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Abstract: Credit scoring is a cornerstone of financial risk management, enabling financial institutions
to assess the likelihood of loan default. However, widely recognized contemporary credit risk metrics,
like FICO (Fair Isaac Corporation) or Vantage scores, remain proprietary and inaccessible to the
public. This study aims to devise an alternative credit scoring metric that mirrors the FICO score,
using an extensive dataset from Lending Club. The challenge lies in the limited available insights
into both the precise analytical formula and the comprehensive suite of credit-specific attributes
integral to the FICO score’s calculation. Our proposed metric leverages basic information provided
by potential borrowers, eliminating the need for extensive historical credit data. We aim to articulate
this credit risk metric in a closed analytical form with variable complexity. To achieve this, we
employ a symbolic regression method anchored in genetic programming (GP). Here, the Occam’s
razor principle guides evolutionary bias toward simpler, more interpretable models. To ascertain
our method’s efficacy, we juxtapose the approximation capabilities of GP-based symbolic regression
with established machine learning regression models, such as Gaussian Support Vector Machines
(GSVMs), Multilayer Perceptrons (MLPs), Regression Trees, and Radial Basis Function Networks
(RBFNs). Our experiments indicate that GP-based symbolic regression offers accuracy comparable
to these benchmark methodologies. Moreover, the resultant analytical model offers invaluable
insights into credit risk evaluation mechanisms, enabling stakeholders to make informed credit risk
assessments. This study contributes to the growing demand for transparent machine learning models
by demonstrating the value of interpretable, data-driven credit scoring models.

Keywords: credit risk assessment; neural networks; support vector machines; genetic programming;
radial basis functions networks

1. Introduction

Credit scoring constitutes a vital component of financial risk management that lays
the foundations for estimating the probability that a given individual will be incapable
of repaying his/her debt obligations, i.e., the probability of default on a future loan [1].
Acquiring an accurate measure for the probability of default allows banking agencies to
verify certain aspects of a particular credit product, such as the loan amount, the repayment
method, and the interest rate [2]. In this context, optimizing lenders’ decisions on whether
to offer or deny credit relies on the ability to design such credit rating measures [3] that will
be able to quantify the financial condition and creditworthiness of a candidate borrower [4].
The most prominent and widely used credit score in the banking industry is the FICO
score, a measure developed in 1989 by the Fair, Isaac and Company (FICO), a company
operating in the sector of data analytics focusing on credit scoring services [5]. During the
past decades, FICO has evolved to become the standard credit risk measure utilized by
financial institutions in the United States (U.S.), facilitating decisions on whether to lend
money or issue credit. Later, in 2006, the top three credit bureaus in the U.S., i.e., Equifax,
TransUnion, and Experian, collaborated to create the Vantage Score credit rating as an
alternative to the FICO score [6].
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The FICO score is represented by a three-digit number ranging from 300 to 850. The
higher the score, the better the credit profile of a borrower, as higher scores are indicative of
a lower default risk. Credit scores from 580 to 669 are considered “fair”, while scores from
670 to 739 are considered “good”. The key factor for deriving a credit score is the credit
history, e.g., total debt and repayment history. The FICO scoring methodology is based
on both positive and negative credit data contained in an individual’s credit report. In
particular, five main categories are considered: credit payment history, current debt level,
types of credit used, length of credit history, and new credit [7]. The aforementioned factors
are included in credit score calculations, but they are not given equal weighting. Although
the weighting schemes of these factors are known, the exact computational methodology
for determining the FICO score remains a black box. In the same vein, the algorithmic
process underpinning the risk evaluation related to the Vantage Score is obscured. It is,
nonetheless, noted that supplementary machine learning techniques are indeed employed
in the risk assessment process, especially when dealing with consumers whose credit data
are extremely sparse [8].

Credit scoring models are, in general, not publicly available, even though the U.S.
legislation mandates that at least four primary factors affecting credit scores should be
available to consumers. In addition, U.S. law, such as the Consumer Credit Protection Act
(CCPA), provides consumer protection from lenders. In compliance with the CCPA, the use
of personal information is prohibited in calculating credit scores. Specifically, information
about race, color, religion, national origin, sex, marital status, and age, among others,
cannot be employed [9,10].

Bearing in mind the inherently vague nature of the credit risk assessment process, it is
easy to deduce that quantifying the probability of default is an extremely difficult task. In
fact, the complexity of the underlying problem is significantly increased when considering
the additional restrictions that relevant legislation imposes on the utilization of a candidate
borrower’s personal data. In this study, we aimed to develop an alternative credit scoring
mechanism that will mimic the behavior of the original FICO score on a large collection of
loan data, operating, however, on a limited amount of consumer-specific credit information.
For this purpose, we employ a substantial database of loan-related data gathered from
Lending Club, a renowned peer-to-peer lending platform in the U.S. [11]. Peer-to-peer (P2P)
lending companies mostly offer their services online, forming online financial communities
that connect borrowers with investors (lenders). Although Lending Club became the
world’s largest peer-to-peer lending platform, at the end of 2020, it announced that it would
no longer operate as a peer-to-peer lender as it had acquired Radius Bank, and the focus
switched to institutional investors.

Peer-to-peer lending platforms provide investors with information supplied by borrowers
when they apply for a loan. Lending Club offers further details about the creditworthiness
of the borrower and the type of loan, as well as a loan credit grade. A credit grade is
assigned to each loan, which determines the payable interest rate and the loan processing
fees. A survey for studies devoted to peer-to-peer lending can be found in [12]. A data-
driven model for the estimation of a P2P loan’s expected return and risk was developed
in [13] by employing data obtained from the Prosper P2P lending platform [14].

