linux kernel namespaces, enabling different processes to utilise global system resources as
though they were their own isolated set of resources.

An ECU utilising containers can operate in a “just-in-time” (JIT) mode, where it is
activated as and when needed and then shut down when it is no longer required, thus
freeing up the host’s resources. Containers enable high modularity; large monolithic
applications can be broken up into separate modules and run within their own individual
containers. This microservice approach can facilitate changes to different application parts
without rebuilding the entire application. Containers are ideally suited to over the air
(OtA) software updates, which makes it possible to update software automatically, which
is initiated by the vehicle owner without the need for domain experts [19–21].

Given the potential of a container-based virtualisation technique, this study proposes
and evaluates container-based electronic control unit virtualisation by comprehensively
studying the CPU and memory resource requirements needed to support container-based
ECU automotive functions. It uses the newly proposed system performance metrics—the
Utilisation, Saturation, and Duration (USD) methodology—to perform the evaluation.

3. Related Work

There have been some studies and articles relating specifically to ECU virtualisa-
tion. Refs. [10,22] discuss automotive E/E architecture scalability utilising virtualisation
and the AUTOSAR standard. Embedded hypervisors are being introduced into the automo-
tive arena to promote safety [22]. The authors in [23] looked at where virtualisation could
be used within the motor car, focusing on less-critical solutions such as the vehicle head
unit and passenger infotainment functionality. To promote system consolidation, ref. [24]
investigated the reduction in overall cost and weight by dedicating specific cores to various
virtualised automotive systems, including infotainment and telematic information. Con-
tainers have shown potential in non-automotive sectors that are both high performance [25]
and embedded [17,26] in nature, hence holding promise for the E/E architecture.

Building on the work done by Soltesz et al. [27] and Feltes et al. [28], containers
are a viable alternative to hypervisor technology that can provide increased scalability
and higher performance workloads. Kugele et al. [29] proposed a data-centric service-
oriented automotive E/E architecture to facilitate (among other higher-level goals) common
messages needed by several functions in several ECUs as services and to address the issue
around high bus load as a result of messages that have no receivers. With Kugele et al. [29],
their primary contribution is in the area of using a shared middleware layer to provide
a data-centric, publish–subscribe, service-oriented architecture. The architecture uses
docker-based containerisation to harness its layered architecture approach to allow for
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sharing and reusing layers among containers towards the higher-level goal of providing
service-oriented architecture. The proposed architecture by Kugele et al. [29] assumes
that lower layers do not change, while our proposed architecture is rooted in the fact that
updates will be required throughout the software–firmware layers, thus allowing much
needed adaptability.

Very little work or research has been published on container-based virtualisation in
automotive E/E architecture. Examining containers and what they offer could provide
major benefits to the modern motor car, which is not just limited to infotainment features
and functions but adds to the entire automotive E/E. Given the aforementioned possibili-
ties, an important direction for this research is to evaluate the efficiency of container-based
ECU virtualisation whilst executing an automotive function. Our evaluation was per-
formed on a bespoke hardware test bed, which modelled a number of different automotive
ECUs that provided the automotive function of a central locking/unlocking mechanism of
vehicle doors.

To fully test the container-based automotive architecture, it was decided that a mix of
real-time and non-real-time systems would be required to represent a distributed automo-
tive function. Several potential possibilities were researched, culminating in a vehicle door
central locking mechanism incorporating real- and non-real-time inputs being selected as
the test system to be simulated. A central locking mechanism is a simple vehicle-related
function that locks and unlocks either all doors or selected doors based on some form of
trigger mechanism.

4. Design of a Container-Based ECU

The automotive architecture has evolved historically in response to functional and
customer needs, without a holistic blueprint, leading to a complex and error-prone archi-
tecture. Academia and industry have responded in recent times with possible standardised
approaches to address these issues, and we present them within this section as appropriate
in the context of the proposed work.

