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Abstract: Rust is a relatively new programming language that aims to provide memory safety at
compile time. It introduces a novel ownership system that enforces the automatic deallocation of
unused resources without using a garbage collector. In light of Rust’s promise of safety, a natural
question arises about the possible benefits of exploiting ownership to ensure the memory safety of C
programs. In our previous work, we developed a formal ownership checker to verify whether a C
program satisfies exclusive ownership constraints. In this paper, we further propose an ownership-
based safe memory deallocation approach, named SafeMD, to fix memory leaks in the C programs
that satisfy exclusive ownership defined in the prior formal ownership checker. Benefiting from the
C programs satisfying exclusive ownership, SafeMD obviates alias and inter-procedural analysis.
Also, the patches generated by SafeMD make the input C programs still satisfy exclusive ownership.
Usually, a C program that satisfies the exclusive ownership constraints is safer than its normal version.
Our evaluation shows that SafeMD is effective in fixing memory leaks of C programs that satisfy
exclusive ownership.

Keywords: C; memory leaks; memory deallocation; Rust; ownership

1. Introduction

C is widely used for implementing system and embedded software, which are usually
safety-critical systems [1,2]. However, their manual memory management can easily pro-
duce memory leaks (MLs) in C programs. Memory leaks mainly occur when a programmer
allocates an object but forgets to deallocate it. Memory leaks may have a large negative
impact on software systems if not carefully examined and fixed. In fact, memory leaks
are direct sources of security vulnerabilities. Some memory leak vulnerabilities have been
disclosed in Linux kernels (e.g., CVE-2022-27819 [3], CVE-2017-10810 [4]).

Recently, an emerging programming language designed for highly safe systems, i.e.,
Rust [5], has received an increasing amount of attention. Compared with C/C++, Rust
introduces an ownership system (OwS) to provide memory safety at compile time, which
can avoid many memory errors, such as dangling pointers, data races and memory leaks.
The basic idea of OwS is exclusive ownership, i.e., at any time, each resource has a unique
owner. When the unique owner of a resource goes out of its scope, the resource can be
automatically dropped without using the garbage collector. Because of the unique owner,
this automatic drop scheme is safe, i.e., it does not incur new errors like use-after-free (UAF)
and double-free (DF).

In light of Rust’s promise of safety, the emergence of OwS in Rust provides a new
insight to guarantee the memory safety of C programs. Therefore, in our previous work [6],
as shown in Figure 1, we developed a formal ownership checker, named SafeOSL, to verify
whether a C program satisfies the exclusive ownership constraint. If a C program passes
the checking of SafeOSL, it means that this C program satisfies exclusive ownership. For
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such a special C program, in this paper, we further propose an ownership-based memory
deallocation, named SafeMD, to fix memory leaks. The output of SafeMD is a C program
that is free of memory leaks, and, most importantly, the C program, after the repair of
SafeMD, still satisfies exclusive ownership. Usually, a C program that satisfies the exclusive
ownership is safer than its normal version.

Figure 1. The ownership-based framework of ensuring memory safety of C programs.

Many static techniques on memory-leak fixing have been proposed in the program
repair community [7–11]. If the input C programs satisfy exclusive ownership, these
techniques suffer from some drawbacks when fixing memory leaks. Firstly, some techniques
can fix memory leaks but may introduce new errors, like UAF and DF. Secondly, some
techniques can safely fix memory leaks but are complex as they often rely on alias and
inter-procedural analysis. Thirdly, some techniques can safely fix memory leaks, but the
patches that they generate cannot guarantee that the C programs satisfy the exclusive
ownership. Usually, a C program that satisfies the exclusive ownership is safer than its
normal version.

In this paper, we propose an ownership-based memory deallocation, named SafeMD, to
fix memory leaks of C programs that satisfy exclusive ownership. SafeMD can generate a set
of free statements to safely deallocate all allocated memory objects without introducing UAF
and DF. SafeMD includes two steps: (1) using a static analysis that collects patch candidates for
each allocated object. The main idea of collecting patch candidates is to track ownership of the
object and free the object where the owner last used it. Benefiting from the input C programs
satisfying exclusive ownership, this step obviates alias and inter-procedural analysis. Also, the
patch candidates collected satisfy exclusive ownership. (2) Finding correct patches by solving
an exact cover problem. Because ownership designates which function is responsible for
deallocating memory objects, SafeMD simplifies inter-procedural analysis to intra-procedural
analysis, and each analysis performs the above two steps.

The experimental results demonstrate that SafeMD is able to fix the memory leaks in
C programs. We evaluated SafeMD with two different benchmark sets: Juliet Test Suite
(JTS) for C [12] and 26 open-source C repositories [10]. We compared SafeMD with MemFix.
When the input C programs satisfy exclusive ownership, SafeMD can fix more memory-leak
patterns than MemFix.

We summarize the contributions of this paper as follows.

• We present SafeMD, an ownership-based safe memory deallocation technique for C
programs that satisfy exclusive ownership. Compared with the existing techniques,
SafeMD obviates alias and inter-procedural analysis, and the patches generated satisfy
exclusive ownership.

• We implement SafeMD and compare it with MemFix.
• We explore the benefit of Rust’s novel ownership-based memory management in C.

2. Related Work
2.1. Approaches for Memory-Leak Fixing

Some prominent techniques have been proposed to statically fix memory leaks. Leak-
fix [7] performs pointer analysis on the whole C program to identify and safely fix memory
leaks. Each procedure is classified into three types: those that allocate, deallocate or use a
given memory allocation. It first abstracts the program into an abstract control flow graph
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(CFG) where each node is a procedure classified into above three types. With this graph, the
task of finding correct patches is equivalent to finding edges in the graph that meet a set of
conditions. AutoFix [8] combines static analysis with runtime checking to prevent memory
leaks. In its static analysis, Andersen′s pointer analysis is used to build the value-flow
graph (VFG) for the program. Based on the VFG, AutoFix performs a graph reachability
analysis to identify leaky paths and then conducts a liveness analysis to locate the program
points for inserting patches on identified leaky paths. FootPatch [9] can fix memory leaks
by applying local reasoning based on separation logic. But, it may introduce new errors as
it checks the patch correctness against the given error report only. Memfix [10] can safely
repair ML, DF and UAF in a unified fashion. The key insight behind MemFix is that finding
a correct patch for memory leaks corresponds to solving an exact cover problem. Before
analysis, Memfix performs standard pointer [13] and alias analyses [14]. SAVER [11] can
safely fix memory errors such as ML, UAF and DF. It performs pointer analysis to construct
object flow graphs (OFGs) that capture the program’s heap-related behavior. Based on the
OFG, fixing memory errors can be formulated as a graph-labeling problem over the OFG.