Credit scoring models based on machine learning methods lower expected credit
losses, according to [15], as Logistic Regression, Multivariate Adaptive Regression Splines
(MARS), SVM, random forest, Extreme Gradient Boosting (XGBoost), and neural network
models trained on non-synthetic data from a Survey of Consumer Finances achieved better
performance than FICO credit scoring in the 2000s. Also, a Bayesian network model was
employed in [16] for credit risk scoring in consumer lending based on data from a firm that
provides credit and loans in Singapore. Linear Regression was also used in [17] for credit
scoring, where it had a similar performance to an SVM model and outperformed a decision
tree classifier, but its performance was lower than that of two ensemble methods (random
forest and stacking with cross-validation). A dynamic ensemble classification based on
soft probability was proposed in [18]. Because ensemble methods lack interpretability,
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Logistic Regression remains the benchmark in the credit risk industry, so in [19,20], a
high-performance and interpretable credit scoring method called penalized logistic tree
regression (PLTR) was introduced, which uses information from decision trees to improve
the performance of Logistic Regression.

Several approaches to credit risk scoring have been developed based on the data
obtained from Lending Club. P2P credit grading was modeled as a cost-sensitive multi-class
classification problem in [21]. The performance of the Logistic Regression model, neural
networks, and ensemble models was investigated in [22]. In [23], SHAP was used in order
to explain the output of a Linear Regression model and compute the feature importance
weights to compare them to counterfactual explanations. Linear Regression, random
forest, and Multilayer Perceptron models for a class imbalance problem were compared
in [24], where the approaches were evaluated in terms of their explainability by eXplainable
Artificial Intelligence (XAI) tools. An innovative credit risk prediction framework that fuses
base classifiers based on a Choquet fuzzy integral improved creditworthiness evaluations
in [25]. On the other hand, profit scoring approaches were proposed in [26,27] instead of
determining the probability of default on a future loan.

Efforts have been made in order to use GP for credit risk scoring. In [28], a multi-gene
genetic programming approach to symbolic regression did not yield a better predictive
ability than Logit-Transformed Regression, Beta Regression, and Regression Trees for es-
timating the credit risk parameter LGD. GP was proven in [29] to provide better results
than generic credit scoring models in terms of both classification accuracy and profit while
achieving similar classification accuracy to Logistic Regression, SVM, and Boosted Trees.
Similar results were achieved in [30], as GP outperformed Classification and Regression
Trees (CART) and Rough Sets but had similar results to an NN and Logistic Regression.
In [31], two-stage genetic programming (2SGP) incorporated the advantages of IF–THEN
rules and the discrimination function and managed to outperform GP, MLP, CART, C4.5,
Rough Sets, and Logistic Regression. A novel hybrid model that uses evolutionary com-
putation, ensemble learning, and deep learning was proposed in [32] and achieved high
prediction accuracy for bank credit evaluation.

In this paper, we develop an alternative credit scoring mechanism that approximates
the risk evaluation pattern exhibited by FICO on a large-scale collection of loan data. In
particular, we aim to quantify the conditional probability of default for any candidate
borrower in the dataset given that the estimated value of his/her FICO score ranges in a
specific interval. In effect, by computing the fraction of defaulted loans for the subset of
individuals whose actual FICO scores lie within a particular range of values, we can, in
principle, estimate the empirical probability of default conditioned on the actual value of
the credit measure. Thus, acquiring an accurate approximation of the true FICO score may
lead to a reliable estimation of the probability of default. The proposed measure is derived
using a limited amount of entry-level information, eliminating the need for accumulating
extensive historical credit data over long periods for each consumer. Our approach aims
to represent the resulting credit risk measure in a closed-form analytical expression with
adjustable complexity, making it amenable to human interpretation.

Interpretability is a critical aspect of credit risk models, especially in finance, where
model outcomes directly influence decisions that affect individuals, financial institutions,
and regulatory bodies. Traditional credit scoring models, such as FICO scores, are often
perceived as black-box systems due to their complex and opaque nature, which obscures
their internal decision-making processes from users, lenders, and regulators alike. This
opacity can foster consumer mistrust, complicate regulatory compliance, and hinder efforts
to audit or improve these models [33]. Research has highlighted that the lack of trans-
parency in credit risk models can result in unfair lending practices, systemic biases, and
difficulties in validating models against evolving financial landscapes [34].

In credit scoring, interpretability is especially crucial because it enables users to discern
how specific factors contribute to a borrower’s score. For example, financial institutions
can directly observe the impact of variables, such as the debt-to-income ratio or revolving
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balance, on the credit score, facilitating more informed lending decisions and alignment
with regulatory expectations [35]. Understanding these factors empowers lenders to adjust
strategies, offer tailored advice to consumers, and comply with regulations that mandate
transparency in credit decisions, such as the Fair Credit Reporting Act (FCRA) [36].

