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Abstract: In CPU microarchitecture, caches store frequently accessed instructions and data by
exploiting their locality, reducing memory access latency and improving application performance.
However, contemporary applications with large code footprints often experience frequent Icache
misses, which significantly degrade performance. Although Fetch-Directed Instruction Prefetching
(FDIP) has been widely adopted in commercial processors to reduce Icache misses, our analysis reveals
that FDIP still suffers from Icache misses caused by branch mispredictions and late prefetch, leaving
considerable opportunity for performance optimization. Priority-Directed Instruction Prefetching
(PDIP) has been proposed to reduce Icache misses caused by branch mispredictions in FDIP. However,
it neglects Icache misses due to late prefetch and suffers from high storage overhead. In this paper,
we proposed a branch-triggered instruction prefetcher (BTIP), which aims to prefetch Icache lines
that FDIP cannot efficiently handle, including the Icache misses due to branch misprediction and late
prefetch. We also introduce a novel Branch Target Buffer (BTB) organization, BTIP BTB, which stores
prefetch metadata and reuses information from existing BTB entries, effectively reducing storage
overhead. We implemented BTIP on the Champsim simulator and evaluated BTIP in detail using
traces from the 1st Instruction Prefetching Championship (IPC-1). Our evaluation shows that BTIP
outperforms both FDIP and PDIP. Specifically, BTIP reduces Icache misses by 38.0% and improves
performance by 5.1% compared to FDIP. Additionally, BTIP outperforms PDIP by 1.6% while using
only 41.9% of the storage space required by PDIP.

Keywords: computer architecture; CPU microarchitecture; CPU front-end optimization; instruction
cache miss; hardware prefetching; instruction prefetching

1. Introduction

Contemporary applications are becoming increasingly complex, incorporating deep
software stacks such as functional logic, language runtimes [1], development frame-
works [2], RPC frameworks [3], logging systems [4], and more. As a result, these applica-
tions often have large code footprints, sometimes reaching hundreds of megabytes [5–10],
which far exceed the capacity of the instruction cache (Icache) or even the L2 cache. This
oversized and continuously growing code footprint [8] leads to frequent Icache misses.

The frequent Icache misses degrade application performance because these misses
stall the pipeline and limit the rate at which the CPU front-end delivers instructions to the
CPU back-end [8,11]. Even though increasing the size of the Icache can reduce misses, it
comes at the cost of additional area and power overhead. Moreover, larger Icache sizes
lead to increased cache latency. Since the Icache lies on the critical path, this additional
latency further degrades the overall application performance.
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Instruction prefetching [12–22] is an effective technique to reduce Icache misses by
predicting future instruction accesses and loading them into the Icache in advance. A next-
line prefetcher [12] works well for covering contiguous Icache accesses, but its effectiveness
drops significantly when faced with non-contiguous accesses caused by various branches.
The temporal prefetcher can effectively solve the problem of discontinuous instruction
cache access of the next-line prefetcher by tracking the time-dependent flow of instruction
cache misses. Specifically, if the instruction that triggered the stream is accessed again,
the subsequent address will be prefetched. However, due to the large code footprint of
contemporary applications, implementing these solutions requires complex designs and
impractical hardware storage overhead, which has hindered their widespread adoption in
mainstream processors.

Unlike previous solutions, Fetch-Directed Instruction Prefetching (FDIP) [14,15] is an
advancing instruction prefetcher that achieves both low overhead and high performance,
making it widely adopted in modern processors [23–27]. FDIP adopts a front-end design
that decouples the Branch Prediction Unit (BPU) from the Instruction Fetch Unit (IFU). In
FDIP, instruction addresses predicted by the BPU are stored in a dedicated Fetch Target
Queue (FTQ), and the prefetch engine prefetches the instructions indicated by the FTQ
entries before they are fetched by the IFU. FDIP effectively reuses existing branch prediction
components, including the direction predictor and the Branch Target Buffer (BTB). These
highly accurate branch prediction components in modern processors enable FDIP to pre-
cisely predict instruction access with minimal hardware overhead, significantly reducing
Icache misses and improving overall performance.

However, FDIP still has significant optimization opportunities for many applications.
We evaluated the performance of the FDIP and found the following: (1) For the 10 most
front-end intensive applications, FDIP still has an average of 14.7% performance optimiza-
tion potential. (2) Branch misprediction and late prefetch are two factors that cause the
Icache misses in FDIP. Specifically, 47.52% of the Icache misses are attributable to branch
mispredictions, while 52.48% are caused by late prefetch. To further optimize FDIP, Priority-
Directed Instruction Prefetching (PDIP) [28] was proposed, introducing a dedicated table
to track Icache misses caused by branch mispredictions and trigger prefetch requests when
the same branch is encountered. Although PDIP effectively reduces the number of Icache
misses in FDIP due to branch mispredictions, it neglects Icache misses caused by a late
prefetch. In addition, PDIP suffers from unnecessary high storage overhead due to storing
too much duplicated information already stored in the BPU.

In this paper, we propose BTIP, which is a branch-triggered instruction prefetcher.
BTIP aims to prefetch Icache lines that cannot be effectively prefetched by FDIP, such as
the recovery path of mispredicted branches and the Icache lines with long latency. The key
idea behind BTIP is to identify an appropriate branch (src-branch) to trigger the prefetching
of Icache lines (dst-cachelines) likely to be missed due to branch misprediction or late
prefetch. We categorize the causes of Icache misses into branch misprediction and late
prefetch based on the execution intervals between dst-cachelines and src-branch. For
branch mispredictions, BTIP selects the last mispredicted branch before the dst-cacheline
as the src-branch. For late prefetch, BTIP selects a branch executed early enough as
the src-branch by the lookup branch history queue, ensuring timely prefetching. The
dst-cachelines and their corresponding src-branch are associated together and stored for
future prefetching. Once the src-branch is encountered, BTIP prefetches the recorded dst-
cachelines, thus mitigating Icache misses that FDIP cannot cover and improving application
performance. In addition, BTIP expands some Branch Target Buffer (BTB) entries by adding
fields to store prefetch metadata, allowing the reuse of existing BTB information without
introducing excessive and unnecessary storage overhead.

We implemented BTIP on the Champsim simulator and evaluated BTIP in detail using
traces from the 1st Instruction Prefetching Championship (IPC-1) [29]. The IPC-1 traces
include 8 client application traces, 35 server application traces, 3 Spec-gcc traces, 2 Spec-
gobmk traces, 1 Spec-perlbench trace, and 1 Spec-x264 trace. Our evaluation shows that
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BTIP outperforms both FDIP and PDIP. Specifically, BTIP reduces Icache misses by 38.0%
and improves performance by 5.1% compared to FDIP. Additionally, BTIP outperforms
PDIP by 1.6% while using only 41.9% of the storage space required by PDIP.