For the C programs that satisfy exclusive ownership, most of the work mentioned
above still performs alias and inter-procedural analysis to fix memory leaks, making the re-
pair complex and inefficient. However, the exclusive ownership satisfied by input programs
can ease memory-leak fixing since exclusive ownership entirely rules out aliases. Also, the
patches generated by the existing work may violate exclusive ownership. Therefore, this
paper proposes an approach that exploits the particularity of ownership to fix memory
leaks for C programs that satisfy exclusive ownership.

Several dynamic-based techniques have been proposed [15–17]. DEF_LEAK [15]
performs dynamic symbolic execution to expose memory leaks occurring in all execution
paths. In their approach, the program to be analyzed is instrumented before execution.
During the program execution, information about each allocated memory is updated when
corresponding statements are executed. Based on this information, DEF_LEAK records
the changes in variables pointing to each memory, detects memory leaks and fixes leaked
memory. LeakPoint [16] is a dynamic analysis framework that performs taint propagation
on pointers to detect memory leaks. It can identify last-use sites of the leaked objects
and suggest the patches for fixing them. AddressWatcher [17] is a dynamic tool for fixing
memory leaks. It allows the semantics of a memory object to be tracked on multiple
execution paths. It accomplishes this by using a leak database that allows one to store and
compare different execution paths of a leak over several test cases.

2.2. Ownership for Memory Safety

Ownership has been used in OO programming to enable controlled aliasing [18,19]
and prevent data races [20,21]. Most of these works construct an ownership-type system
for Java and require programmers to provide various annotations. A small number of the
works have applied ownership to detect memory errors of C programs. Heine et al. [22]
present an ownership-type system to detect ML and DF. Their ownerships range over
integer values {0, 1}. In their model, every object is pointed to by one and only one owning
pointer (i.e., ownership value equals 1), which holds the exclusive right and obligation
to either delete the object or to transfer the right to another owning pointer. However,
the rules of their ownership model are not very strict; for example, it adds an optional
ownership transfer in assignment and thus allows for arbitrary aliases. Swamy et al. [23]
develop a language Cyclone that introduces a simple concept similar to ownership to detect
dangling pointers. Unlike C, their language requires programmers to provide various
annotations (such as whether a pointer is aliased or not). Suenaga et al. [24] propose a
fractional-ownership-type system to detect ML, DF and UAF in C. Their model augments
a pointer type with a fractional ownership, which is a rational number x ∈ [0, 1]. In their
ownership model, a non-zero ownership expresses a permission to dereference the pointer,
and an ownership of 1 expresses a permission to update and deallocate the memory cell
referenced by the pointer. Therefore, if one has a non-zero ownership less than 1, one
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has to eventually combine it with other ownerships to obtain an ownership of 1 in order
to deallocate the pointer. Sonobe et al. [25] extend the fractional-ownership-type system
in [24] to fix memory leaks. Their technique conducts type inference for the extended-type
system to detect where to insert deallocation statements.

In recent years, ownership in Rust has received much attention. A majority of existing
work toward Rust mainly focuses on formal verification (including ownership) of Rust
programs [26–28] and empirical research on the effectiveness of Rust ownership in fighting
against memory bugs [29,30]. Recently, some work on (semi-)automatically translating
C code to Rust has been proposed [31–33]. Compared to the ownership proposed in the
earlier literature (before Rust was released), the potential advantages of Rust ownership
are: (1) it has more strict rules; (2) its implementation is simpler and more efficient than
fractional-based ownership; (3) it has been proven to be effective in preventing memory
errors [30,34]. Therefore, in our previous work [6], we exploit Rust ownership to check for
memory errors of C programs, and, in this paper, we further exploit Rust ownership to fix
memory leaks for C programs that satisfy exclusive ownership.

3. Ownership System in Rust

Rust guarantees memory safety at compile time by introducing an ownership system
and consequently avoids many memory errors, such as dangling pointers and memory
leaks. Ownership in Rust denotes a set of rules that govern how the Rust compiler manages
memory. The idea of OwS is exclusive ownership, which means that each resource has a
unique variable as its owner at any time. Ownership can be transferred among owners.
When the owner of a resource goes out of its scope, the resource can be automatically
dropped without using the garbage collector. Below, we introduce ownership transferring.

Ownership and Assignments. In Rust, ownership can be transferred in assignments.
Consider the code in Listing 1, where line 2 creates a String object o on the heap, and let s1 be
the owner of o. At line 4, the assignment transfers the ownership of o from s1 to s2. To maintain
the unique owner, the assignment performs move semantics, which makes s1 become the old
owner and no longer valid until it is re-assigned a value again. Therefore, the Rust compiler will
issue an error at line 5. This is different with pointer assignments in C, where both s1 and s2 are
valid and can be used. Because s2 is the unique owner of o, when the owner s2 goes out of its
scope, the Rust compiler automatically inserts a drop destructor to free o at line 6, which can
avoid memory leaks. Therefore, the code at line 7 is rejected as o has already been destroyed.
Now, we take a closer look at line 8. When s1 goes out of its scope and tries to free o, the Rust
compiler does not insert drop since it finds that the ownership of s1 has been moved. This
means that an object cannot be freed by any of its old owners (like s1), which can ensure that
memory deallocation does not introduce DF.

Listing 1. Transferring ownership in assignments.

1 fn main ( ) {
2 l e t s1 = S t r i n g : : from ( ′′ h e l l o ′′ ) ;
3 {
4 l e t s2 = s1 ; // ownership is moved to s2.
5 p r i n t l n ! ( ′′ { } ′′ , s1 ) ; // s1 is no longer valid.
6 } // s2 goes out of scope and ‘drop’ is called.
7 p r i n t l n ! ( ′′ { } ′′ , s2 ) ; //memory is freed via s2.
8 } // s1 was moved, so nothing happens.

Ownership and Functions. Ownership can also be transferred in function calls. When
ownership of an object is moved to a callee via parameters, this object is no longer available
in the caller. For example, in Listing 2, the function call at line 3 moves the ownership of the
object o created at line 2 to takes_ownership, so the Rust compiler will issue an error at line
4, where s becomes the old owner and cannot be accessed in the main function. The Rust
compiler performs intra-procedural analysis to insert a drop destructor, which compiles
each function individually. It relies on ownership to determine whether the current function
has a responsibility to free objects. For example, the Rust compiler first compiles the main
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function. It finds that s is moved to takes_ownership; therefore, the main function has no
responsibility to free the object o. The Rust compiler does not insert drop at line 5. Next,
the Rust compiler compiles the takes_ownership function. Because ss is a String type that
can move ownership, the Rust compiler will automatically insert drop once ss goes out of
its scope at line 9.

Listing 2. Transferring ownership via parameters.