Transparent models have been shown to significantly enhance trust between financial
institutions and consumers by enabling individuals to understand how their financial
behaviors affect their credit scores. This transparency empowers consumers to take ac-
tionable steps to improve their creditworthiness. Research indicates that transparency not
only boosts customer satisfaction but also fosters a sense of fairness in credit decision-
making [37]. Regulatory frameworks such as the Consumer Credit Protection Act (CCPA)
require lenders to disclose the key factors that influence credit scores. Interpretable models
enable compliance by clearly showing how specific parameters drive scores, thereby aiding
in meeting legal obligations and avoiding regulatory pitfalls [38]. Interpretable models facil-
itate ongoing validation and refinement. By understanding the model’s internal mechanics,
stakeholders can identify areas where the model aligns with domain knowledge and where
adjustments may be necessary. This iterative process is crucial for maintaining the model’s
relevance and accuracy over time, ensuring that it continues to meet the evolving demands
of credit risk assessment [39]. For financial institutions, the ability to dissect a model and
understand its predictions enhances risk management practices. Transparent models allow
lenders to better identify high-risk profiles, adjust credit policies, and mitigate potential
financial exposure, ultimately leading to more robust decision-making frameworks [40].

Our research utilizes a symbolic regression approach within the framework of genetic
programming (GP), which offers a unique advantage by producing interpretable models in
the form of explicit mathematical expressions that accurately fit the data. This approach
aligns with the growing need for transparency in credit risk modeling by enabling the
creation of models that are both accurate and easy to understand. By applying controlled
selective pressure during the evolutionary process, we can prioritize the development of
candidate models that enhance human interpretability, providing crucial insights into the
mechanics of credit risk measurement, such as those used in FICO scores.

Unlike black-box models like neural networks or gradient boosting machines, which
obscure the relationships between variables, symbolic regression generates clear, human-
readable formulas that explicitly outline how input features influence predictions [41]. This
level of interpretability allows stakeholders to not only assess the predictive accuracy of the
model but also comprehend the underlying rationale behind its decisions, thereby making
the models more transparent, actionable, and compliant with regulatory requirements [42].
To benchmark the performance of our GP-based regression approach, we compare it
with state-of-the-art black-box machine learning models, including Multilayer Perceptrons
(MLPs), Gaussian Support Vector Machines (GSVMs), Regression Trees, and Radial Basis
Function Networks (RBFNs).

Furthermore, we introduce a data-filtering procedure designed to identify subsets
of data points where the regression algorithms exhibit significant deterioration in both
training and testing accuracy. This data segmentation approach divides the original dataset
into distinct subsets by grouping credit-related feature vectors that correspond to the same
level of credit risk as indicated by the actual FICO score (i.e., FICO bin). Each FICO class is
then further partitioned into customizable layers, formed by grouping data points based on
their Euclidean distance from the centroid of their respective bin. This methodology allows
us to create distance-specific subsets of training and testing data that reflect the probability
density distribution of the FICO score across the entire dataset.

By organizing the data in this manner, we maintain consistency in the target variable’s
behavior across different distance-based layers, theoretically expecting similar regression
performance within each layer. However, our experiments reveal a notable decline in
regression accuracy in the outer layers, particularly those containing data points farther
from the bin centroids. This degradation suggests that these data points likely belong
to consumers whose credit-related behaviors do not fully align with the characteristics
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typically associated with their current FICO class, indicating potential misclassification or
shifts in their credit risk profiles. This finding underscores the importance of interpretability
in identifying patterns that drive model performance, especially in high-risk segments that
are critical for decision-making in credit risk assessment.

The remaining segments of this paper are organized as follows: Section 2 provides an
extensive description of the utilized dataset, focusing on the various filtering criteria that
were employed in order to increase the coherence of the remaining data points. Moreover,
we elaborate on the rationale behind the selection of a significantly reduced subset of
credit-related features to be used throughout the regression process. Section 3 reviews
theoretical framework of symbolic regression that lies within the core of our genetically
evolved measure of credit risk. Section 4 presents the implementation details of our
layered regression model, measuring its efficiency through a wide range of experimentation
scenarios against state-of-the-art regression techniques. Finally, Section 7 concludes the
paper and investigates avenues of future research.

2. Dataset Description

The credit scoring model proposed in this work was constructed using an extensive
database comprising more than 2 million pre-labeled loan records sourced from Lending
Club (San Francisco, CA, USA). This dataset aggregates loan applications approved by
Lending Club from 2007 up to the third quarter of 2019. The complete dataset is available
to download from Kaggle [43] (San Francisco, CA, USA). Each loan application is detailed
with initial borrower information, culminating in a feature vector of 151 dimensions. These
vectors predominantly contain the applicant’s financial data, such as annual income, credit
history, and FICO scores. Furthermore, they include specifics on the loan’s status (e.g.,
“fully paid” or “defaulted”), its purpose, and any delays in payment history.

It is important to note that the dataset exhibits certain biases due to the platform’s
operational policies. Firstly, Lending Club sets a limitation on applicants by disallowing
those with a debt-to-income (DTI) ratio exceeding 40%. This means individuals whose debt
surpasses 40% of their income are ineligible to apply for a loan on their own. However, this
restriction can be circumvented by opting for joint loan applications, where the combined
DTI ratio must meet the eligibility criteria. Another bias arises from the “lending threshold”
enforced by Lending Club. Under this policy, only applicants with a FICO score above 660
are considered for loan approval.

Recent studies have increasingly concentrated on determining which financial factors
are most closely correlated with the incidence of loan defaults [44–46]. The aim of these
works is to pinpoint the most predictive subset of credit-related features for forecasting the
outcome of approved loans. The consensus among these findings is that variables such as
credit grade, FICO score, annual income, debt-to-income (DTI) ratio, and revolving credit
utilization significantly influence the likelihood of loan default. In line with this paper’s
goal to develop an alternative metric for assessing credit risk, we primarily focus on a more
selective subset of credit-specific factors. Hence, the following four key factors are initially
incorporated into our model as independent regression variables:

• Annual Income (AI): This typically refers to the total amount of money an individual
earns in a year before taxes and other deductions. This figure is crucial in evaluating a
person’s creditworthiness because it provides an indication of their ability to repay
borrowed funds.