In summary, our contributions are as follows:

• We conducted a detailed performance analysis of FDIP and found that it still has
significant potential for optimization with branch misprediction and late prefetching
being the two causes of Icache misses in FDIP.

• We propose a branch-triggered instruction prefetcher, BTIP, which is designed to
optimize the Icache misses caused by both branch mispredictions and late prefetch,
thereby enhancing application performance.

• We introduce a novel BTB organization, BTIP BTB, which stores prefetch metadata and
reuses information from existing BTB entries, effectively reducing storage overhead.

• We performed a comprehensive evaluation of BTIP using 10 front-end intensive
applications. The results show that BTIP reduces Icache misses by 38.0% and improves
performance by 5.1% compared to FDIP. Additionally, BTIP outperforms PDIP by 1.6%
while using only 41.9% of the storage space required by PDIP.

The rest of this article is organized as follows. Section 2 introduces the background
relevant to this work. Section 3 evaluates the performance of FDIP and outlines the
motivation behind BTIP. Section 4 describes the design of BTIP. Section 5 presents the
performance results of BTIP compared to previous methods and discusses the findings.
Section 6 lists the cost of BTIP and compares BTIP with FDIP and PDIP in terms of design,
performance, power consumption, and storage (area) overhead. Section 7 reviews related
work on instruction prefetching techniques. Finally, Section 8 concludes the article.

2. Background
2.1. Branch Prediction Unit

The Branch Prediction Unit (BPU) predicts the program’s control flow and provides the
Instruction Fetch Unit (IFU) with the instruction addresses (PCs) along the predicted control
path. The IFU retrieves these predicted instructions and forwards them to the processor’s
decoding unit. Since the control flow of a program is determined by the outcomes of
branching instructions, recognizing branch instructions is essential for accurate control
flow prediction. However, whether a given PC corresponds to a branch instruction and its
branch target address can only be determined after the instruction has been fetched and
decoded. To eliminate the delays caused by fetch and decode operations, the BPU uses
a hardware structure called the Branch Target Buffer (BTB), which identifies whether an
instruction is a branch and determines the branch target address based on the instruction’s
address before it is fetched.

Figure 1 illustrates the structure of a BTB entry. Each entry consists of the fields Valid,
PC_Tag, Branch_Type, Target, and LRU. The PC_Tag contains a hash of the significant bits
of the PC to reduce storage overhead. The Target field holds the destination address of the
branch with its length typically determined by the virtual address space and instruction set
architecture. We take the ARMv8 ISA with a 48-bit virtual address space as an example. In
ARMv8, instructions are always 4-byte aligned, meaning the last two bits of the instruction
address are always 0. Therefore, only 46 bits are needed to store the branch target address.
The Valid field indicates whether the entry is valid, while the LRU field stores replacement
information to determine which entry to evict.

Valid: 1-bit PC_Tag: 12-bit Branch_Type: 2-bit Target: 46-bit LRU: 3-bit

Figure 1. Composition of an entry in conventional BTB.

The BPU relies on several components working together to predict branch targets
based on the input PCs, as illustrated in Figure 2. First, the BTB and Indirect Predictor are
accessed simultaneously. If the PC hits the Indirect Predictor, the BPU directly outputs
the branch target predicted by the Indirect Predictor. Otherwise, the BPU determines the
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branch target based on the results of BTB, conditional predictor, and Return Address Stack
(RAS). Like most cache structures, BTB typically employs a set-associative structure. The
lower bits of the PC are used to index the BTB and locate the set, while the hash of the
higher bits of the PC is compared against the PC_Tag of all entries within the set. If no
matching entry is found, it indicates that the PC does not correspond to a branch instruction,
and the program is executed sequentially. In this case, the BPU outputs the address of
the next instruction (PC+4) as the branch target. On the contrary, if a matching PC_Tag is
found, it indicates that the PC represents a branch instruction. The BPU then determines
the branch target based on the branch type of the corresponding entry.

Conditianal 
branch

Direct  branch

PC BTB

Indirect 
Predictor

Target

Hit, output target

Miss, output pc+4

Conditional 
Predictor

RAS

If taken, output target
If not taken, output pc+4

Return branch

Hit

Output top of stack

Output target

Figure 2. The process of BTB predicting a branch target.

Specifically, if the branch is direct, the BPU outputs the address stored in the branch
target field. For conditional branches, the output is determined by the result of the direction
predictor. If the direction predictor predicts the branch as taken, the BPU outputs the
branch target address. On the contrary, if the prediction is not taken, the BPU outputs the
address of the next instruction (PC+4) as the branch target. In the case of a return branch,
the BPU uses the address at the top of the Return Address Stack (RAS) as the branch target
instead of the BTB’s target field. This is because the return address of a function depends on
the address of the instruction that called the function. Each time a function call occurs, the
return address is determined as the address of the calling instruction +4. The BPU pushes
this return address into the RAS when a function call occurs. When a return instruction is
encountered, the BPU pops the top address from the RAS and uses it as the branch target.

2.2. Fetch-Directed Instruction Prefetching (FDIP)

Figure 3 illustrates the architecture of Fetch-Directed Instruction Prefetching(FDIP).
FDIP is a decoupled front-end microarchitecture. FDIP adopts a front-end design that
decouples the BPU from the IFU. Unlike a traditional coupled front-end, FDIP separates
BPU and IFU using a Fetch Target Queue (FTQ). The BPU consists of the BTB, a conditional
branch predictor (TAGE [30]), an indirect branch predictor (ITTAGE [31]), and a Return
Address Stack (RAS). The BPU is responsible for speculatively predicting the addresses of
subsequent instruction blocks to be executed 1 . The FTQ is a FIFO queue, which stores
information about the addresses of the instruction blocks to be executed as predicted by
the BPU. The prefetch engine in FDIP initiates prefetch requests to load the relevant cache
lines of instruction blocks into the Icache as soon as an entry is added to the FTQ 2 . If a
request misses in the Icache, the prefetch engine will fetch the missing cache line from the
lower levels of the memory hierarchy 3 .

The IFU fetches instructions by retrieving the address of the next instruction block
from the head of the FTQ 4 and loading the corresponding instruction from the Icache 5 .
Once the fetched instruction is returned, the IFU sends it to the decoder for decoding and
then forwards it to the back-end for execution.

The BPU typically operates at a higher throughput than the IFU and back-end, which
often results in a full FTQ. Therefore, modern processors are typically equipped with a
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longer FTQ, increasing the prefetch lead time and allowing FDIP to cover both L1 and even
L2 cache misses.