1 fn main ( ) {
2 l e t s = S t r i n g : : from ( ′′ h e l l o ′′ ) ;
3 takes_ownership ( s ) ; // s is moved
4 p r i n t l n ! ( ′′ { } ′′ , s ) ; // s is invalid
5 } // s was moved, so nothing happens.
6
7 fn takes_ownership ( ss : S t r i n g ) {
8 p r i n t l n ! ( ′′ { } ′′ , s s ) ;
9 } // ss goes out of scope and ‘drop’ is called.

Besides parameter passing, return values can also transfer ownership. For example,
in Listing 3, gives_back moves ownership out from gives_back via return value ss to its
caller main, which means that gives_back has no responsibility to free the object. Exclusive
ownership can ensure that automatic memory deallocation is safe. When the Rust compiler
compiles the main function, the object o is dropped automatically once s1 goes out of scope
at line 6 but nothing happens for s because s is moved. This avoids DF when s and s1 go
out of their scope (line 6) and both try to free the object o. When compiling the gives_back
function, it fails to insert drop to free the object pointed to by ss since ss is moved out from
gives_back. This can avoid UAF if ss is freed while s1 is used in the main function.

In conclusion, the main ideas of OwS are summarized as follows.
R1: Each resource has a unique owner at any time.
R2: When the owner of a resource goes out of its scope, it deallocates the resource that it owned.

Any old owners of the resource cannot deallocate the resource (this can avoid DF and UAF).
In our previous work, SafeOSL ensures that a C program satisfies R1. For such a special

C program, SafeMD proposed by this paper borrows the idea of R2 to fix its memory leaks.

Listing 3. Transferring ownership via return values.

1 fn main ( ) {
2 l e t s = S t r i n g : : from ( ′′ h e l l o ′′ ) ;
3 l e t s1 = gives_back ( s ) ;
4 p r i n t l n ! ( ′′ { } ′′ , s ) ; // s is invalid
5 p r i n t l n ! ( ′′ { } ′′ , s1 ) ;
6 } // s1 can free, s can not free as it is moved.
7
8 fn gives_back ( ss : S t r i n g ) −> S t r i n g {
9 ss // return ss

10 } // ss can not free as it is moved.

4. Approach Overview

We illustrate the algorithm of SafeMD using a simple example in Listing 4. This code
satisfies the exclusive ownership. For example, t = foo(p) at line 24 moves ownership of o2
into foo1 and, after here, p is no longer used. Before analysis, we remove all free statements
from programs. SafeMD will generate the patches that can safely deallocate all allocated objects
without introducing UAF and DF, as shown in Listing 5. In addition, the C programs fixed by
SafeMD still satisfy the exclusive ownership.

SafeMD includes two steps: (1) collect patch candidates for each object by tracking
ownership. The main idea of collecting patch candidates is to track ownership of the
object and free the object where the owner last used it. (2) Find a correct patch from patch
candidates by solving an exact cover problem over the allocated objects. SafeMD analyzes
each function individually and each analysis contains the above two steps. Figures 2 and 3
show the analysis of the main and foo1 function, respectively. We only explain the analysis
for the main function below.
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Listing 4. code with memory-leaks.

1 i n t * foo1 ( i n t *m) {
2 i n t * q ;
3 i f ( . . . ) {
4 q = malloc ( 1 ) ; / / o1
5
6 }
7 e l s e {
8 q = m; / / m i s no l o n g e r used
9 }

10 . . . = * q ;
11 re turn q ;
12 }
13
14 void foo2 ( i n t * k ) {
15 p r i n t f ( ′′ %d ′′ , * k ) ;
16
17 re turn ;
18 }
19
20 i n t main ( ) {
21 i n t *p , * t , * z ;
22 p = malloc ( 1 ) ; / / o2
23 i f ( . . . ) {
24 t = foo1 ( p ) ; / / p i s no l o n g e r used
25 . . . = * t ;
26
27 }
28 e l s e {
29 z = malloc ( 1 ) ; / / o3
30 f r e e ( p ) ; / / i s removed b e f r o e a n a l y s i s
31 foo2 ( z ) ; / / z i s no l o n g e r used
32 }
33 re turn 0 ;
34 }

Listing 5. SafeMD-generated patches.

1 i n t * foo1 ( i n t *m) {
2 i n t * q ;
3 i f ( . . . ) {
4 q = malloc ( 1 ) ; / / o1
5 f r e e (m) ; / / +
6 }
7 e l s e {
8 q = m;
9 }

10 . . . = * q ;
11 re turn q ;
12 }
13
14 void foo2 ( i n t * k ) {
15 p r i n t f ( ′′ %d ′′ , * k ) ;
16 f r e e ( k ) ; / / +
17 re turn ;
18 }
19
20 i n t main ( ) {
21 i n t *p , * t , * z ;
22 p = malloc ( 1 ) ; / / o2
23 i f ( . . . ) {
24 t = foo1 ( p ) ;
25 . . . = * t ;
26 f r e e ( t ) ; / / +
27 }
28 e l s e {
29 z = malloc ( 1 ) ; / / o3
30 f r e e ( p ) ; / / +
31 foo2 ( z ) ;
32 }
33 re turn 0 ;
34 }
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Step 1: Collecting Patch Candidates by Ownership Tracking. This analysis step is
based on a control flow graph (CGF). The CFG of the main function and analysis results at
each node is presented in Figure 2. This analysis maintains owner and patch information
for each allocated object as a state of the following form:

< o, newOwner, oldOwners, patch, patchNot >

where o is a heap object represented by its allocation site, newOwner is a pointer who is the
unique owner of o, oldOwners is a set of pointers that are the old owners of o, patch is a set
of patches that can safely deallocate the object and patchNot is a set of unsafe patches that
may introduce UAF and DF. Both patch and patchNot are denoted by a pair (n, e), which
means that an object can be deallocated by inserting a deallocation statement free(e) right
after line n, where n is a program point and e is a pointer expression.

For the main function, the analysis of SafeMD starts with the function signature. At line
20, because the main function has no parameters, the initial state is marked as empty. The
allocation statement at line 22 creates a new tuple {⟨o1, p, ∅, {(22, p)}, ∅⟩}: the allocation
site is o1, its owner is p and the safe patch is (22, p), which indicates that we can safely free
o1 via owner p after line 22. Now, oldOwners and patchNot are empty.

We first consider the false branch at line 29. The analysis updates the states as follows:{
⟨o1, p, ∅, {(22, p), (29, p)}, ∅⟩
⟨o2, z, ∅, {(29, z)}, ∅⟩

}
(1)

A new tuple for the new object o2 allocated at line 29 is created. For the state of o1, a
new safe patch (29, p) is added into patch.