• Debt-to-Income Ratio (DTI): This ratio, as indicated by [47,48], is a measure used
by lenders to evaluate a borrower’s ability to manage monthly payments and repay
debts. It is the percentage of a person’s Gross Monthly Income (GMI) that goes toward
paying their Total Monthly Debt Payments (TMDP). DTI can be computed by the
following formula:

DTI =
TMDP
GMI

(1)
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Taking into consideration the fact that AI = 12 · GMI, it can be easily derived that the
DTI and AI are related according to

DTI = 12 · TMDP
AI

(2)

Furthermore, TMDP (Total Monthly Debt Payments) can be decomposed into the sum
of all minimum monthly payments on revolving balances (P), such as credit cards and
lines of credit, and other debts (Q), including loans and mortgages [49]. Formally, this
can be expressed as

TMDP = P + Q =
n0

∑
i=1

Pi +
m0

∑
j=1

Qj (3)

where

– Pi represents the minimum monthly payment on the i-th revolving credit account.
– Qj represents the monthly payment on the j-th non-revolving debt account.

The total number of revolving credit accounts is n0, encompassing all types of credit
that allow the borrower to access a maximum credit limit on a recurring basis as long
as the account remains in good standing. The total number of non-revolving debt
accounts is m0, which includes all types of credit with a fixed payment schedule and a
predetermined number of payments.

• Revolving Balance (RB): Refers to the amount of credit that remains unpaid at the
conclusion of a billing cycle [50]. It can be calculated as the sum of outstanding
balances on all revolving credit accounts as follows:

RB =
n0

∑
i=1

Bi (4)

where Bi identifies the outstanding balance on the i-th revolving credit account. A
connection between RB and TMDP can be established by considering the minimum
monthly payments Pi on revolving credit accounts. Assuming that Pi is typically a
fraction of the revolving balance Bi, which is determined by the minimum payment
rate r (a common rate might be around 1–3% of the revolving balance), we can
write that

Pi = r · Bi, ∀i ∈ [n0]. (5)

Therefore, the total amount of payments on revolving balances can be expressed as

P =
n0

∑
i=1

Pi =
n0

∑
i=1

r · Bi = r · RB (6)

which finally yields

TMDP = r · RB +
m0

∑
j=1

Qj (7)

• Revolving Utilization (RU): This is also known as the credit utilization ratio and is a
key metric in credit scoring that measures the percentage of a borrower’s available
revolving credit that is currently being used [51]. It indicates how much of the available
credit limits are being utilized by the borrower. Lenders and credit scoring models use
this ratio to assess credit risk, with a lower utilization rate generally being favorable, as
it suggests responsible credit usage. The Revolving Utilization ratio can be calculated
by the following equation:

RU =
RB

TRCL
(8)
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where TRCL is the acronym for Total Revolving Credit Limits, referring to the sum
of all credit limits on the available revolving credit accounts. TRCL can, in turn, be
computed as follows:

TRCL =
n0

∑
i=1

Ci (9)

where Ci is the credit limit on the i-th revolving credit account. In other words, Ci
provides the upper bound for the outstanding balance on the i-th revolving credit
account such that 0 ≤ Bi ≤ Ci ∀i ∈ [n0].

The previously mentioned set of independent regression factors will be referred to as
D1 and will be defined as follows:

D1 = {AI, DTI, RB, RU}. (10)

Additional factors are included in the experiment to seek possible improvements in
the performance of the proposed approach. In a second experiment, in addition to the
four initial factors, the following ones are included in the model as independent regression
variables:

• Inquiries Last 6 Months (ILSM): This represents the count of credit inquiries made
by lenders into an individual’s credit report over the past six months. These inquiries
occur when a consumer applies for new credit, such as credit cards, mortgages, or auto
loans. Each time a lender requests a copy of a credit report to evaluate an application,
it registers as an inquiry. According to [52], credit inquiries are an important factor in
credit scoring models because they can indicate a consumer’s credit-seeking behavior.
Multiple inquiries in a short period might suggest that a consumer is experiencing
financial stress or taking on more debt than they can manage, which can be a red
flag for lenders. However, the impact of inquiries on credit scores is generally small
compared to other factors, such as payment history and debt levels.

• Delinquencies in the Last 2 Years (DLTY): This is the total number of instances
where a borrower failed to make timely payments on their credit obligations within
the past two years. Delinquency typically occurs when a payment is overdue by a
specified period (e.g., 30, 60, or 90 days past due). This metric is crucial in assessing a
borrower’s creditworthiness and financial reliability, as frequent delinquencies can
indicate financial distress or poor financial management. Delinquencies are a critical
factor in credit risk assessment [53] for several reasons:

1. Predictive Power: Historical delinquencies are strong predictors of future credit
behavior. Borrowers with recent delinquencies are statistically more likely to
default on new credit obligations [54–56].

2. Credit Score Impact: Credit scoring models, such as FICO and Vantage Score,
heavily penalize recent delinquencies. These models use the number and recency
of delinquencies to adjust credit scores, with more recent delinquencies having a
greater negative impact [56,57].

3. Lender Decision-Making: Lenders use DLTY to evaluate the risk of extending
new credit or loans. High levels of delinquency can lead to higher interest rates,
lower credit limits, or the outright denial of credit applications [55,56].