Instruction
Fetch
Unit

Icache

Decoder

Back-end

RAS TAGE

ITTAGEBTB

Fetch Target Queue

Prefetch Req

Fetch Instructions
Predicted 
Results

Front-end

1

Lower Memory 
Hierarchy

2

3

5

Fetch Icache line

Fetch
Entry

4

Figure 3. Overview of decoupled front-end microarchitecture design.

FDIP achieves a low-overhead, high-performance front end by leveraging the existing
advanced BPU. However, its performance is limited by the prediction accuracy of the BPU,
and Icache misses with too long latency. First, branch mispredictions will cause the FTQ
to be flushed, leaving FDIP unable to initiate prefetches early enough to cover the latency
of Icache misses. Second, too-long miss latency may exceed the maximum coverage time
provided by the FTQ, resulting in prefetches that fail to fully cover the miss latency.

3. Motivation

In this section, we analyze the performance of the applications from the First Instruc-
tion Prefetch Championship (IPC-1) [29] to answer the following questions:

• Can the Icache misses in FDIP be optimized, and what is the potential optimization
opportunity for FDIP? (Section 3.1);

• What are the critical factors of Icache misses in FDIP? (Section 3.2);
• Does the existing PDIP solution effectively resolve the Icache miss issue in FDIP, and

does it introduce any new problem? (Section 3.3).

3.1. The Optimization Opportunity of FDIP

In this subsection, we evaluate the Icache misses per kilo instructions (MPKI) across
various applications with FDIP enabled and further explore the potential optimization
opportunity for FDIP.

To figure out whether FDIP completely eliminates front-end stalls, we measured the
Icache MPKI across a range of applications with FDIP enabled. As depicted in Figure 4, the
result indicates that FDIP does not entirely eliminate Icache misses. Specifically, several
applications, such as from server_003 to server_013, exhibit substantial Icache MPKI,
with values close to or exceeding 8. The high MPKI suggests that these applications still
encounter significant front-end stall bottlenecks and can be optimized.

To further quantify the performance optimization potential of FDIP, we measured
the Instructions per Cycle (IPC) speedup using an ideal Icache (with no Icache misses)
and a double-sized Icache. The results in Figure 5 reveal that on average, the ideal Icache
achieves a 4.7% speedup, whereas the double-sized Icache results in only a 0.4% speedup.
Moreover, for the ten most front-end intensive applications, the ideal Icache provides an
average speedup of 14.8%, while the double-sized Icache offers a mere 0.2% improve-
ment. These findings suggest that compared to an ideal Icache, FDIP has substantial
potential for enhancement. Furthermore, simply increasing the Icache size yields negligible
performance benefits.
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Figure 4. Icache load miss per kilo instructions with FDIP enabled.
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Figure 5. The IPC speedup of ideal Icache with FDIP enabled and double-sized Icache. Applications
are sorted by the speedup value of the ideal Icache. Avg_all represents the averaged speedup across
all applications, while Avg_top10 indicates the averaged speedup for the top 10 applications with the
highest speedup using the ideal Icache.

3.2. The Causes of Icache Miss

There are two critical factors that cause the above Icache misses: branch misprediction
and late prefetch. Specifically, branch misprediction would flush the FTQ in FDIP as shown
in Figure 3, which results in the FDIP not having enough time to prefetch following
instructions, causing Icache misses and degrading the FDIP’s performance. Additionally,
even with correct branch prediction, certain instructions may take an excessive amount of
cycles to be prefetched into the Icache. In this case, such instructions are fetched by the IFU
( 5 ) before being loaded into the Icache from the lower level memory hierarchy ( 3 ): for
instance, when the Icache request hits in DRAM, and the long latency of DRAM hinders
FDIP’s ability to prefetch instructions effectively, leading to Icache misses.

To quantitatively analyze the proportion of Icache misses caused by the above two
factors, we measured the number of Icache misses under a perfect BPU scenario without
branch misprediction. In the case of a perfect BPU, Icache misses caused by branch mispre-
diction can be completely avoided, and Icache misses are only associated with late prefetch.
Thus, we can obtain the proportion of Icache misses caused by icache misprediction and late
prefetch, respectively. As shown in Figure 6, 47.52% of the Icache misses are attributable to
branch mispredictions, while 52.48% are caused by late prefetch. Therefore, this motivates
us to optimize both factors to reduce Icache miss and enhance performance.
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Figure 6. The proportion of Icache misses caused by branch mispredictions and late prefetches.

3.3. Disadvantages of PDIP

PDIP [28] is proposed to optimize the Icache misses caused by branch mispredictions
in FDIP. In particular, PDIP uses a dedicated table (PDIP table) to record the relationship
between mispredicted branches and the addresses of the missed Icache lines they cause.
When BPU generates a new predicted result according to a PC, PDIP checks whether the
PC has a corresponding entry recorded in the PDIP table. If an entry exists, the Icache lines
recorded in that entry are prefetched. PDIP enhances Icache miss coverage and improves
application performance.

However, PDIP addresses only the Icache misses resulting from branch mispredictions
and does not account for those caused by late prefetch. As illustrated in Figure 6, the pro-
portion of Icache misses attributable to late prefetch surpasses that due to branch mispredic-
tions. Consequently, by focusing exclusively on mitigating Icache misses caused by branch
mispredictions, PDIP neglects a substantial number of potential optimization opportunities.

Furthermore, PDIP also suffers from high storage overhead due to the duplication
of information, such as PC_Tag and Target, between the PDIP table and the BTB. This
redundancy leads to unnecessary metadata storage overhead. The rapidly increasing code
footprint [6,8,32] significantly exacerbates storage overhead. We measured the probability
that the PC_Tag in a PDIP table entry is also present in the BTB. The results in Figure 7 show
that the average duplication probability across applications is as high as 88%. This high
level of redundancy motivates us to propose a novel BTB organization to reuse the existing
BTB metadata, thus significantly reducing storage overhead.
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Figure 7. The probability that metadata in the PDIP table are also present in the BTB.
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3.4. Summary

In this section, we conducted a series of experiments and found the following:

• FDIP does not entirely eliminate Icache misses across various applications, and there
are still significant optimization opportunities for FDIP.

• Branch misprediction and late prefetch are two critical factors that cause the Icache
misses in FDIP.

• PDIP focuses on Icache misses caused by branch mispredictions in FDIP, but it neglects
Icache misses due to late prefetch and introduces significant storage overhead.

These findings motivate us to propose a solution that optimizes Icache misses caused by
both branch mispredictions and late prefetches, enhancing FDIP performance. Additionally,
the solution should reuse existing BTB information to minimize storage overhead.

4. Design

In this section, we describe the design of BTIP in detail. BTIP aims to prefetch Icache
lines that cannot be effectively prefetched by FDIP, such as the recovery path of mispredicted
branches and the Icache lines with long latency, as described in Section 3.