Automotive ECUs are generally simple computing devices, where power consump-
tion, speed of operation, and efficiency are key aspects of their design. ECU hardware
architectures are finely tuned to the software function they have been designed for, as
observed in Figure 1. Their rigid design has little to no capacity for additional lines of code
or functionality in any future software update. The microprocessor is an important feature
of an ECU and is commonly an ARM (Advanced RISC Machine)-based microprocessor.
ARM-based ECUs integrate many additional peripherals within their architecture, keeping
the number of additional required components to complete a given function or task to a
minimum. This type of architecture is ideal for an automotive ECU.

Figure 1. Traditional ECU Architecture (left) and Proposed Container-based ECU Architecture (right).
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4.1. Automotive Central Locking Function

Figure 2 is an example of a classic door central locking/unlocking function. The
modelled central locking mechanism has the main output of locking the vehicle doors
through simulated relays. There are several triggering mechanisms to achieve this. These
come from a simulated remote key fob when the “vehicle” achieves a specific speed or if
the safety mechanism iss activated (simulated crash). The lock–unlock can be achieved
manually via the fob, automatic locking is achieved through a specific vehicle speed, and
automatic unlocking is achieved through triggering the safety mechanism. When recording
the resource use/load on the individual ECUs, the mechanism is triggered periodically
to look for spikes in use. Consequently, for this research, the modelled central locking
function incorporated real and non-real-time conditions, triggering the locking mechanism,
including the visual outputs when the system is activated. The central locking mechanism
was activated via the following triggers:

• Infrared Remote (Simulated remote key fob);
• Transmission—Selection of a specific gear;
• Vehicle Speed—When vehicle achieves a specific speed.

Figure 2. Diagrammatic Representation of a Central Car Door Locking System.

4.2. Testbed ECU and Sensor Hardware

To assess how suitable containers are within an automotive context, an experimental
test system was required to model an ECU/vehicle function utilising a generic ARM-based
hardware. For the experimental test system, the ARM Raspberry Pi 3B was chosen to model
an ECU, as seen in Figure 3. The Raspberry Pi (similar to an ECU) has many available
GPIO pins, which can interact directly with hardware and other ECUs connected externally.
Although the Raspberry Pi has limited potential within a commercial environment, it is
ideally placed as a platform for research purposes [30].

The initial simulated data are provided by the sensors on the Raspberry Pi. The
door-locking mechanism is controlled by the actuators, and the LEDs simulate the vehicle
lights. The above-described system requires the following peripheral hardware, including
the following:

• Central door-locking mechanism—implemented using a four-channel relay module,
where every relay corresponds to a particular door, and a door is locked when its
associated relay is closed.

• Remote door lock trigger—an infrared transmitter device operated remotely to alter
the manual door states. The transmitter signals an IR receiver, including one of three
possible door commands. This functionality is possible only when the gear is in a
neutral state.

• External lighting—the vehicle headlights are simulated using an LED, and the lighting
is adjusted according to the door state it receives.
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• Gear position—the selected gear is indicated on one of the two push-button sensors
through a series of depressions, indicating that the gear is going down or up.

• Vehicle acceleration—a potentiometer sets the acceleration of the simulated system
measured in r/min with data ranging between 0 and 1024.

• The collision sensor—the airbag activation safety mechanism or collision sensor is
simulated using a push-button sensor.

Certain peripheral devices are connected directly from the GPIO pins of an ECU, while
Arduino programmable circuit boards connect others. These boards collect, process, and
transmit raw sensor data to the pertinent ECU through an in-vehicle network.

System Number System System Number System
1 Gear ECU 4a Collision Sensor
1a Gear Select Sensor 4b Door Lock Relays
2 Engine ECU 4c IR Receiver Sensor
2a Accelarator Sensor 4d IR Sender/Fob
3 Light ECU 5 System Power Supply
3a Exterior light 6 In Vehicle Network Hub
4 Door ECU

Figure 3. ARM-Raspberry-Pi-3B-based Central Car Door Locking Testbed.