• Months Since Last Delinquency (MSLD): This measurement corresponds to the
number of months that have elapsed since a borrower last missed a payment on any
credit account. This metric is important in credit risk assessment, as it provides insight
into the recency of a borrower’s financial difficulties [53]. The longer the period since
the last delinquency, the better it reflects on the borrower’s current financial stability
and reliability.

• Public Records (PR): This is the total count of derogatory public records that appear
on a borrower’s credit report. These records are legal documents that are accessible to
the public and typically include serious credit events such as bankruptcies, tax liens,
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and civil judgments. Each of these records can significantly impact a borrower’s credit
score and creditworthiness due to the severity of the financial issues they indicate [58,59].
Three main categories of public record filings can be discerned:

1. Bankruptcies: Legal proceedings involving a person or business that is unable
to repay outstanding debts. Bankruptcies can remain on a credit report for up to
10 years.

2. Tax Liens: Claims made by the government when taxes are not paid on time.
Tax liens can severely affect credit scores and remain on credit reports for several
years, even after being paid.

3. Civil Judgments: Court rulings against a person in a lawsuit, usually involving
the repayment of debt. Civil judgments can remain on a credit report for up to
seven years.

Public record filings constitute extremely important determinants in credit risk assess-
ment [60] since they can by conceived as indicators of severe financial distress. They
reflect significant issues in managing finances, which are critical for estimating the
credit risk of a borrower. Indeed, the presence of public records on a credit report
can decidedly reduce the credit score of a given individual. Credit scoring models
like FICO and Vantage Score heavily penalize public records due to their serious
nature. Moreover, the count and type of public records are utilized by lenders in
order to assess the risk associated with extending new credit. An increased number of
derogatory public records may result in higher interest rates, lower credit limits, or
the denial of credit applications.

• Public Record Bankruptcies (PRB): This metric is the number of bankruptcy filings
appearing in the credit report of an applicant.

• Total Current Balance to High Credit Ratio (BHCR): This ratio compares the Total
Current Balance (TCB) on all installment accounts to the Highest Credit Limit (HCL)
granted on these accounts. It is a metric used to assess how much of the available
credit a borrower is currently using relative to their Highest Credit Limit, providing
insight into their credit utilization and financial behavior [61]. It is easy to deduce that
BHCR can be calculated as

BHCR =
TCB
HCL

(11)

This measure can provide useful insight concerning the percentage of the highest
available credit a borrower is currently utilizing. Apparently, higher credit utilization
rates are associated with higher credit risk. BHCR can be thought of as an additional
indicator of the financial behavior of an individual, where an increased credit utiliza-
tion ratio may suggest an over-reliance on credit. Once again, higher BHCR values can
lead to higher interest rates, lower credit limits, or even the denial of credit. Unlike
RU, BHCR pertains to installment accounts, such as mortgages and auto loans, where
there exists a fixed payment schedule and a predetermined loan amount. Furthermore,
BHCR affects the long-term assessment of debt management, while RU focuses on
assessing short-term debt management, reflecting the borrower’s dependence on
credit.

• Balance to Credit Limit on All Trades (BCLA): This metric can be defined as follows:

BCLA =
TCBall
TCLall

(12)

TCBall stands for Total Current Balances on All Trades, representing the sum of all
outstanding balances on the borrower’s credit accounts, including both revolving
and installment accounts. TCLall is the acronym used for Total Credit Limits on All
Trades, corresponding to the sum of all credit limits on the borrower’s credit accounts.
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TCBall and TCLall can be expressed based on the previously defined quantities as
follows:

TCBall = RB + TCB (13)

TCLall = TRCL + HCL (14)

In this context, BCLA may be re-expressed as

BCLA =
RB + TCB

TRCL + HCL
(15)

The aforementioned ratio provides insight into how much of the available credit a
borrower is using across all credit accounts, not just revolving credit. BCLA is an
important indicator of credit utilization and financial behavior and is used in credit risk
assessment to evaluate a borrower’s ability to manage debt. Taking into consideration
Equations (8) and (11), it is straightforward to understand that an alternative formula
for BCLA can be obtained:

BCLA =
RU · TRCL + BCHR · HCL

TRCL + HCL
(16)

Equation (16) suggests that BCLA is actually a weighted average of the quantities RU
and BHCR, where the weighting coefficients are given by TRCL and HCL, respectively.

• Total Revolving High Credit/Credit Limit (TRHC): This measure quantifies the
highest amount of credit ever utilized on revolving credit accounts relative to the total
credit limits available on those accounts. It provides insight into the maximum credit
exposure a borrower has reached in their revolving accounts, offering a perspective
on their peak credit utilization [62]. TRHC is defined according to the equation below:

TRHC =
THC
TRCL

(17)

TRHC corresponds to the Total High Credit on revolving accounts, which is the
highest amount of credit ever utilized on revolving credit accounts. TRCL is the Total
Revolving Credit Limits, as mentioned previously in this section. TRHC provides a
different perspective on a borrower’s credit utilization and risk profile by reflecting
the highest debt levels of an individual relative to available credit. This measurement
can help lenders evaluate a borrower’s efficiency in managing credit limits and how
frequently higher levels of credit utilization are approached or exceeded.