4.1. Overview

Figure 8 shows the overall microarchitecture of BTIP. BTIP introduces a new prediction
unit to predict Icache lines that may be missed due to branch misprediction and late prefetch.
Subsequently, BTIP sends prefetch requests for these Icache lines to the prefetch queue (PQ)
to reduce Icache misses that FDIP cannot cover. The key idea behind BTIP is to identify an
appropriate branch (src-branch) to trigger the prefetching of Icache lines (dst-cachelines)
likely to be missed due to branch misprediction or late prefetching. Specifically, for branch
mispredictions, BTIP selects the last mispredicted branch before the dst-cachelines as the
src-branch. For late prefetch, BTIP selects a branch executed early enough as the src-branch
by lookup branch history queue, ensuring timely prefetching. Subsequently, once the same
src-branch is encountered, BTIP prefetches the recorded dst-cachelines, thus mitigating
Icache misses that FDIP cannot cover and enhancing application performance.

As shown in Figure 8, BTIP introduces and modifies several components to help
identify the appropriate src-branch and record the relationship between the trigger and the
dst-cachelines. These components include the following: (1) TAGE Accuracy Table (TAT):
TAT tracks the branch prediction accuracy for each bank of TAGE and ITTAGE over a time
interval and outputs the hit bank at each branch prediction. BTIP can estimate the accuracy
of the current prediction based on the accuracy of the bank hit by the branch prediction,
filtering out prefetches triggered by branches with high prediction accuracy. (2) BTIP
Table (BT): It is responsible for recording prefetch metadata of indirect branches and direct
branches. Since BTB does not store entries for indirect branches, we need to dedicate a
table for indirect branches to store prefetching metadata. (3) Branch History Queue (BHQ):
BHQ records the history of branches and the execution time of each branch. It is used to
find suitable branches as src-branches for late prefetch Icache misses. (4) Prediction Unit:
It predicts Icache lines that may be missed due to branch misprediction and late prefetch
and then sends prefetch requests for these Icache lines to the PQ. (5) Modified MSHR: We
extend MSHR to record the timestamp when an Icache miss occurs in order to calculate
its latency.

In addition, BTIP extends existing BTB entries to store prefetch-related metadata,
thus reducing storage overhead. Specifically, the BTB is divided into two tables: the
Conventional BTB and the BTIP BTB. The structure of the Conventional BTB remains
unchanged, while the entry of the BTIP BTB is extended to store prefetch-related metadata,
particularly the src-branch and dst-cachelines pairs. By reusing fields in the BTB rather
than creating a dedicated table for storing prefetch metadata, BTIP achieves lower storage
overhead compared to PDIP.
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Figure 8. The overall microarchitecture of BTIP, where the gray blocks are newly added components
or modified components.

4.2. Building Prefetch Metadata

As described in the previous section, we divide the causes of Icache miss into two
categories: branch misprediction and late prefetch. Figure 9 provides an example to
illustrate how to build prefetch metadata for triggering prefetching. First, we identify the
dst-cachelines that were missed due to the reasons mentioned above. Next, we determine
the appropriate src-branch for these dst-cachelines. Finally, the dst-cachelines and their
corresponding src-branch are linked together and stored in the BTIP BTB or BTIP Table for
future prefetching.

Branch Misprediction. BTIP assigns each instruction an ID number to represent its
execution order. When an instruction (such as A in Figure 9) experiences an Icache miss,
1 BTIP calculates ∆ID, defined as IDA − IDB0 , where B0 is the last mispredicted branch

instruction. 2 If ∆ID is less than ID_THRESH (i.e., A and B0 are very close in execution
order), it suggests that the Icache miss of A is due to FTQ flushing caused by the branch
misprediction of B0. As a result, we classify this Icache miss as branch misprediction-
induced and identify B0 as the src-branch for A. 3 Then, BTIP associates A and B0 and
updates the prefetch metadata based on the branch type of B0.

The last
mispredicted 

branch
B0

BTIP BTB

PC

BTIP Table

B0 B4B3B2B1

src-
branch

dst-
cachelines

B3 A

src-
branch

dst-
cachelines

B0 A

∆ID <  ID_THRESH

Find  a  Branch
As Trigger 

1

3

4 5

2

Append 
Branch

Branch History

Conditional 
Branch

Indirect Branch
Direct Branch

Storing Prefetch Metadata

Missed 
Icacheline: A

Load time

Latency

∆ID  >= ID_THRESH

∆ID = IDA − IDB0  

∆ID
2

1

3 LPT = Load time − Latency

Figure 9. Steps for building and storing prefetch metadata.

Late Prefetch. 1 As in the case above, BTIP calculates ∆ID for each icache miss. 2 If
∆ID is greater than ID_THRESH, it indicates that FDIP initiated the prefetch for A early
enough, but A still experienced an Icache miss. Therefore, we classify this miss as an Icache
miss caused by late prefetch.
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Next, BTIP identifies a suitable src-branch for the dst-cacheline. BTIP must determine
how far in advance to issue a prefetch to avoid an Icache miss and which src-branch should
be selected to meet this prefetch lead time. To achieve this, we extend the MSHR entry to
track the fetch latency of A. When an Icache miss occurs, the MSHR allocates a new entry
and logs the start timestamp, while the end timestamp corresponds to the cache fill time.
The latency of the current Icache fetch is then calculated by subtracting the start timestamp
recorded in the MSHR from the cache fill timestamp.

After measuring the fetch latency and load time (i.e., the start timestamp in the MSHR)
of A, 3 we can calculate the latest prefetching timestamp (LPT) for A as load time −
f etch latency. Next, BTIP needs to identify a src-branch that was executed before the LPT to
prevent an Icache miss. To achieve this, we use a circular queue called the Branch History
Queue (BHQ), which stores the most recently accessed branches and their corresponding
access times. 4 BTIP scans the BHQ from the tail forward, selecting a branch whose access
time is before the LPT to serve as the src-branch. If no suitable branch is found, the oldest
branch in the BHQ is chosen as the src-branch. 5 Once the src-branch is identified, BTIP
updates the prefetch metadata.

Storing the prefetch metadata. BTIP places the prefetch metadata in either the BTIP
BTB or the BTIP Table based on the type of src-branch. In modern processors, BTB records
branch targets for conditional and direct branches. Therefore, to reuse BTB information, we
store the prefetch metadata for src-branches that are conditional branches in the BTIP BTB.
Notably, BTIP does not store metadata for direct branches in the BTIP BTB. This is because
BTIP-triggered prefetches only improve performance when a branch misprediction occurs.
The only potential cause of misprediction for direct branches is a BTB miss. However, if a
BTB miss occurs, BTIP cannot obtain the dst-cachelines needed for prefetching. Therefore,
storing prefetch metadata for direct branches in the BTB is ineffective. Instead, we choose
to store the prefetch metadata for direct branches in the BTIP Table, enabling BTIP to trigger
prefetches even if a BTB miss occurs for a direct branch. For indirect branches, BTIP also
records the prefetch metadata in the BTIP Table.