At line 31, the function call updates the states as follows:{
τ1 = ⟨o1, p, ∅, {(22, p), (29, p), (31, p)}, ∅⟩
τ2 = ⟨o2,⊥, {z}, ∅, {(29, z)}, {(31, z)}⟩

}
(2)

Because the object o2 is used as an argument z in foo2(z), to avoid UAF, in state τ2,
we remove the safe patch (29, z) from the patch and add it into patchNot. The call foo2(z)
moves ownership of o2 into foo2 via parameter passing; for this, we carry out three changes:
(1) we mark newOwner with ⊥ to indicate that the ownership of o2 is moved. Thus, z
becomes the old owner. (2) We reset patch to ∅ to denote that the main function has no
responsibility to free o2 since it has lost ownership of o2. (3) Because the old owner cannot
free o2, a new unsafe patch (31, z), where z is now an old owner of o2, is generated.

Next, we consider the true branch at line 24, where the function call updates the state
{⟨o1, p, ∅, {(22, p)}, ∅⟩} as follows:{

⟨o1,⊥, {p}, ∅, {(22, p), (24, p)}⟩
⟨o3, t, ∅, {(24, t)}, ∅⟩

}
(3)

The ownership of object o1 is moved into foo1, so the update for the state of o1 is the same
as the state of o2 in (2). Note that foo1 returns a pointer that points to a valid object, so we
create a new state: the allocation site is o3, its owner is the receiver t and the safe patch is (24, t).

At line 25, the states are updated as follows:{
τ3 = ⟨o1,⊥, {p}, ∅, {(22, p), (24, p), (25, p)}⟩
τ4 = ⟨o3, t, ∅, {(25, t)}, {(24, t)}⟩

}
(4)

In τ4, because o3 is used by ∗t at line 25, we remove the safe patch (24, t) from the state
and declare it as unsafe to avoid UAF. Now, the only safe patch for o3 is (25, t). In τ3, a new
unsafe patch (25, p) is generated. This is because p is an old owner of o1 and thus cannot
free o1 after line 25.

At the join point line 33, our analysis maintains each state separately for each different
branch. With the states in (2) and (4) as input, the analysis produces the following states as
output:
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τ′

1 = ⟨o1, p, ∅, {(22, p), (29, p), (31, p)}, ∅⟩
τ′

2 = ⟨o2,⊥, {z}, ∅, {(29, z)}, {(31, z)}⟩
τ′

3 = ⟨o1,⊥, {p}, ∅, {(22, p), (24, p), (25, p)}⟩
τ′

4 = ⟨o3, t, ∅, {(25, t)}, {(24, t)}⟩

 (5)

The return statement returns a value of 0 instead of moving any object’s ownership,
so the states τ′

1 ∼ τ′
4 are the same as τ1 ∼ τ4. The analysis finishes with the states in (5).

Figure 2. SafeMD for main function.

Figure 3. SafeMD for foo1 function.

Step 2: Finding Correct Patches by Solving Exact Cover Problem. After we collect
patch candidates in step 1, step 2 is to find correct patches that safely deallocate all objects
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(i.e., no memory leaks) while not introducing UAF and DF. Finding a correct patch can be
reduced to solve an exact cover problem.

First, due to ownership, we collect the valid states whose new_owner is not ⊥. The
valid states denote that the current procedure has responsibility to free the objects. From
the owner information of states in (5), we obtain the valid states ValidStates = {τ′

1, τ′
4}.

Then, from the patch information of states in (5), we collect the safe patches from patch
and unsafe patches from patchNot from all states:

Sa f e = {(22, p), (29, p), (31, p), (25, t)}
UnSa f e = {(29, z), (31, z), (22, p), (24, p), (25, p), (24, t)}.

Thus, candidate patches are those in Sa f e but not in UnSa f e:

CandPatchR = Sa f e \ UnSa f e = {(29, p), (31, p), (25, t)}

The patches in CandPatchR cannot incur UAF because the patches that may cause
UAF are collected in UnSa f e. However, using all patches in CandPatchR may cause DF.
For example, using both (29, p) and (31, p) will incur double-free for o1 in the false branch.
So, we have to find a subset of the candidate patches that does not introduce DF while
deallocating all memory objects. This can be solved by an exact cover problem over valid
states, which is represented by the following incidence matrix:

τ′
1 τ′

4

(29, p) 1 0
(31, p) 1 0
(25, t) 0 1

Each row r in matrix represents a patch in CandPatchR and each column τ represents
a valid state in ValidStates. The entry in row r and column τ is 1 if patch r is included in
patch of state τ and 0 otherwise. For example, τ′

1 contains (29, p) in patch, so the entry in
row (29, p) and column τ′

1 is 1. Solving an exact cover problem represented by the above
incidence matrix is achieved by the selection of rows such that each column contains only
a single 1 among selected rows. In this example, the correct patches are computed as
{(29, p), (25, t)} ∨ {(31, p), (25, t)}. Both the patches {(29, p), (25, t)} and {(31, p), (25, t)}
cover all states (i.e., no memory leaks) and each state is covered by at most one patch (i.e.,
no DF). In addition, these two patches satisfy exclusive ownership constraints. Considering
that the objects are deallocated as early as possible, we choose {(29, p), (25, t)} to free the
objects in the main function, as shown in Listing 5.

SafeMD will generate the correct patch (4, m) for foo1. The four patches generated by
SafeMD for the code in Listing 4 can safely fix the memory leaks across functions. MemFix
fails to safely fix this code: it will generate free(t) and free(p) at line 26 in the main
function, which may introduce DF. Other fixing techniques can safely fix this code, but the
patches generated by them may violate exclusive ownership.

5. Approach Details

This section presents the algorithm of SafeMD, which modifies the algorithm of
MemFix to serve only C programs that satisfy exclusive ownership constraints. Section 5.1
defines a core language. The two steps of SafeMD are presented in Sections 5.2 and 5.3,
respectively.

5.1. Language

For simplicity, we formalize SafeMD on top of a simple pointer language. Let P be an
input program for SafeMD. A program P is represented by a CFG (C,↪→, ce, cx), where C
denotes the set of program points, (↪→) ⊆ C × C is the set of flow edges, c1 ↪→ c2 indicates
that there is a possible flow of execution from c1 to c2 and ce and cx are the unique entry
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and exit nodes of P. A program point c ∈ C is associated with a command, denoted cmd(c),
as defined by the following grammar:

cmd → alloc(p) | assign(p, e) | return(p) | funDef( f name, par_list, par_t_list, ret_t)

| call( f name, arg_list, arg_t_list, receiver)

p → x | ∗ x | null

e, par_list, arg_list, receiver → p | none

par_t_list, ret_t, arg_t_list → type

type → void | int | ... | struct | ... | type ∗ | type[ ]

A pointer expression p can be a variable x, a pointer dereference ∗x or a NULL pointer.
Allocation command alloc(p) creates a new memory object pointed to by p. Assignment
command assign(p, e) assigns the expression e to p. The command funDef( f name, par_list,
par_t_list, ret_t) describes a function signature, where f name, par_list, par_t_list and ret_t
denote the function name, parameter list, parameter type list and return type, respectively.
The command call( f name, arg_list, arg_t_list, receiver) describes the call on function f name,
where arg_list, arg_t_list and receiver represent the argument list, argument type list and a
variable who receives the return value, respectively. “none” means empty; for example, if
arg_list, arg_t_list and receiver equal none, it represents a function call with no arguments
and return values. The deallocation statements free(p) are ignored because we remove
them from the program P before analysis. In addition, the program P must also satisfy
exclusive ownership.