5. Implementation

To accurately evaluate containers’ performance for automotive E/E, the central door-
locking mechanism modelled must closely mimic an existing vehicle’s, thus involving ECU
functions and control systems from several fields or domains on separate ECU platforms
as seen below:

• The Transmission ECU is from within the transmission field;
• The Acceleration ECU is from within the engine field;
• The Door Control ECU is from within the body;
• The Light Control ECU is also from within the body domain.

Each ECU function identified was hosted on its personal Raspberry Pi platform and
connected by a network to replicate functionality across domains. Each Raspberry Pi
platform was responsible for collecting and processing specific data. Figure 3 shows the
testbed design for the ECU hardware and peripherals.

The adopted operating system was Raspbian Lite, which includes all the necessary
components to execute a virtual container environment, including the network software
stack and tools to monitor performance.
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6. Evaluation Methodology

The evaluation began by running the software within the ECU operating system to
establish a baseline. This setup, termed as being in a native state, allowed for comparison
when testing the software in a container. The CPU and memory resources needed for an
ECU functionality were ascertained during the designing and testing phase. The paradigm
shift proposed within this study to a container-based virtual ECU architecture will require
supplementary software and an additional abstraction layer in between the application
software and the hardware. To understand the overhead on system resources as a result
of ECUs operating within a container compared to the current ECU environment, an
evaluation was carried out, as explained below, detailing the metrics used for conducting
performance evaluation, the various test modes, and the tools used.

6.1. System Performance Metrics

The USE Methodology (Utilisation, Saturation, Errors) can be used to evaluate the
performance of hardware resources (such as CPU, memory, disk, and network) and ensure
that systems operate efficiently [31,32]. It also supports identifying performance bottlenecks.
In addition, the RED Method (Rate, Errors, Duration) is a methodology used primarily in
the context of monitoring and analysing the performance of microservices and distributed
systems [33,34]. A combination of USE and RED provides the required approach for
monitoring the resources needed to support the execution of native and container-based
ECUs. A new methodology was developed and implemented by integrating elements of
both methods, focusing on the Utilisation, Saturation, and Duration (USD) components
leading to the performance evaluation of the CPU and memory of the target system. The
evaluation metrics in this study include the following:

• Utilisation—defined as the percentage of time a particular resource is busy as opposed
to when the resource is free/available.

• Saturation—defined as the number of tasks waiting for a particular resource. It is
identified as the length of the queue.

• Duration—defined as the total time spent processing a request.

6.2. ECU Test Mode of Operation

A series of test comparisons were conducted on three system-operational modes to
ascertain what extra system resources a container-based ECU would need. These test
modes included the following:

• Base system-operational mode—A baseline benchmark for the system resources is
determined when the modelled ECU is idle in this test mode. These test results will
allow for comparison when the ECU operates in the subsequent test modes to help
determine the overheads of bringing in ECU-functional software.

• Native system-operational mode—The existing automotive E/E architectures and
ECU function are modelled in this mode. Compared to the base system test, it will
provide specific increases in system resource usage when each ECU functional software
is executed.

• Container system-operational mode—Any resource overhead incurred while running
the ECU functions in a container will be captured in this test mode. This overhead
measure is against native operation.

The test criterion was defined to ensure consistent conditions for all resource usage
tests in the operational modes defined above. Each metric was evaluated over several runs
of the system, collecting several instances of data across different time frames to increase
reliability and accuracy in understanding the system’s resource usage. The test times were
divided into three time frames (60 s, 600 s, and 1200 s), as indicated below:

• time_60—The 60-second tests analyse the resources needed during the initialisation of
the ECU software. In the test setup, it was ascertained that 60 s allowed adequate time
for the system to warm up before the execution of the scripts.
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• time_600—The 600-second sample run tests comprehensively examined the entire
life cycle of the functional software from initialization to termination. A 30-second
system idle warm-up period was included to eliminate resource spikes associated
with initial software execution. The timed tests involved a 500-second script execution
time, after which the script terminated, and a 30-second cool-down period ensued. A
critical focus of the investigation was the levels of CPU and memory resources once
the scripts were executed, which determined if the system returned to a state similar
to the pre-execution of the script. Understanding the amount of resources not given
back to the system after script execution is particularly important for ECU systems
that operate periodically to carry out distinct tasks.