4.3. Triggering the Prefetches

BTIP attempts to prefetch each time the BPU generates a prediction result based on PC.
During the prediction process, both the BTB and the BTIP Table are accessed simultaneously.
If the BTB hits an entry in the BTIP BTB or the lookup in the BTIP Table results in a hit,
it indicates that the PC corresponds to a src-branch. At this point, BTIP issues prefetch
requests for the dst-cachelines stored in the hit entry.

FDIP and BTIP issue prefetch requests simultaneously, which can lead to performance
interference. FDIP is a highly accurate prefetcher, and BTIP is designed to complement it.
To avoid interfering with FDIP’s prefetching requests, we assign higher priority to FDIP.
Prefetch requests from the BTIP are processed only when the Icache has available read
bandwidth, such as during IFU stalls or when the FDIP-PQ is empty.

4.4. The Modified BTB

BTIP saves storage overhead by reusing some fields of BTB entry such as PC_Tag and
Target. It expands BTB entries by adding fields to store prefetch metadata. However, the
number of BTB entries for modern processors is very large; e.g., AMD Zen5 [33] has 24 K
BTB entries, and expanding the fields of each BTB entry would result in significantly higher
storage overhead. Additionally, not all branches are src-branches. Therefore, we only
expand some BTB entries to be BTIP BTB, allowing us to reuse existing BTB information
without introducing excessive and unnecessary storage overhead.

Figure 10 shows the structure of our modified BTB and the composition of entries.
We split the original BTB into two parts: the conventional BTB and the BTIP BTB. The
conventional BTB remains unchanged from the original, while the BTIP BTB includes
entries with extended fields (42 bits) to store prefetch metadata.
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Valid: 1 PC_Tag: 12 Branch_Type: 2 Target: 46 LRU: 3
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Figure 10. The modified BTB structure and entry composition.

BTB Lookup. When a PC enters the BPU, the BPU performs lookups on both the
conventional BTB and the BTIP BTB. Our BTB update policy ensures that a PC will not have
matching entries in both the conventional BTB and the BTIP BTB simultaneously. If the PC
hits the conventional BTB, then the BPU takes the regular unfetched path. However, if the
PC hits in the BTIP BTB, the BTB outputs additional prefetch metadata to the Prediction
Unit, which then parses the metadata and extracts the destination address for prefetching.

The Update and Insert of Prefetch Metadata. When the relationship between src-
branch and dst-cachelines is established, it needs to be stored in the BTIP BTB. At this point,
the BPU uses the src-branch to perform lookups in both the conventional BTB and the BTIP
BTB. If both lookups result in a miss, the BPU creates a new entry in the BTIP BTB and
stores the prefetch metadata. If the BPU finds an entry in the conventional BTB, it selects
an entry to evict in the BTIP BTB, swaps the fields between the two entries, and updates
the prefetch metadata in the corresponding BTIP BTB entry. If the BPU finds an entry in the
BTIP BTB, it directly updates the prefetch metadata of that entry.

4.5. Optimazation

Filtering Useless Prefetches. BTIP may negatively impact performance when branch
predictions are correct. To address this, we introduce a filtering mechanism to eliminate
unnecessary prefetches. BTIP prefetch the Icache lines that were missed due to branch mis-
predictions. When a branch is mispredicted, BTIP’s prefetching yields performance benefits.
However, if the branch prediction is correct, BTIP may introduce unnecessary prefetches,
potentially polluting the Icache. To alleviate the negative performance impact of excessive
prefetching, BTIP filters out prefetches triggered by branches with high prediction accuracy.

This filtering mechanism relies on the estimated accuracy of each branch prediction.
Specifically, BTIP tracks the hits and misses count for each prediction table of TAGE and
ITTAGE. When TAGE and ITTAGE output branch prediction results, they also provide the
estimated accuracy by dividing the misses count by the hits count. When the estimated
accuracy is greater than the set threshold, BTIP discards the prefetch request.

Compressing the Prefetch Targets. A single src-branch can be correlated to multiple
dst-cachelines. To maximize the number of dst-cachelines stored in metadata with limited
length, we employ an address compression method using two key strategies. First, we
reduce the storage consumed for each dst-cacheline by storing the address offset from the
branch target rather than the full dst-cacheline address. This strategy works because the
execution of a dst-cacheline typically occurs close in time to that of the src-branch, resulting
in a small address offset between them. Consequently, saving address offsets instead of full
dst-cacheline addresses effectively reduces the storage needed for each dst-cacheline.

Second, we adopt an efficient multi-address encoding approach to store as many
dst-cachelines as possible. As shown in Table 1, we encode the dst-cachelines in four modes.
We use 2 bits to represent the mode values and 42 bits to encode the address distances
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of all corresponding dst-cachelines. Each mode allows for storing a different number of
dst-cachelines that can fit within the 42-bit limit. For instance, in mode 0, the full 42 bits
are used to store a single dst-cacheline, allowing for a maximum offset of ±241. In mode 2,
the 42 bits are used to store four dst-cachelines, with each dst-cacheline occupying 10 bits,
allowing for a maximum address offset of ±29. Since the metadata can have only one mode
value, when a new dst-cacheline is inserted, we must recalculate the maximum offset to
determine whether a mode change is necessary.

Table 1. Compression modes of dst-cachelines.

Mode Numbers of
Dst-Cachelines

Width of Each
Dst-Cacheline Distance Range

0 1 42 ±241

1 2 21 ±220

2 4 10 ±29

3 7 6 ±25

4.6. Put it Together

L1I miss events and branch prediction operations trigger the BTIP to perform update
metadata and issue prefetch operations, respectively. When an L1I miss occurs, the Pre-
diction Unit retrieves miss information from the MSHR, including the missed Icacheline,
load time, and latency. The Prediction Unit then determines whether the miss was caused
by a branch misprediction or a late prefetch. If it was due to a branch misprediction, the
previously mispredicted branch is selected as the src-branch. Otherwise, the Prediction Unit
selects a branch executed early enough from the Branch History Queue as the src-branch.
Finally, the src-branch and dst-cacheline are compressed and stored in the BTIP Table or
BTIP BTB, completing the updating of metadata.