5.2. Step 1: Collecting Patch Candidates by Ownership Tracking

The first step of SafeMD is to statically analyze the procedure to collect patch candi-
dates. The idea of this step is to track ownership of the object and free the object where the
owner last used it.

5.2.1. Abstract Domain

The abstract domain of the analysis is defined as follows:
A ∈ D = C → P(State)
s ∈ State = AllocSite × NewOwner × OldOwner × Patch × PatchNot
o ∈ AllocSite ⊆ C

newOwner ∈ NewOwner = AP
oldOwners ∈ OldOwner = P(AP)

patch ∈ Patch = P(C× AP)
patchNot ∈ PatchNot = P(C× AP)

p ∈ AP = {x, ∗x, null | x ∈ Var} ∪ {⊥}
Var is the finite set of program variables in P. AllocSite ⊆ C is the finite set of

allocation sites in P, i.e., the nodes whose associated commands are alloc(p). A domain
element A ∈ D is a finite map that maps each program point to a set of reachable states.
A state s = ⟨o, newOwner, oldOwners, patch, patchNot⟩ describes an abstract object with
owner and patch information, where o ∈ AllocSite is the allocation site of the object,
newOwner ∈ AP is an access path that points to the object via a unique owner, oldOwners ⊆
AP is a set of access paths that points to the object via old owners, patch ⊆ C× AP is a set
of patches that can safely deallocate the object and patchNot ⊆ C× AP is a set of unsafe
patches. AP denotes the set of access paths that can be generated for the given program P.
For the language in Section 5.1, AP equals the set of pointer expression p, i.e., AP can be
a variable x, a pointer dereference ∗x, a NULL pointer or an invalid access path ⊥. Each
element in patch and patchNot is a pair (c, p) ∈ C× AP that consists of a program point
c and an access path p. A patch (c, p) represents a free(p) statement that can be inserted
right after the program point c.

5.2.2. Abstract Semantics

SafeMD collects patch candidates for each function individually. For each function,
the analysis starts from the program point c where the function is defined, i.e., the node
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whose command is funDef( f name, par_list, par_t_list, ret_t), and computes an initial set
S0 that consists of initial states. S0 is defined as follows:

S0 =

{ ⋃
par∈par_list

γc(par) if par_list ̸= ∅

∅ otherwise.

γc(par) =
{

⟨c, par, ∅, {(c, par)}, ∅⟩ if isPointer(par) = true
∅ otherwise.

If the function f name has no parameter, S0 is empty; otherwise, it is computed by
γc : Var → State which generates an initial state for a parameter par of f name. The initial
states for all parameters form S0. For the computation of γc, if a parameter par points
to a heap object (i.e., the function isPointer(x) equals true), a new state is created since
the ownership of objects can be transferred by parameter passing: the allocation site of
the object is the program point c, the owner of the object is par and the safe patch is
(c, par). For example, in Figure 3, S0 for foo1 definition at line 1 only contains a state, i.e.,
< o1, m, ∅, {(1, m)}, ∅ >.

Start with S0: SafeMD updates the states at each node based on the command associ-
ated with that node until reaching the exit node. In other words, the analysis computes a
least fixed point lfpF ∈ D of the semantics function F ∈ D → D:

F(X) = λc. fc
( ⊔

c′ ↪→c

X(c′)
)

where X ∈ D and fc : P(State) → P(State) is the transfer function at a program point c:

fc(S) =


S′ ∪ {snew} if cmd(c) = alloc(p)
S′ if cmd(c) = assign(p, e)
S′ if cmd(c) = return(p)
S′ ∪ {snew} if cmd(c) = call(_, _, _, p) ∧ isPointer(p) = true
S′ if cmd(c) = call(_, _, _, none).

where snew = ⟨c, p, ∅, {(c, p)}, ∅⟩. fc updates the states in S according to different com-
mands. For alloc(p), fc not only updates the existing states in S to S′ but also creates a new
state snew. Similarly, for the command call(_, _, _, p), where p is a pointer, a new state for
the object pointed by p is created.

The set S′ is updated by two transfer functions ϕc and φc: S′ =
⋃

s∈S
(φc ◦ ϕc)(s). For a

state s, we first update owner information by ϕc : State → State and then patch information
by φc : State → State. Next, we define ϕc and φc for different commands.

Given a state s at the program point c,

s = ⟨o, newOwner, oldOwners, patch, patchNot⟩

(1) When cmd(c) = alloc(p), ϕc makes newOwner and oldOwners unchanged:

ϕc(s) = ⟨o, newOwner′, oldOwners′, patch, patchNot⟩
newOwner′ = newOwner, oldOwners′ = oldOwners.

Then, φc updates patch and patchNot as follows:

φc(s) = ⟨o, newOwner, oldOwners, patch′, patchNot′⟩
patchNot′ = patchNot ∪ GO, patch′ = (patch ∪ GN) \ patchNot′.

where GN = {(c, q) | q = newOwner}, GO = {(c, q) | q ∈ oldOwners}. GN contains a safe
patch that is newly generated at c via a unique owner. GO is the set of unsafe patches that
are newly generated at c via old owners, because an object cannot be deallocated via old
owners. Also, we exclude patchNot′ from patch′ to ensure that patch′ and patchNot′ are
disjoint.
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(2) When cmd(c) = assign(p, e), ϕc updates newOwner and oldOwners as follows:

ϕc(s) = ⟨o, newOwner′, oldOwners′, patch, patchNot⟩

newOwner′ =
{

p if e = newOwner
newOwner otherwise.

oldOwners′ =
{

oldOwners ∪ {e} \ newOwner′ if e = newOwner
oldOwners otherwise.

An assignment p = e can transfer the ownership of object o from e to p, making p
and e become the new owner and old owner, respectively. We also exclude newOwner′

from oldOwners′ to ensure that newOwner′ and oldOwners′ are disjoint.
Then, φc updates patch and patchNot as follows:

φc(s) = ⟨o, newOwner, oldOwners, patch′, patchNot′⟩

patchNot′ =
{

patchNot ∪ patch ∪ GO if o is used at c
patchNot ∪ GO otherwise.

patch′ =
{

GN \ patchNot′ if o is used at c
(patch ∪ GN) \ patchNot′ otherwise.