The additional set of independent regression variables will be incorporated into D1,
forming the complete set of available regression factors D2, which is defined as follows:

D2 = {AI, DTI, RB, RU, ILSM, DLTY, MSLD, PR, BHCR, BCLA, TRHC, PRB} (18)

To ensure the dataset’s consistency, we filtered out loan records from applicants
with annual incomes below USD 10,000 or above USD 700,000. In addition, we excluded
joint application records to focus on generating consumer-specific credit scores. We also
retained records where the Revolving Utilization was within the 0% to 100% range, as
values above 100% occur under specific credit card management scenarios that are not the
focus of this study. To avoid introducing noise into the model, records from non-verified
users were removed. Furthermore, our analysis concentrated on loans classified as “Fully
Paid”, “Charged Off”, and “Default”, excluding loans marked as “late X days” due to
their ambiguous final status. The refined dataset consists of 295,788 instances for the
first experiment, featuring four-dimensional vectors, and 295,788 instances for the second
experiment, with twelve-dimensional vectors. Each vector is normalized on a component-
wise basis to the [0, 1] range. Table 1 provides essential descriptive statistics related to the
explanatory and target regression variables used in our analysis.
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Table 1. Descriptive statistics of regression variables.

Min Max Normalized Mean Normalized STD

Annual Income (AI) 10,008 699,587 0.1037 0.0786
Debt-to-Income Ratio (DTI) 0 49.9600 0.3904 0.1623

Revolving Balance (RB) 0 1,696,796 0.0097 0.0143
Revolving Utilization (RU) 0 100 0.5055 0.2425

Inquiries Last 6 Months (ILSM) 0 5 0.1295 0.1828
Delinquencies in the Last 2 Years (DLTY) 0 29 0.0125 0.0332

Months since the last Delinquency (MSLD) 0 226 0.4810 0.4819
Public Records (PR) 0 61 0.0044 0.0110

Total Current Balance to High Credit Ratio (BHCR) 0 558 0.1307 0.0405
Balance to Credit Limit on All Trades (BCLA) 0 204 0.3074 0.0917

Total Revolving High Credit/Credit Limit (TRHC) 100 1,652,700 0.0200 0.0212
Public Record Bankruptcies (PRB) 0 9 0.0185 0.0463

3. Symbolic Regression

Let X ⊂ Rd be the complete set of credit-related d-dimensional features pertaining to
the actual computation of the FICO score through the utilization of the following unknown
mapping:

f : X → [0, 1]. (19)

The primary objective of our research is to construct an approximate functional form f̂
for the true mapping f based on a reduced set X̂ ⊂ Rm (actually, X̂ ⊂ [0, 1]m since all
credit-related features are normalized in the [0, 1] interval) of normalized m-dimensional
features, which can be any combination of the available regression variables that appear
in Table 1. Assuming that X̂ = {x̂1, . . . , x̂n} designates the credit-related feature vectors
acquired from each candidate borrower with x̂j ∈ X̂ , the respective set of normalized
FICO scores may be denoted by Y = {y1, . . . , yn}, where yj ∈ [0, 1], ∀j ∈ [n]. Taking into
consideration that the actual FICO scores are computed on the basis of the entire feature
space X such that yj = f (xj) with xj ∈ X , ∀j ∈ [n], our paper focuses on determining
an approximate mapping f̂ : X̂ → [0, 1] that produces the set of estimated FICO values
Ŷ = {ŷ1, . . . , ŷn} such that

ŷj = f̂ (x̂j) ≈ f (xj) = yj, ∀j ∈ [n]. (20)

In fact, the ultimate functional form of f̂ will be given as a linear combination of
adjustable tree-structured functions such that

f̂ (x̂; s) =
k=R

∑
k=1

ck f̂k(x̂, sk) + c0, (21)

where s = [s1, . . . , sR] ∈ SR is a vector of extended parameters, with each sk ∈ S being the
particular assignment of configuration variables that defines the symbolic expression for
each f̂k, ∀k ∈ [R]. Therefore, by allowing S to be an extended assortment of heterogeneous
parameters, we can write that

ŷj = f̂ (x̂j, s), ∀j ∈ [n]. (22)

In this context, the functional form of f̂ can be determined by selecting the optimal vector
s∗ of extended parameters such that

s∗ = arg min
s∈SR

√√√√ 1
n

n

∑
j=1

(yj − f̂ (x̂j; s))2. (23)
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The minimization problem formulated in Equation (23) was ultimately addressed within
the evolutionary computational framework provided by the GPTIPS MatLab library [63,64].

The augmented set of configuration variables S can be defined as a hierarchical
organization of level-specific parameter sets that form a binary tree structure. Each level
of the binary tree contains the information required to determine the corresponding level
of the tree structure associated with each fk. These level-specific parameter sets are based
on two fundamental groups of parameters: Φ and F. Φ corresponds to the primitive set of
credit-related features, while F is a collection of base functions, defined as follows:

F = { f1, . . . , fK}, (24)

where f j = f j(x1
j , . . . , x

qj
j ) with 1 ≤ qj ≤ m, representing the number of input arguments

for each f j, j ∈ [K].

Let f (l)k,r ∈ F be the r-th base function pertaining to the l-th level of the tree structure
that produces the final output of fk with 0 ≤ l ≤ L− 1, which we can express as follows:

f (l)k,r = f (l)k,r (x(r,l)
k,1 , . . . , x(r,l)

k,qk(r,l)), (25)

where 1 ≤ qk(r, l) ≤ m is the number of input arguments required for the definition of f (l)k,r .

Each element of the extended set of parameters {x(r,l)
k,s } with 1 ≤ s ≤ qk(r, l) can be either a

primitive credit-related feature in Φ or a composite one derived from a base function in F.
Generally, qk(l) with 0 ≤ l ≤ L represents the total number of input arguments required by
the base functions at the l-th level of the symbolic tree for fk, k ∈ [R]. Similarly, mk(l) and
nk(l) denote the total number of primitive and composite input arguments, respectively.