On the other hand, when the BPU generates a prediction based on the PC, BTIP
predicts Icachelines that will be accessed in the future. BTIP uses this PC to look up both
the BTIP BTB and BTIP Table. If the PC matches an entry in the BTIP BTB or BTIP Table, the
Prediction Unit queries the TAGE Accuracy Table to obtain the estimated accuracy of the
branch prediction. If the accuracy is below the predefined threshold, the Prediction Unit
sends the Icachelines stored in the matched entry to the PQ to initiate a prefetch operation.

4.7. Storage Overhead

Table 2 details the storage overhead of BTIP, which consumes a total of 18.24 KB,
which are allocated across its components as follows:

• The Branch History Queue (BHQ) is a 128-entry circular queue, where each entry
contains a 64-bit field for the branch address and a 20-bit field for the execution
timestamp. A 7-bit register points to the tail of the queue. The total memory required
for the BHQ is 1345 bytes.

• The TAGE Accuracy Table is a 20-entry table where each entry records the hit and
miss counts for TAGE and ITTAGE banks. Each entry consists of a 32-bit hit count and
a 32-bit miss count. Every 109 cycles, the hit and miss counts are halved to prevent
overflow. The TAT requires a total of 160 bytes.

• We modified the MSHR to record timing information for each Icache request, using a
16-entry structure with 12 bits to store the timestamp when the request was issued.
This modification requires 24 bytes of memory.

• The BTIP Table is a 256-set, 4-way table, where each entry includes a 42-bit field for
dst-cachelines, a 2-bit compression mode, and a 2-bit LRU indicator. The total memory
required for the BTIP Table is 5888 bytes.

• We allocated 2048 entries from the conventional BTB to serve as the BTIP BTB. Each
entry requires 42 bits for encoding dst-cachelines and 2 bits for compression mode.
The total memory consumed by the BTIP BTB is 11,264 bytes.
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Table 2. Details of BTIP’s storage overhead.

Component Storage

Branch History Queue 128 × (64 + 20) + 8 = 10,760 bits = 1345 bytes
TAGE Accuracy Table 20 × (32 + 32) = 1280 bits = 160 bytes

MSHR 16 × 12 = 192 bits = 24 bytes
BTIP Table 1024 × (42 + 2 + 2) = 63,488 bits = 5888 bytes
BTIP BTB 2048 × (42 + 2) = 122,880 bits = 11,264 bytes

Total 18,681 bytes

5. Evaluation and Discussion
5.1. Evaluation Setup

Simulation Parameters. We use a modified ChampSim [34] simulator to simulate
and evaluate BTIP. We extended the default version of ChampSim to implement a recent
state-of-the-art industry FDIP [15,35], BTB, TAGE [30] and ITTAGE [31]. The detailed
simulator parameters are shown in Table 3.

Traces. We evaluate BTIP using the top 10 applications from IPC-1 that have the
greatest optimization potential. We execute the first 100 million instructions as a warm-up,
which is followed by the simulation of the next 100 million instructions.

Evaluated Prefetchers. We compared BTIP with four prior prefetchers:

• FNL-MMA [36]: FNL-MMA combines the Multiple Miss Ahead (MMA) prefetcher
and the Footprint Next Line (FNL) prefetcher. The MMA prefetcher predicts future
cache misses several steps in advance, allowing it to prefetch instruction blocks before
they are needed. The FNL prefetcher predicts when the next cache lines will be
accessed and selectively prefetches only those lines that are likely to be used soon.

• D-JOLT [37]: D-JOLT leverages both long-range and short-range prefetchers, where the
long-range prefetcher predicts distant future memory accesses with broader coverage,
and the short-range prefetcher provides more accurate predictions for near-future
accesses. Additionally, a fallback prefetcher acts as a safety net when both long-range
and short-range prefetchers fail.

• PDIP [28]: PDIP is designed to complement FDIP in modern processors. PDIP focuses
on targeting cache misses that FDIP fails to hide, particularly those that cause front-end
stalls after events like branch mispredictions.

Table 3. Simulation parameters.

Front-end

Fetch Width 6 instructions
Decode Width 6 instructions

Fetch Target Queue 192 instructions
Decode Buffer 32 instructions

Dispatch Buffer 32 instructions
Branch Target Buffer 16 K entries
Return Address Stack 32 entries

Conditional Branch Predictor 64 KB TAGE
Indirect Branch Predictor 64 KB ITTAGE

Back-end

Dispatch Width 6 instructions
Execute Width 4 instructions
Retire Width 4 instructions

Re-order Buffer 512 entries
Load Queue 128 entries
Store Queue 72 entries
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Table 3. Cont.

Memory Hierarchy

L1 Instruction Cache 32 KB, 8-way, 4 hit cycles
L1 Data Cache 32 KB, 8-way, 4 hit cycles

L2 Cache 512 KB, 16-way, 10 hit cycles
L3 Cache 1 MB, 16-way, 20 hit cycles
DRAM 4 GB, one 64-bit channel, 800 MT/s

5.2. IPC Performance

Figure 11 shows the IPC improvement of all evaluated prefetchers over a no-prefetcher
baseline. The results show that all prefetchers had the performance improvement, and BTIP
achieved the best performance improvement in almost all traces. Specifically, BTIP achieves
an average IPC performance improvement of 49.4%, which is 5.1% higher than FDIP and
1.6% higher than PDIP. FNL-MMA and D-JOLT introduced complex prefetch mechanisms,
achieving performance improvements of 33.8% and 32.1%, respectively. FDIP, leveraging highly
accurate BPU predictions to prefetch instructions, outperformed both FNL and MMA with
negligible storage overhead, delivering a 44.3% performance improvement. By prefetching
additional Icache misses caused by branch mispredictions and late prefetches on top of FDIP,
BTIP outperformed FDIP. Although the performance gains of PDIP and BTIP are similar, BTIP
reduces storage overhead by 58.1% compared to PDIP by reusing BTB information.
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Figure 11. The IPC improvement of all prefetchers over no prefetch.

5.3. Icache Miss Reduction

Figure 12 shows the Icache MPKI of all evaluated prefetchers across all traces. The
results demonstrate that BTIP significantly outperforms its competitors by substantially
reducing the Icache miss. On average, BTIP reduced the Icache MPKI from 6.90 to 4.28
compared to FDIP. By optimizing Icache misses caused by both branch misprediction and
late prefetching, BTIP reduces more Icache misses than PDIP when compared to FDIP.
Although FNL-MMA and D-JOLT achieve lower Icache MPKI than FDIP, FDIP still delivers
better overall performance. This is due to FDIP’s decoupled front-end design, which allows
the BPU to stay consistently ahead of the IFU. As a result, FDIP ensures that the application
performance is not limited by the BPU’s prediction bandwidth.