The condition “o is used at c” contains two cases. In the first case p = e, where o is
used by expression e and transfers the ownership of o from e to p, the only safe patch is (c, p)
generated by GN. For patchNot′, it adds a set of new unsafe patches related to old owners
that contains patch and GO. The pointer assignment q = m at line 7 in Figure 3 is such an
example.

Consider the second case p = e, where o is used by expression e but does not transfer
the ownership of o: to prevent UAF, the safe patches are removed from patch and added to
patchNot, and the only safe patch is generated by GN. Also, GO is included in patchNot′.
For example, the assignment ... = *q in Figure 3 uses the object pointed to by q via
dereference expression ∗q, but it does not transfer the ownership of the object.

For the otherwise case, where o is not used at c, we only merge new safe patches
generated by GN with patch and unsafe patches generated by GO with patchNot.

(3) When cmd(c) = return(p), ϕc updates newOwner and oldOwners as follows:

ϕc(s) = ⟨o, newOwner′, oldOwners′, patch, patchNot⟩

oldOwners′ =
{

(oldOwners ∪ {p}) \ newOwner′ if p = newOwner
oldOwners otherwise.

newOwner′ =
{

⊥ if p = newOwner
newOwner otherwise.

The ownership of objects can be transferred by return values. If return value p equals
the owner of object o in state s (i.e., p = newOwner), then the ownership of o is moved out
from the callee and p becomes the old owner. We use the symbol ⊥ to indicate that the
ownership of o is moved.

Then, φc updates patch and patchNot as follows:

φc(s) = ⟨o, newOwner, oldOwners, patch′, patchNot′⟩

patchNot′ =
{

patchNot ∪ patch if newOwner =⊥
patchNot otherwise.

patch′ =
{

∅ if newOwner =⊥
patch otherwise.

If newOwner of object o is updated to ⊥ by ϕc, the safe patches in patch become unsafe
because o is returned to the caller. We reset patch to ∅ to indicate that the callee cannot free
o since it has lost ownership of o. The responsibility for deallocating o falls on the caller.
Consider the foo1 in Figure 3: SafeMD will merge the states computed from the if-else
branch as follows:
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 τ1 = ⟨o1, m, ∅, {(1, m), (4, m), (10, m)}, ∅⟩
τ2 = ⟨o2, q, ∅, {(10, q)}, {(4, q)}⟩
τ3 = ⟨o1, q, {m}, {(10, q)}, {(1, m), (8, m), (8, q), (10, m)}⟩


For the objects in state τ2 and τ3, because their ownership is moved out from foo1

by return statement “return q”, their newOwner equals ⊥ and q becomes the old owner.
Also, their patch is reset to ∅. For state τ1, it remains unchanged. The update result is
shown below.  τ1 = ⟨o1, m, ∅, {(1, m), (4, m), (10, m)}, ∅⟩

τ′
2 = ⟨o2,⊥, {q}, ∅, {(4, q), (10, q)}⟩

τ′
3 = ⟨o1,⊥, {m, q}, ∅, {(8, q), (1, m), (8, m), (10, m), (10, q)}⟩


(4) When cmd(c) = call( f name,arg_list,arg_t_list, receiver), ϕc updates newOwner and

oldOwners as follows:

ϕc(s) = ⟨o, newOwner′, oldOwners′, patch, patchNot⟩

oldOwners′ =
{

(oldOwners ∪ {newOwner}) \ newOwner′ if newOwner ∈ arg_list
oldOwners otherwise.

newOwner′ =
{

⊥ if newOwner ∈ arg_list
newOwner otherwise.

The ownership of objects can be transferred to the callee by parameter passing.
If newOwner of o is passed to f name as an argument, i.e., newOwner ∈ arg_list, then
newOwner becomes the old owner. We mark newOwner with ⊥ to indicate that the owner-
ship of o is moved.

Then, φc updates patch and patchNot as follows:

φc(s) = ⟨o, newOwner, oldOwners, patch′, patchNot′⟩

patchNot′ =


patchNot ∪ patch ∪ GO if newOwner =⊥
patchNot ∪ patch ∪ GO if newOwner ̸=⊥ but o is used in arg_list
patchNot ∪ GO otherwise.

patch′ =


∅ if newOwner =⊥
GN \ patchNot′ if newOwner ̸=⊥ but o is used in arg_list
{patch ∪ GN} \ patchNot′ otherwise.

We discuss three cases. The first case is newOwner =⊥, which indicates that the
ownership of object is moved. For the patchNot′, it adds a set of new unsafe patches related
to old owners that contains patch and GO. We reset the patch to ∅ to denote that the caller
is not responsible for deallocating the object since the ownership of the object is moved to
the callee.

The second case is “newOwner ̸=⊥ but o is used at c”, which indicates that the own-
ership of object o is not transferred but o is used (e.g., by pointer dereference) in arguments.
Because o is used, the safe patches in patch are added to patchNot to avoid UAF, and the
only safe patch is generated by GN. For example, function call foo(*p), where p is a
pointer that points to a valid object, belongs to this case.

For the otherwise case, where the ownership of object o is not transferred and o is also
not used, we merge new safe patches generated by GN with patch and unsafe patches
generated by GO with patchNot.

5.3. Step 2: Finding Correct Patches by Solving Exact Cover Problem

Once the owner and patch information for each object are collected in step 1, the
second step of SafeMD is to find the correct patches that can safely deallocate all allocated
objects (no ML) while not introducing UAF and DF. MemFix found correct patches by
solving an exact cover problem. We use this method but modify it because ownership is
considered.
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Let R = (lfpF)(cx) ⊆ State be the set of reachable states computed by step 1 at the exit
node of the program. We first give the definition of candidate correct patches and valid
states from R.

Definition 1 (Candidate Correct Patches). The set of candidate correct patches collects the
possible safe patches for each object, which are defined as follows:

Sa f e =
⋃
{patch | ⟨_, _, _, patch, _⟩ ∈ R}.

UnSa f e =
⋃
{patchNot | ⟨_, _, _, _, patchNot⟩ ∈ R}.

CandPatchR = Sa f e \ UnSa f e.

Sa f e collects the patches that can safely deallocate an object, and UnSa f e collects
the unsafe patches that can cause UAF and DF (caused by pointer aliasing). We exclude
UnSa f e from Sa f e to obtain the set CandPatchR, which is used to find correct patches.