• time_1200—This test runs for 1200 s. During this testing period, resource usage
patterns were examined to determine whether there was any notable increase in usage
during lengthy execution cycles. In order to present this data effectively, the published
results should represent the entirety of the 1200-second test, particularly in cases
where there was minimal to no observable activity.

6.3. Software Tools

To measure key CPU and memory metrics across all four ECUs, a variety of software
monitoring tools were necessary. The specific areas of research within each system and
the associated tools can be found in Figure 4. With the newly proposed USD methodology
during each ECU run, we observed these specific resources. We used the tools described
below to observe and report CPU and memory utilisation, saturation, and duration for
each ECU, both when the ECU was idle and when the function it housed was running in
the native/bare metal and container test modes.

Figure 4. Software Monitoring Tools Used to Measure Key CPU and Memory Metrics.
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6.3.1. Vmstat

Vmstat helps in ratifying the data gathered by other monitoring tools, and it is primar-
ily used to determine resource bottlenecks. The metrics monitored included the following:

• The total processes or tasks waiting for runtime (R state);
• The total processes or tasks waiting in an uninterruptible sleep (D state);
• The total available system memory;
• The information on swap memory;
• CPU statistics, which include %us, %sy, and %id.

6.3.2. Free (Free and Used Memory)

This tool comprehensively displays statistics on memory, encompassing total available
memory, swap usage, and physical memory. Additionally, it presents other key metrics,
such as the allocation of memory in use (buffers column) and the status of memory that
has been allocated but swapped to disk or not allocated based on resource requirements
(cache column).

6.3.3. Schedstat (Scheduler Statistics)

The schedstat command provides OS kernel scheduler statistics for individual pro-
cesses. These values represent the average CPU time of a process or time spent waiting
for the CPU at the time of schedstat command execution. schedstat encompasses three
statistics that characterise scheduling latency:

• The amount of time processes spend running on the CPU.
• The amount of time processes spend waiting to be scheduled.
• The number of times processes are switched on and off the CPU.

ECU functions typically have real-time requirements, as they operate as safety-critical
systems. Understanding the scheduling latency of ECUs operating within containers
instead of the bare metal or native mode is essential for this research.

6.3.4. Sar (System Activity Reporter)

This research extensively relies on the sar tool to monitor the use of ECU resources,
including processor and memory utilisation and saturation. The tool can be configured
with specific flags to monitor and record various metrics, such as paging information
(sar—B); CPU load, run queue, and process list lengths (sar—q); memory usage values
(sar—R); the percentage of used system memory (sar—r); and paging rates (sar—W).

6.3.5. Perf (Performance Analysis)

This system-wide profile tool provides statistical information to analyse the perfor-
mance of an application during execution. perf provides data on schedulers such as perf
sched latency and perf sched timehist, which measure the latency of processes and events.
This includes the sched-in count, total run time, and average run time per sched-in count.

6.3.6. Pidstat (Process Statistics)

This tool reports statistics, including the time spent, executing kernel tasks, and
associated child processes.

6.3.7. Top/Htop/Nmon

These tools give real-time data on system metrics, such as CPU usage, memory
usage, disk I/O, and network activity, allowing users to analyse system behaviour and
troubleshoot performance issues. They monitor the process and thread execution of the
ECU and identify any supplementary processes initiated during native and container
modes. These tools were used to verify the precision of the results obtained from other
tools discussed above.
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7. Experimental Results

This section presents the in-depth experimental results of how containers utilise system
resources, especially processor and memory resources, which are essential in real-time
systems where timing is linked to safety.