5.4. Prefetch Accuracy

Figure 13 shows the prefetch accuracy of all evaluated prefetchers across all traces.
FDIP performs prefetching based on the BPU prediction results. Benefiting from the high
prediction accuracy of the BPU, FDIP achieves the highest prefetch accuracy. PDIP and
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BTIP build on FDIP by prefetching Icache lines missed due to branch mispredictions.
However, since the prefetches issued by PDIP and BTIP are only effective when a branch
misprediction occurs, both exhibit slightly lower prefetch accuracy compared to FDIP. In
addition, BTIP extends PDIP by also prefetching Icache lines missed due to late prefetches.
However, due to branch fan-out (single branch leading to many instructions) [7], the
recorded src-branch does not always lead to the execution of the dst-cacheline, resulting in
more useless prefetches compared to PDIP, thus reducing prefetch accuracy.
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Figure 12. The Icache miss per kilo instructions.

5.5. Breakdown of Performance Improvements

In Section 3.2, our experiments revealed that late prefetching accounts for 52.48% of
Icache misses, emphasizing the equal importance of optimizing both branch mispredictions
and late prefetching. Therefore, BTIP is designed to address Icache misses caused by both
factors. To more comprehensively evaluate the effectiveness of BTIP, we conducted a
performance breakdown analysis.

Figure 14 illustrates the performance improvements achieved by BTIP. BM represents
BTIP optimizing only the Icache misses caused by branch mispredictions, while BM+LP
refers to optimizations targeting Icache misses caused by both branch mispredictions
and late prefetching with FDIP as the baseline. The results in Figure 14 show that BM
achieved a modest speedup of 1.6%, while BM+LP delivered a more substantial speedup
of 3.5%. These findings demonstrate that BTIP effectively optimizes both sources of
Icache misses.
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Figure 14. Breakdown of improvements on IPC. FDIP is the baseline.

5.6. Varying Icache Size

To evaluate the robustness of BTIP’s optimizations, we varied the Icache configuration
to observe the impact of BTIP. Specifically, we measured the performance improvements of
BTIP compared to FDIP with Icache sizes of 32 KB, 64 KB, 128 KB, and 256 KB, as shown in
Figure 15. The results demonstrate that BTIP consistently achieves IPC gains compared to
FDIP across all Icache sizes. The average performance improvements of BTIP over FDIP
for 32 KB, 64 KB, 128 KB, and 256 KB Icache are 3.5%, 3.3%, 3.4%, and 2.8%, respectively.

From 32 to 128 KB, BTIP’s optimization effect remains stable with no significant
decline. However, when the Icache size reaches 256 KB, BTIP’s performance gain slightly
diminishes. This is because a 256 KB Icache is large enough to cover the code footprint of
our test applications, reducing front-end bottlenecks and BTIP’s optimization potential.
Nonetheless, this does not diminish BTIP’s value. On one hand, such a large Icache size
introduces greater area and power consumption overhead as well as increased access
latency. Furthermore, to our knowledge, no commercial processors currently feature such
large Icache sizes. On the other hand, as mentioned in Section 1, application code footprints
are growing year by year [8], and their growth rate exceeds that of Icache size increases.
Therefore, we believe that even as Icache sizes continue to grow in future CPU iterations,
BTIP will still provide noticeable performance improvements.
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5.7. Power and Area Analysis

We use Cacti 7.0 [38] to analyze the power consumption and area overhead of BTIP and
PDIP. For BTIP, we calculate the power and area consumption of the BHQ, TAT, BTIP Table
and BTIP BTB. For PDIP, we focused on the PDIP Table. The analysis was performed using
32 nm technology from Cacti 7.0, and the results were then scaled to 7 nm technology [39].
Power consumption for each application was calculated separately, and the average was
taken as the final result.

The results are shown in Table 4. BTIP consumes 10.02 mW of power and 0.049 mm2

area per core, which are, respectively, 78.22% and 38.58% of PDIP’s values (12.81 mW
and 0.127 mm2). Additionally, we compared BTIP’s power and area overhead to those
of existing 7nm CPUs. The results show that BTIP introduces minimal energy and area
overhead. For instance, compared to the AMD Ryzen 5 5600X, BTIP only increases power
consumption by 0.37% and area consumption by 0.09%. Therefore, we conclude that BTIP
enhances performance with low power and area overhead.

Table 4. Power and area consumption of BTIP.

BTIP Compared to Existing 7 nm CPUs Power Area

AMD Ryzen 5 5600X [40], 6 Cores, 65W TDP 0.37% 0.09%
AMD Ryzen 7 5800X [41], 8 Cores, 105W TDP 0.49% 0.08%

AMD Ryzen 9 5950X [42], 16 Cores, 105W TDP 0.49% 0.15%
AMD Ryzen Threadripper PRO 5975WX [43], 32 Cores, 280W TDP 0.49% 0.12%

AMD EPYC 7763 [44], 64 Cores, 280W TDP 0.49% 0.23%
Ampere Altra [45], 80 Cores, 250W TDP 0.68% 0.32%

BTIP’s power: 10.02 mW/core. BTIP’s area: 0.049 mm2/core.
PDIP’s power: 12.81 mW/core. PDIP’s area: 0.127 mm2/core.

6. Discussion

In this section, we discuss the cost of BTIP and compare BTIP with FDIP and PDIP in
terms of design, performance, power consumption, and storage (area) overhead.

6.1. Costs of BTIP

To implement BTIP, we extended and introduced several hardware components,
including the TAGE Accuracy Table, BTIP Table, Branch History Queue, Modified MSHR,
and BTIP BTB. While these components increase hardware storage (chip area) and power
consumption, the resulting overhead is minimal. In particular, we detail the storage
overhead of BTIP, totaling 18.24 KB in Section 4.7. In Section 5.7, we use cacti to calculate
that these storage overheads take up a total of 0.049 mm2 of the area and consume 10.02 mW
of power on a 7 nm chip. The area and power consumption introduced by BTIP are
negligible for existing CPUs. For instance, when implemented in the AMD Ryzen 5 5600X,
BTIP results in only a 0.37% increase in power consumption and a 0.09% increase in
area. Therefore, we can conclude that BTIP enhances performance with low power and
area overhead.

6.2. Comparison with FDIP and PDIP

Modern high-performance processors employ decoupled front-end designs (e.g., FDIP),
which actively prefetch Icachelines based on branch predictor control-flow predictions.
While FDIP delivers significant performance gains with minimal hardware complexity,
there is still considerable optimization potential, particularly in front-end intensive applica-
tions. Specifically, for the 10 most front-end intensive applications, FDIP has an average
performance improvement potential of 14.7%. Our analysis identifies two main contribu-
tors to Icache misses in FDIP, branch misprediction and late prefetch, with 47.52% of misses
caused by branch mispredictions and 52.48% by late prefetch.
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PDIP [28] introduces a dedicated table to track Icache misses caused by branch mis-
predictions and trigger prefetch requests when the same branch is encountered. Although
PDIP effectively reduces the number of Icache misses in FDIP due to branch mispredictions,
it neglects Icache misses caused by late prefetch. Moreover, PDIP suffers from unnecessary
high storage overhead due to storing too much duplicated information already stored in
the BTB.