The patches in CandPatchR cannot cause UAF since these unsafe patches are all
collected in UnSa f e and thus already excluded from CandPatchR. In addition, the patches
in CandPatchR also satisfy exclusive ownership constraints; that is, old owners cannot be
used to deallocate objects. After all, the C programs satisfying exclusive ownership are
more safe than normal C programs. However, the patches in CandPatchR may cause DF.
Thanks to ownership, plenty of unsafe patches caused by pointer aliasing are excluded
from CandPatchR, since SafeMD collects the unsafe patches related to old owners (aliases)
in UnSa f e. This can noticeably reduce the search space for finding the correct patches as
we avoid verifying patch combinations containing pointer aliasing. However, CandPatchR
cannot exclude DF caused by freeing the memory multiple times using the same pointer.
For example, if an object can be safely deallocated at line 4 and line 5, then (3, p) and (4, p)
may be in CandPatchR, and using both of them will incur DF. Therefore, this step aims to
find the correct patches that do not cause such a kind of DF.

Definition 2 (Valid States). The valid states indicate that the ownership of objects has not been
moved and thus the objects should be deallocated in the current function, which is defined as follows:

ValidStates =
⋃
{⟨_, newOwner, _, _, _⟩ ∈ R | newOwner ̸=⊥}.

Next, we present the definition of the problem for finding the correct patches, which
can be reduced into solving an exact cover problem over valid states.

Definition 3 (The Problem of Finding Correct Patches). Let M : CandPatchR →P(ValidStates)
be the function from candidate correct patches to the valid states that can be safely deallocated by the
corresponding patches:

M(r) = {< _, _, _, patch, _ >∈ ValidStates | r ∈ patch}.

From M, find a subset Correct ⊆ CandPatchR such that

• ValidStates =
⋃

r∈Correct M(r), which means that Correct covers all valid states;
• M(r1)

⋂
M(r2) = ∅ for all r1,r2 ∈ Correct, which means that the chosen subsets in M(r)

(where r ∈ Correct) are pairwise disjoint.

M describes the incidence matrix in Figures 2 and 3. The first condition means that
all allocated objects must be deallocated, which guarantees the absence of memory leaks.
The second condition means that every allocated object is deallocated no more than once,
which guarantees the absence of DF. Recall that UAF is avoided in CandPatchR.

6. Evaluation

We evaluated SafeMD with two different benchmark sets and compared it with Mem-
Fix, a static-based approach for fixing memory leaks in C/C++ programs. Our experiments
were performed on a PC with Intel Core i7-7700 CPU (3.60 GHZ) and 8 GB RAM running
64-bit Ubuntu 18.04.3 LTS.
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6.1. Implementation

We implemented SafeMD as a stand-alone tool [35]. The framework of SafeMD
is shown in Figure 4. We first make use of the open-source code analysis platform for
C/C++ based on code property graphs, Joern [36], to extract CFGs for all functions in
our benchmarks. Then, all CFGs (dot files) are loaded into NetworkX for graph traversal
to collect patch candidates (Section 5.2) and calculate correct patches (Section 5.3). Our
implementation supports the C standard memory allocators malloc and calloc except for
realloc, since realloc may be fixed safely by adding conditional statements, which is
beyond the scope of the current algorithm of SafeMD.

Figure 4. The framework of SafeMD.

In step 1, recall that, in the generation of initial states S0 mentioned in Section 5.2.2, a
new state is created if the parameter points to a heap object. Although SafeMD analyzes
each function individually, to improve the accuracy of S0, SafeMD starts from the main
function and proceeds according to the call graph, and sets a flag to guide the generation
of S0 for each callee function. In step 2, the exact cover problem is NP-complete. Our
implementation uses existing DFS-based search algorithm to solve the exact cover problem.
This algorithm takes optimization strategies to improve the search speed for the exact cover
problem. Also, our algorithm of finding correct patches will not find all solutions; instead,
it will return the first solution that it finds.

6.2. Benchmark

We use two benchmarks to evaluate SafeMD. In Table 1, the first benchmark is rel-
evant to memory leak (CWE-401) in Juliet Test Suite (JTS) for C, and “int_malloc” and
“twoIntsStruct_malloc” mean a memory object pointed to by an integer pointer and struct
pointer leaks, respectively. The second benchmark has 26 model programs with memory
leaks. These programs are selected from 50 test programs that are provided by [10], who
constructed them from five GitHub open-source C repositories.

Table 1. Evaluation results on CWE-401 and open-source C repositories.

Benchmark Program #Loc #Function SafeMD/MemFix/#Pgm. #Time (s)

CWE-401 int_malloc 82 10 36/36/38 <1.0
twoIntsStruct_malloc 92 9 36/36/38 <1.0

Total 72/72/76

Open-Source C Repo.

Binutils 127 6 4/4/5 <1.0
Git 150 5 2/3/5 <1.0

OpenSSH 150 4 5/2/6 <1.0
OpenSSL 134 3 3/1/4 <1.0

Tmux 154 6 4/3/6 <1.0

Total 18/13/26

To evaluate SafeMD, the programs in these benchmarks are first modified to satisfy
exclusive ownership constraints. For the C programs that are difficult to modify, they have
been removed from the benchmarks, leaving a total of 102 programs (76 in CWE-401 and 26
in open-source C repositories). Note that the modifications in benchmarks do not guarantee
semantics preservation since, in this experiment, we aim to provide the test programs that
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satisfy exclusive ownership constraints, and how to rewrite C programs to satisfy exclusive
ownership is beyond the scope of this paper.

In our modifications for C programs in these benchmarks, we only focus on pointers
returned by dynamic memory allocation functions and modify these pointers to make their
use satisfy ownership constraints. For a better understanding of the experimental results,
we briefly list the main code features of C programs that satisfy exclusive ownership below.

• Assignments. For the pointer assignments, such as q = p;, if variable p points to a heap
object, then p cannot be used after this assignment until it is re-assigned. Particularly, for
the assignment of compound data type (e.g., struct), such as q = p.f;, the struct itself p
cannot be used after assignment, but other members of struct p are still available.

• Function calls. For the calls that call user-defined functions, such as foo(p), if variable
p points to a heap object, then, in the caller, p cannot be used after the call site. For the
library functions (except for standard allocation and deallocation functions), such as
memcpy(p,...), because we cannot modify the code of library functions, we assume
that the ownership of p does not move into library functions, and thus p is still
available in the caller.

6.3. Results

Table 1 shows the results on JTS and open-source C repositories. #Loc represents the
average number of lines of code (after modification). SafeMD analyzes each function individu-
ally, so we count the number of user-defined functions in all test programs and use #Function
to list the average number of functions that the programs have. SafeMD/MemFix/#Pgm
represents the number of test cases that can be fixed by SafeMD and MemFix. #Time reports
the maximum execution time performed by SafeMD or MemFix. For test cases in CWE-401,
because these programs have relatively simple structures and data types, they can easily
be modified to satisfy exclusive ownership while preserving semantics. Both SafeMD and
MemFix can fix a total of 72 programs (out of 76 programs) with an accuracy of 95%. Four
test programs including function pointers are not supported by SafeMD and MemFix. The
maximum execution time for fixing these test cases is smaller than 1.0 s.