7.1. System Saturation

CPU saturation is a crucial metric for evaluating system performance. It depicts
the additional work that the CPU cannot process immediately and must queue, thereby
increasing latency [32]. The CPU is deemed saturated if the average system load exceeds
the number of CPU cores and sustains a saturation level for a prolonged period, where the
CPU load is the total number of processes executing or in the queue waiting for the CPU at
any given time. An over-saturated system experiences overheads, including longer waiting
times for idle or waiting processes, increased request response time, and a consequent rise
in CPU utilisation.

The running program is CPU-bound when the number of processor-executable in-
structions exceeds the other types of instructions. Thus, an algorithm that has numerous
calculations and uses the entire schedule-allocated time is an example of a CPU-bound
process. The CPU saturation tests carried out during this study utilise the standard built-in
OS scheduler (SCHED_OTHER), which is a traditional time-shared process.

7.1.1. System Load

The system load is determined by averaging the number of running processes (i.e.,
in the R state) and the number of processes in uninterruptible sleep (i.e., in the D state).
ldavg-1 represents the total of R and D state processes over a 60-second period. Meanwhile,
ldavg-5 and ldavg-15 measure longer time frames of 300 and 900 s, respectively, and are
not simply averages of the ldavg-1 results repeated over time. The following provides a
clear understanding of the relationship between each load average:

• The system is in an idle state if the average is 0.00.
• The system load is considered to be increasing if the ldavg-5 or ldavg-15- average is

greater than the ldavg-1.
• The overall system load is decreasing if the ldavg-5 or ldavg-15- average is lesser than

the ldavg-1.

It is important to remember that if the average load in any ldavg exceeds the number
of CPU cores, it can impact system performance. A high value on the ldavg-1 metric
may indicate brief spikes in the use of resources caused by the program itself or increased
paging to the disk, providing a snapshot of what system activities took place recently. If
the ldavg-15 metric consistently surpasses the CPU core count, it most often indicates a
sustained increase in processes in the R and D states, potentially indicating a persistent
issue affecting overall system performance.

In Figure 5, the system load average results are displayed. Throughout the base test
run, all CPU load averages experienced prolonged periods of minimum load, with ldavg-1
reaching its peak at 0.17 (17%). While ldavg-5 registered at 0.11 (11%) and ldavg-15 at 0.05
(5%), both outputs were lower than anticipated. The average load for all the base test runs
was 0.02 (2%). Additionally, the ldavg-5 and 15 exhibited a declining trend over the course
of the test run, indicating that the CPU was primarily in an idle state.

The results shown in Table 1 provide details about the CPU load averages obtained
from native and container environments. The total load for all the ECU functions, which
combines the CPU ldavg-1, ldavg-5, and ldavg-15 load averages, was observed to be
+9.50%, +4.33%, and +3.98%, respectively.
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Figure 5. System Load Average Results. ldavg-1 (1st graph) represents the total of R (the total of
processes in the running state) and D (the number of processes in uninterruptible sleep) state processes
over a 60-second period, ldavg-5 represents the total of R and D state processes over a 300-second
period, and ldavg-15 represents the total of R and D state processes over a 900-second period.
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Table 1. CPU load averages of ECU functions in native and container environments.

All ECU Ldavg 1, 5, 15
(Automotive Function Load)

System Load Test Mode Increase in CPU LoadNative Container

ldavg-1 747.22 818.22 +9.50%

ldavg-5 482.04 502.83 +4.33%

ldavg-15 225.80 234.79 +3.98%

7.1.2. Scheduler Statistics

The scheduler is responsible for determining which processes will currently run and
which will be placed in the waiting queue (runqueue). Upon creation, each process is issued
a time slice, i.e., the amount of processor time it is allocated. The two metrics monitored
are the time spent executing on the CPU and the time spent waiting on the run queue.