The parameter L represents the maximum depth of the tree structure associated
with each functional form fk(x̂), which controls the complexity of the resulting symbolic
expression. It can be easily understood that there are no primitive arguments at the zeroth
level of the symbolic tree and no composite arguments at the L-th level, such that mk(0) = 0
and nk(L) = 0 for k ∈ [R]. Therefore, the final outcome of each f̂k is given as the root level
output of the relevant tree structure:

f̂k(x̂) = f (0)k (x(0)1 , . . . , x(0)q(0)), ∀k ∈ [R]. (26)

The hierarchical organization of S into a binary tree of level-specific parameters S (l) can be
expressed as

S =
L⋃

l=0

S (l), (27)

where the l-th level encapsulates the extended set of configuration factors needed to define
the functional form for each f̂ (l), ∀l ∈ [L]. Each level of the binary tree constitutes a mix of
primitive and composite parameter sets:

S (l) = P (l) ∪ C(l), ∀l ∈ [L]. (28)

In this context, P (l) and C(l) represent the subsets of primitive and composite parameters
needed to define the n(l − 1) composite variables at the previous tree level. Formally, this
is expressed as

P (l) = Φm(l−1), ∀l ∈ [L], (29)

C(l) = Fn(l−1), ∀l ∈ [L], (30)
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with the following constraints:

P (0) = ∅, (31)

C(L) = ∅. (32)

Figure 1 depicts a particular organization for the extended set of parameters S under
the assumption that the maximum tree level is L = 4.

F

Φm0 Fm0

Φm1 Fm1

Φm2 Fm2

Φm3 Fm3

S (0)

S (1)

S (2)

S (3)

S (4)

Figure 1. Hierarchical structure of the extended parameter set S for L = 4.

4. Layered Regression Models

Among the goals of this study is to deliver a layered model of credit risk that will have
the ability to adapt to the inherent particularities of a given dataset. Such a task cannot be
accomplished unless the fundamental characteristics of the original dataset are preserved
within each subset of training and testing patterns considered throughout the development
process. The most intrinsic property of the data relates to the probability density function of
the target regression variable. This distribution function can be discretized by partitioning
the set Y of normalized FICO scores into a sequence {Y1, . . . , YM} of disjoint bins such that

Y =
M⋃

k=1

Yk, (33)

where the k-th FICO bin will be given by (apparently, the M-th FICO bin will be given by
YM = {y ∈ Y : M−1

M ≤ y ≤ 1}):

Yk =
{

y ∈ Y :
k − 1

M
≤ y <

k
M

}
(34)

such that M = 20. Therefore, the fraction |Yk |
n can be interpreted as the empirical probability

of a random borrower in the dataset pertaining to the k-th FICO class, given by

P(yj ∈ Yk) =
|Yk|

n
, ∀k ∈ [M], j ∈ [n]. (35)

The graphical representation of the aforementioned quantity for our dataset appears
in Figure 2. Figures 3 and 4 illustrate the two-dimensional (PCA-based) spatial distribution
of the feature vectors for D1 and D2, respectively. The different colors represent the various
FICO classes. It is clear that the underlying regression task is highly challenging due to the
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significant overlap among the credit-related feature vectors associated with the different
FICO classes. Figure 4 suggests that the 12-dimensional credit-related feature vectors can
be organized into two distinct classes that, however, are not associated with any particular
subset of FICO classes or a specific loan status.

Equations (33) and (34) formulate the most elementary partitioning of the dataset into
M distinct classes of credit risk such that

[n] =
M⋃

k=1

nk (36)

where
nk = {j ∈ [n] : yj ∈ Yk}, ∀k ∈ [M], (37)

represents the subset of indices identifying the data points pertaining to the k-th FICO
bin. From this perspective, it is of major importance to associate each FICO class with an
ideally distinct level of credit risk that is monotonically decreasing for increasing values
of k (Figure 5 verifies that this is not exactly the case for the considered classes of FICO,
at least as far as the utilized dataset is concerned). Such behavior would indicate that the
probability of default for a given individual tends to zero as the normalized FICO score
approaches its maximum value, such that

lim
yj→1

Pd(yj) = 0, ∀j ∈ [n]. (38)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

Fico Class

R
el

at
iv

e
Fr

eq
ue

nc
y

of
D

at
a

Po
in

ts
(%

)

Figure 2. The empirical probability density distribution of normalized FICO scores for the com-
plete dataset.
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Figure 3. PCA−based spatial distribution for D1. Different colors represent the different FICO classes.

Figure 4. PCA−based spatial distribution for D2. Different colors represent the different FICO classes.

In practice, however, FICO classes are ranked according to the empirical probability
of default, which can be estimated by taking into consideration the accompanying set
Z = {z1, . . . , zn} of loan statuses such that zj ∈ {0, 1}, where zj = 0 indicates that the
j-th borrower failed to fulfill his/her financial obligations. In this framework, the credit
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risk level assigned to each FICO class can be quantified by measuring the conditional
probability of default according to

P(zj = 0|yj ∈ Yk) = 1 − 1
|nk| ∑

j∈nk

zj, j ∈ [n], ∀k ∈ [M], (39)

which is depicted in Figure 5.
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Figure 5. The empirical probability of default per FICO Class for the complete dataset.