For open-source C repositories, SafeMD and MemFix can fix a total of 18 programs
(out of 26 programs) with an accuracy of 69% and 13 programs (out of 26 programs) with
an accuracy of 50%, respectively. We manually look at these programs to investigate the
shortcomings of SafeMD. We consider the following four scenarios (S1–S4):

S1. Memory leak fixed by both SafeMD and Memfix. For these test cases (e.g., Binutils),
we find that the allocated and leaked object is largely limited in scope within a procedure
and has limited leaked paths. The code snippet from binutils in Listing 6 shows the leak
pattern that can be fixed by both SafeMD and Memfix.

Listing 6. Memory leak pattern fixed by both SafeMD and Memfix.

1 char *p = malloc ( 1 0 ) ; //o1
2 i f ( argv == NULL) {
3 goto FAIL ; //error path
4 }
5 e l s e {
6 *p = ’ a ’ ; //Non-error path
7 f r e e ( p ) ; //both SafeMD and Memfix can generate this patches
8 re turn 0 ;
9 FALL :

10 f r e e ( p ) ; //both SafeMD and Memfix can generate this patches
11 e x i t ( 1 ) ;
12 }

In the above code snippet that satisfies exclusive ownership, the allocated and leaked
object o1 is limited in the current procedure. An error path refers to a program path where
an abrupt return happens under abnormal situations. The object o1 allocated at line 1 is
leaked on both the error path (when goto FAIL is executed on line 3) and the non-error path,
and both SafeMD and Memfix can safely fix such memory leaks by generating patches for
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the error path and non-error path. However, the patches generated by Memfix may violate
exclusive ownership.

S2. Memory leak fixed by SafeMD only. For these test cases, we find that the leaked
object is transferred to another procedure. The code snippet in Listing 7 shows the leak
pattern that can be fixed only by SafeMD.

Listing 7. Memory leak pattern fixed by SafeMD only.

1 i n t * f ( i n t *m, i n t f l a g ) {
2 i n t * q ;
3 i f ( f l a g == 1) {
4 q = malloc ( 1 ) ; / / o1
5 / / SafeMD: free(m);
6 }
7 e l s e {
8 q = m;
9 }

10 re turn q ;
11 }
12
13 i n t g ( ) {
14 i n t *p , * q ;
15 i n t f l a g = 0 ;
16 p = malloc ( 1 ) ; / / o2
17 q = f ( p , f l a g ) ; / / p i s no l o n g e r used a f t e r h e r e
18 / / MemFix/SafeMD: free(q);
19 / / MemFix: (double-free) free(p);
20 }

In the above code snippet that satisfies exclusive ownership, MemFix will perform
interprocedural analysis and insert free(q) and free(p) at line 18 and 19 to free memory
objects, but it may introduce DF for object o2 (at line 19) when the else branch is true in
the f function. In this case, to safely fix memory leaks, the correct patch if(flag == 1)
free(q); is required at line 18. But, MemFix fails to fix because it is unable to generate
patches with conditional statements. However, SafeMD can safely fix these memory leaks
without combining conditional expressions, since it tracks the owner of the leaked object
and frees the leaked object from its owner. Specifically, SafeMD analyzes function f and g
individually, and generates free(m) and free(q) at line 5 and 18, respectively. The function
call at line 17 transfers the ownership of o2 from p to m; therefore, SafeMD concludes that f
is responsible for freeing the object o2 if the ownership of o2 is not returned by f; that is,
SafeMD will generate free(m) in the true branch of f since this execution path does not
return the ownership of o2 to g. Because this code satisfies exclusive ownership, where p is
no longer used after line 17, the patch free(m) is safe. On the contrary, in f, the execution
path where the false branch is taken returns the ownership of o2 to g; therefore, SafeMD
concludes that g is responsible for freeing the object o2 and thus generates free(q) at line
18. Compared with SafeMD, MemFix tries to free o2 in the g function, but it fails since it
cannot generate conditional patches.

S3. Memory leak fixed by Memfix only. These are cases that cannot be fixed by SafeMD
primarily due to the ownership limitations of SafeMD, which means that the strictness of
ownership enforced in C makes it unsafe for SafeMD to free objects in some situations.

One situation that can be fixed by Memfix but not by SafeMD is when ownership
constraints are enforced on operations related to arrays and linked lists. Consider the
Listing 8’s code pattern found in Git. Line 3 creates an object o1. This code satisfies the
ownership constraints since the old owner msg2 is no longer used after assignment ptr2
= msg2. SafeMD will generate free(ptr2) at line 10, leading to an invalid free because
ptr2 does not point to the start address of o1. However, Memfix does not enforce that the
patches satisfy the ownership constraints, so it will generate free(msg2) at line 10, which
is a safe patch. One way of addressing this problem for SafeMD is to modify this code
(which is beyond the scope of this paper); for example, we can modify the assignment ptr2
= msg2 to ptr2 = &msg2, where the ownership is not transferred to ptr2; thus, SafeMD
can generate the safe patch free(msg2) at line 10.
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Listing 8. Memory leak pattern fixed by Memfix only.

1 s i z e _ t screen ( . . . ) {
2 char *msg2 ;
3 msg2 = xmalloc ( . . . ) ;
4 ptr2 = msg2 ; / / ownership transfer
5 while ( . . . ) {
6 ptr2 ++;
7 }
8 * ptr2 = ′\0 ′ ;
9 / / SafeMD: free(ptr2); Memfix: free(msg2)

10 / / invalid free for SafeMD; safely fixing for Memfix
11 }

S4. Memory leak not fixed by both SafeMD and Memfix. For these test cases, they are
related to reallocated memory and function pointers, and SafeMD and Memfix cannot deal
with these features. For example, the test cases in Git often store memory objects using
reallocation, which makes the portion of successful fixing relatively low.

To sum up, our comparison demonstrates that SafeMD can fix more memory-leak
patterns than Memfix (see S2) when the input C programs satisfy exclusive ownership.
Also, the patches generated by SafeMD make the input C programs still satisfy exclusive
ownership (see S1). However, because of the exclusive ownership satisfied by C programs,
SafeMD can lead to invalid frees on the array (see S3).

7. Conclusions

We propose SafeMD, an ownership-based memory deallocation for C programs that
satisfy exclusive ownership. Benefiting from ownership, SafeMD obviates alias and inter-
procedural analysis during collecting patch candidates. Also, the patches generated by
SafeMD make the input C programs still satisfy exclusive ownership. Our experiment
shows the effectiveness of SafeMD in fixing memory leaks of real-world C programs. It
also shows that the ownership system of Rust can be used to guarantee the memory safety
of C language. As future work, we plan to consider more memory allocators and relax
ownership constraints according to the semantics of C language (e.g., array traversal) to
make SafeMD more practical (ease the problem of S3 mentioned in Section 6.3).
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