While operating in the container mode, more time was spent executing the ECU
software than in the native/bare metal mode. The amount of time the software spent in the
runqueus was longer in the bare metal mode than in the container mode. In the container
mode, the software reserves a specific amount of CPU time for execution. To replicate this
effect during the native mode, the priority of the native process must be increased, thus
facilitating more CPU time. However, this can negatively affect other processes executing
on the same system.

Tables 2 and 3 display the CPU utilisation and task wait times for CPU allocation,
respectively . The total CPU saturation increased when all ECUs ran within containers. Yet,
it did not lead to a significant rise in new tasks, processes, or waiting times of processes,
nor did it impose an excessive overhead on the CPU. Notably, the average CPU load over
all ECUs was 9.44% higher when operating in the container mode compared to the native
execution. These findings illustrate that operating in the container mode did not lead to
CPU saturation in any ECU.

Table 2. CPU Utilisation Time According to Each Task in Native and Container Mode.

Test Mode Test on CPU
Door Engine Gear Light

Native 0.124 s 0.146 s 0.269 s 0.124 s

Container 0.134 s 0.196 s 0.255 s 0.121 s

Table 3. Waiting Time on runqueue by Each Task in Native and Container mode.

Test Mode Waiting Time on Runqueue
Door Engine Gear Light

Native 0.052 ms 0.062 ms 0.115 ms 0.041 ms

Container 0.018 ms 0.032 ms 0.047 ms 0.011 ms

7.2. System Resource Utilisation

CPU saturation indicates the amount of work pending to be processed, while CPU
utilization measures the workload demand relative to the capacity. Elevated CPU utilisation
may suggest subpar application performance, as processes may need to wait for other
processes in the queue to finish execution. The key CPU metrics observed during these
experiments were the following:

• %user—refers to the percentage of CPU time used for executing user-level application
processes and kernel activities such as handling interrupts and managing resources.

• %system—the percentage of time the CPU was used to execute system-level processes.
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• %idle— the percentage of time the CPU was not used, with no pending requests for
disk I/O.

• %nice—the percentage of CPU utilisation refers to the time spent executing higher-
level user processes. A positive value of %nice indicates more higher-level processes
that use the CPU more.

• %iowait—the percentage of time the CPU was idle, albeit with pending disk I/O re-
quests.

The workload is deemed to be CPU-bound if the total of %user, %system ,and %nice
is 100%. A long-term, constant high CPU utilisation can have detrimental effects, including
the following:

• A rise in hardware temperatures, reducing the CPU’s operational lifetime or leading
to its untimely failure.

• An increase in power consumption (power is an essential factor to be considered and
kept optimal in automotive systems).

• A resulting increase in CPU usage.

7.2.1. Overall CPU Utilisation

The monitored metrics of %user, %system, and % idle were collected from the iostat,
mpstat, vmstat, and sar monitoring tools. These tools provided outputs akin to each other
and were used to ensure data consistency and correctness over all the modelled ECU’s
CPU cores.

The tests showed minimal overall CPU utilisation, as depicted in Figure 6 and Table 4,
similar to the CPU saturation baseline. Due to space restrictions, only one example of
CPU utilisation is shown here, with Figure 6 demonstrating %user values of the Engine
ECU in the native and container modes. Table 4 demonstrates the %utilisation values of
all the ECUs in the native and container modes, including the overhead as a difference.
Exhaustive results can be found in [16]. When the script was executed inside the container,
there was an average increase of +4.01% in %user utilisation. The %system utilisation
within the container indicated the supplementary processes and tasks required to support
it, including the container shim, docker, and contained processes. This resulted in system
function increasing by an average of 7.75%. Altogether, the extra %user and %system
utilisation needed to support the central locking system was 4.86% higher than the native
mode of operation.

Figure 6. Engine ECU %user Native and Container Tests across all CPUs.
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Table 4. All ECU %utilisation Values Across Native and Container Modes.