BTIP is designed to prefetch Icache lines that may miss due to both branch mispre-
dictions and late prefetch. In addition, BTIP expands some BTB entries by adding fields
to store prefetch metadata, enabling the reuse of existing BTB information without intro-
ducing excessive and unnecessary storage overhead. Consequently, BTIP achieves greater
performance gains while requiring less storage than PDIP. Our evaluations show that BTIP
outperforms FDIP and PDIP by 5.1% and 1.6%, respectively. BTIP requires only 18.24 KB
of hardware storage compared to PDIP’s 43.5 KB. Additionally, BTIP consumes 10.02 mW
of power and 0.049 mm2 of area per core, which are 78.22% and 38.58% of PDIP’s power
(12.81 mW) and area (0.127 mm2), respectively.

7. Related Works

In this section, we reviewed two types of instruction prefetchers: hardware instruction
prefetchers and software instruction prefetchers.

7.1. Hardware Instruction Prefetcher

The next-line prefetcher [12], which prefetches consecutive Icache lines, is the simplest
hardware spatial prefetcher. It is well optimized for continuous instruction streams but
struggles with applications that have a significant amount of control flow.

Temporal instruction prefetching has gained attention for its ability to predict future
cache accesses based on past misses. The Temporal Ancestry Prefetcher (TAP) [46] expands
on this concept by approximating the transitive closure of a program’s control flow graph,
allowing it to predict long chains of instruction misses. TAP significantly outperforms next-
line prefetchers in server workloads by effectively leveraging deep look-ahead in control
flow graphs. PIF [47] improves instruction prefetching by utilizing the predictability
of instruction streams while mitigating instability from microarchitectural factors like
branch mispredictions and hardware interruptions. It records the correct-path, retire-order
instruction stream, bypassing the noise introduced by wrong-path instructions and cache
filtering. MANA [48] builds on this idea of leveraging temporal and spatial locality while
focusing on reducing storage costs. It records compact metadata, grouping instruction
blocks into spatial regions and linking them with successor pointers for efficient prefetching.
Using a compact and efficient data structure, MANA achieves performance comparable to
PIF but with 15.7× less storage overhead.

JIP [49] employs a hybrid approach by classifying instructions into non-branch, direct
branch, and indirect branch categories, applying targeted prefetching strategies for each.
JIP uses components like the Single Target Jumper (SJT) and Multiple Targets Jumper (MJT)
to accurately prefetch future instructions. It is optimized for low hardware overhead by
utilizing compressed address storage and temporal tables to enhance prefetch timeliness.
RAS-directed instruction prefetching (RDIP) [50] records the return address of a function in
the RAS along with the cache line of the Icache miss. When an RAS return occurs, RDIP
checks whether the address change was recorded, and if so, prefetches the corresponding
Icache line.

Several prefetchers were proposed in the 1st Instruction Prefetching Championship
(IPC-1) [13,36,37]. EIP [13] introduces the concepts of code blocks and entanglement,
recognizing consecutive blocks of code and linking them to the target code block where
the control flow jumps. When an instruction in a source code block is encountered, EIP
prefetches the entire source code block and the corresponding target code. It dynamically
adjusts the prefetch look-ahead distance to account for cache miss latencies and application
variations, ensuring timely prefetching. FNL+MMA [36] combines Footprint Next Line
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(FNL) and Multiple Miss Ahead (MMA) strategies. FNL predicts whether the next cache
line will be used in the near future, avoiding unnecessary prefetches, while MMA looks
ahead to predict future misses. D-JOLT [37] addresses Icache misses by combining long-
range and short-range prefetching techniques. It improves on RDIP with a new signature
generation mechanism that uses an FIFO to store return addresses, rather than the stack
used by RDIP, to generate prefetch targets. By integrating multiple prefetching strategies,
D-JOLT adapts to varying distances between Icache misses, offering higher accuracy for
short-term predictions and greater coverage for distant misses.

The Fetch-Directed Instruction Prefetching (FDIP) [14,15] decouples the branch predic-
tor from the instruction cache to improve prefetching efficiency. This architecture allows
the branch predictor to run ahead of the instruction cache, generating prefetch requests
earlier and reducing instruction cache misses. PDIP [28] enhances instruction prefetching
in FDIP. PDIP focuses on prefetching only those instruction cache misses that are critical to
front-end performance and not effectively hidden by FDIP.

7.2. Software Instruction Prefetcher

Software prefetching techniques typically require modifications to the instruction set
architecture so that Icache lines are prefetched in advance of their use. These techniques
include inserting prefetching instructions into the code. Cooperative prefetching uses
the compiler to statically analyze and automatically identify prefetched injection points.
AsmDB [7] uses runtime profile information to find the critical Icache misses and insert
prefetching instructions for these missed Icache lines to improve performance. I-SPY [32]
also uses profile information, but it encodes the context information using a special directive
to issue prefetches only when the context matches, thus reducing excessive prefetching
when it is not needed. Also, I-SPY uses aggregate prefetching to reduce code bloat. Software
prefetching techniques can be used to solve cold miss problems that cannot be solved by
hardware techniques.

8. Conclusions

In this paper, we performed a detailed performance analysis of FDIP and found that it
still suffers from Icache misses caused by branch mispredictions and late prefetching, leaving
significant optimization potential. To address these issues, we proposed BTIP, a branch-
triggered instruction prefetcher designed to handle Icache misses that FDIP cannot efficiently
manage, specifically those caused by branch misprediction and late prefetch. To further
minimize storage overhead, we introduced a novel BTB organization that stores prefetch
metadata by reusing existing BTB entries. Our evaluation shows that BTIP outperforms FDIP
and PDIP by 5.1% and 1.6% with only 41.9% of the storage overhead of PDIP.
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Icache Instruction cache
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BTIP branch triggered instruction prefetcher
PDIP Priority-Directed Instruction Prefetching
BPU Branch Prediction Unit
IFU Instruction Fetch Unit
FTQ Fetch Target Queue
BTB Branch Target Buffer
PC Program counter
RAS Return Address Stack
MPKI miss per kilo instructions
IPC Instructions per Cycle
DRAM dynamic random access memory
PQ prefetch queue
MSHR miss status holding register
TAT TAGE Accuracy Table
BHQ Branch History Queue
IT Indirect Table
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