ECU Average CPU Utilisation
Native Container Difference

Engine 35.91% 37.37% +4.07%

Gear 41.66% 47.61% +14.28%

Door 38.62% 38.85% +0.60%

Light 25.23% 25.35% +0.48%

All ECU Function Utilisation +19.43%

7.2.2. Instructions per Cycle

The IPC metric measures the number of instructions executed in each CPU clock cycle,
with the stated IPC value for the ECU used in this study (ARM Cortex-A53 processor)
being 2.0. The stated IPC value served as a benchmark for providing an overall perspective
on CPU utilisation throughout the three test modes. The results are presented in Figure 7
and Table 5.

Table 5. Instructions Executed per CPU Cycle in Each Test Mode, Followed by The %difference
Values Between Native and Container Modes.

60 s Sample Instructions per Cycle (IPC)
Base Native Container %Diff (Native and Container)

Door ECU 0.61 0.57 0.55 −3.57

Engine ECU 0.62 0.45 0.45 0.00

Gear ECU 0.57 0.43 0.43 0.00

Light ECU 0.59 0.58 0.58 0.00

Figure 7. Instructions Executed per CPU Cycle.

As the CPU load increased, it impacted the overall IPC value. In the baseline test
mode, the recorded IPC value ranged between 0.57 and 0.62 for all four ECUs modelled
in this study. The IPC values obtained during the native test mode did not differ much
from those obtained during the container test modes. The Door ECU exhibited a small
decrease in its IPC value of −3.50% when operating within the container. This test results
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emphasise that, regardless of the ECU operational mode, there is no significant difference
in the number of instructions executed per second by the ECU processor.

7.2.3. Memory-Unique Set Size

Tools that monitor memory usage typically emphasise the Resident Set Size (RSS),
representing the amount of physical memory that a process occupies. However, the RSS
often overestimates the memory used by processes and provides limited information about
the pages of memory shared among processes. In contrast, Proportional Set Size (PSS) indi-
cates the main memory that a process is assigned, consisting of memory exclusively used
by the process and that was shared with other processes. Understanding the proportional
and exclusive memory use by comparing memory usage in bare metal and container test
modes is crucial. The Unique Set Size (USS) represents the quantity of exclusive memory
allocated by the kernel to a particular process.

The USS (Figure 8 and Table 6) shows the quantity of memory allocated to processes.
The USS test results indicate that the memory required by the functional software script
when running within a container environment is much higher than previously considered.
On average, the functional script requires 70.93% more system memory compared to the
native operation over the four ECUs. Additionally, taking into consideration the extra
memory needed for container-specific processes, the average memory usage was seen to be
13.07%. Hence, even though all types of virtualisation will require more memory to house
the virtual instances, this increased memory requirement is reasonable.

Figure 8. Memory-Unique Set Size—Quantity of Memory Allocated to Processes when Running in
the Different Test Modes.

Table 6. Memory-Unique Set Size—Quantity of Memory Allocated to Processes when Running in
the Different Test Modes, Followed by the Overhead of Running in Container Mode over the Native
Test Mode.

ECU Total System Available Free Memory (kb)
Base Native Container Diff (Native and Container) % Diff

Door 546,076 541,464 467,400 74,064 +13.56

Gear 514,048 510,588 466,884 43,704 +8.50

Engine 504,480 501,556 411,616 89,940 +17.83

Light 550,488 547,932 479,688 68,244 +12.40
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7.3. Evaluation of Container Specific Resource Consumption

Several subprocesses were initiated and run in the background to incorporate the ECU
into the container environment. Each container functions as a client in silo, being supported
by the container daemon server. A container is built from an image of multiple layers of
software that support process configuration and the container-encased function.

When the container is executed, the docker process executes first, using CPU resources
to start up the container. The runc process is a lightweight container runtime process that
contains code interacting with dedicated OS features related to the execution of container
virtualisation. The runc process initialises the container and, upon completion, hands over
control to the container shim. The container shim is responsible for managing the respective
container. Its Python script is automatically executed after the runc process and container
shim have completed the handover.

The shim and runc processes utilise minimal CPU resources. This has been indicated
in the section above on CPU utilisation. The CPU utilisation overhead to support the
container-based virtualisation was minimal overall.

Once the container is initialised and under container shim management, the observed
memory usage of container-specific processes remains relatively static. The containerd pro-
cess is a persistent process from the time the system is initiated to its shutdown. Functioning
as an executor of containers, the containerd process manages the life cycle of containers.
Figures 9 and 10 illustrate the specific CPU and memory usage rates by the individual
container processes.

Figure 9. Engine ECU Container CPU Use According to Process Type.

The daemon and shim container processes were launched to manage and sustain
the memory that the container shell required, starting from container initialisation. The
daemon process monitors API requests and oversees container configuration tasks such
as imaging, networking, and volumes, resulting in notably higher memory usage overall.
Upon completion of initialisation by the shim process, the Python script executes and
allocates memory appropriately.

The results depicted in this section show the individual ECU computation load,
comparing performance when a specific automotive function ran within a container or
directly on the hardware. The increase in load when the function was “containerised” was
minimal, supporting the hypothesis of a container virtualization-based EE architecture that
can address increasing complexity and aid in continual software updates throughout the
vehicle’s lifespan.
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Figure 10. Engine ECU Container Memory Use According to Process Type.

8. Conclusions and Future Work

In the past, vehicle manufacturers have typically addressed the growing demand for
new consumer features and functions by increasing the number of ECUs. However, this
research suggests a departure from this approach and highlights several parallels between
the data centre and automotive E/E architecture. It argues that virtualisation technologies,
which have proven beneficial in data centres, can be successfully implemented in the
automotive context. Specifically, container virtualisation can most importantly facilitate
ECU unification, leading to cost reductions and improved vehicle efficiency.

8.1. Key Findings

During the initial start up of the ECU functional software, small spikes were observed
in the CPU load. Still, the increase in the CPU load during container execution was just
6.73% over all triplets and ECUs. The CPU utilisation tests in the native and container
modes showed only slight differences. The tests indicate that the average increase in
required memory across all ECUs is 13.07%, which is equal to an overall average of 275 kb
of memory, or about 68 kb per container. Hence, it has been shown that executing ECU
software within a container has no significant negative impact on CPU load and memory.
The results also indicate that container-based ECUs are well suited for ECU consolidation,
whether processes are memory-bound, CPU-bound, or a combination of the two.

8.2. In Summary

The results of this study are significant for the automotive industry, as well as any
industry using embedded systems. To begin with, the study shows that multiple ECU
functions can be integrated into single containers on the same hardware platform, merging
embedded software and hardware. This reduces physical hardware and overall weight,
directly benefiting vehicle fuel economy and operational range and saving costs. For
instance, savings are possible through reduced hardware development costs. This can have
major benefits, as the costs needed to develop tailored ECU hardware have increased by
75% since 2000, with an indication that the cost will double by 2030. Savings can also be
achieved through a decrease in ECU hardware components. Additionally, these savings
can be passed on to consumers by cutting manufacturers’ costs.
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8.3. Going Forward

The research conducted utilised standard OS and container software. However, a
more optimised and efficient container-based ECU could be achieved using optimised OS
and container platforms, specifically by leveraging kernel scheduling algorithms. Future
work will explore this aspect in greater detail. The security of container-based virtualisation
systems may be lower than that of fully virtualised systems; hence, thorough investigation
and development are essential. Container isolation is integrated into the OS kernel instead
of being included as separate virtual machines. Another avenue for future research will
involve studying the transfer rates of data and the advantages of container-based ECU
consolidation. This has the potential to reduce the need for in-car networking, subsequently
leading to reductions in associated hardware, weight, and complexity.
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