In light of the previous declarations, the probability of default associated with a
particular credit-related feature vector can be expressed as

Pd(x̂j) ≡ P(zj = 0|yj ∈ Yk) (40)

Evidently, obtaining a high-quality estimation for the probability of default for a new loan
application, Pd(x̂j), relies on the precision of the regression model used to estimate the
FICO score f̂ (x̂j) so that

Pd(x̂j) ≈ P(zj = 0 | f̂ (x̂j) ∈ Yk). (41)

given that f̂ (x̂j) ≈ f (x̂j) = yj. Therefore, improving the accuracy of determining the exact
FICO score for a given individual enhances the reliability of the resulting probability of
default estimation.

This paper demonstrates that the required regression model f̂ : X̂ → [0, 1] (initial
experiments have shown that the regression accuracy of a model trained on the complete
dataset X̂ is significantly low) can be effectively decomposed into a series of specialized
approximation models f̂l , where each model focuses on a distinct subset X̂(l) of the complete
dataset X̂ (X̂ represents the set of m-dimensional credit-related feature vectors associated
with each candidate borrower in the dataset) parameterized by l ∈ [L]. Note that each
individual model f̂l operates on the same subspace of credit-related features X̂ ⊂ Rm,
such that

f̂l : X̂ → [0, 1], ∀l ∈ [L], (42)

but is trained on a sufficiently diversified subset X̂(l) of the available observations X̂ so that

X̂ =
L⋃

l=1

X̂(l). (43)
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Clearly, each data segment X̂(l) is associated with a corresponding subset of the target
FICO values Y(l), which can be formally defined as follows:

Y(l) = { f (x̂) : x̂ ∈ X̂(l)}, (44)

which, in turn, implies that the complete set of target regression values can be disaggregated as
follows:

Y =
L⋃

l=1

Y(l). (45)

Our primary objective is to formulate an appropriate partitioning of X̂ such that the
corresponding segmentation of Y reproduces the empirical probability density distribution
of the normalized FICO scores shown in Figure 2 within each segment Y(l). To this end, each
data segment X̂(l) will be created by selectively aggregating samples from all bin-specific
fragments X̂k, designated as

X̂k = {x̂j : j ∈ nk}, ∀k ∈ [M]. (46)

It is evident that the true FICO class of each data point x̂j ∈ X̂ provides the most funda-
mental partitioning of X̂ into a series of disjoint, bin-oriented subsets, such that

X̂ =
M⋃

k=1

X̂k. (47)

However, obtaining the desired data segmentation, as abstractly formulated by Equations (43)
and (45), can be achieved by further partitioning each X̂k into a sequence {X̂(l)

k }L
l=1 of disjoint

subsets such that

X̂k =
L⋃

l=1

X̂(l)
k . (48)

X̂(l)
k represents the l-th layer of data samples from the k-th FICO class, formed by grouping

feature vectors whose associated target values belong to the respective bin and whose
distances from the class centroid fall within a restricted interval of values defined by the
layer identifier l, as illustrated in Figure 6. As the layer index l increases, the corresponding
patterns are positioned progressively farther from the class centroid.

l = 1

l = 2

· · ·

l = L − 1

l = L

Ck

Figure 6. Distance layers per FICO class.
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The formal definition of the layer-specific data fragments for each FICO class can be
achieved by first considering the corresponding bin centroids ck, defined as

ck =
1

|X̂k|
∑

x̂∈X̂k

x̂, ∀k ∈ [M]. (49)

Next, we compute the Euclidean distances of all feature vectors associated with the k-th
bin from the corresponding centroid as follows:

Dk = {∥x̂ − ck∥ : x̂ ∈ X̂k}, ∀k ∈ [M], (50)

where we assume that the elements in each Dk are sorted in ascending order. Subse-
quently, we determine L + 1 anchor points {d0

k , d1
k , · · · , dL

k } (the first and last anchor
points correspond to the minimum and maximum distances, defined as d0

k = mind∈Dk
{d}

and dL
k = maxd∈Dk

{d}, respectively) for each set of sorted distances, allowing us to de-
fine L ranges of distances as (the L-th range of distance values is specifically defined as
R(L)

k = [dL−1
k , dL

k ], ∀k ∈ [M])

R(l)
k = [dl−1

k , dl
k), ∀k ∈ [M], ∀l ∈ [L] (51)

such that all distance ranges for a given bin k contain approximately the same number of
data samples, i.e., |R(l)

k | ≈ |Dk |
L . In this setting, the l-th layer of data points originating from

the k-th bin can be defined as

X̂(l)
k = {x̂ ∈ X̂k : ∥x̂ − ck∥ ∈ R(l)

k }, ∀l ∈ [L], ∀l ∈ [L]. (52)

The desired partitioning of the complete dataset, as depicted in Figure 7, is obtained
by accumulating layer-specific patterns across all available bins according to the follow-
ing equation:

X̂(l) =
M⋃

k=1

X̂(l)
k , ∀l ∈ [L]. (53)

Obviously, data segments indexed by lower values of l (closer to the class centroid) inte-
grate feature vectors that encapsulate the financial behavior of the most representative
individuals for the given class of credit risk. Conversely, data fragments identified by
higher values of l (farther away from the class centroid) incorporate feature vectors that
encode atypical financial behavior for the particular class of credit risk. Therefore, develop-
ing layer-specific models for the estimation of the FICO score can, in principle, enhance
the regression accuracy of the respective models for lower values of l. Models that are
trained on subsets of data that are designated by higher values of l are expected to be of
significantly lower accuracy.

Taking into consideration that each FICO class is partitioned into an equal number
of segments and each data layer is formed by aggregating samples from all classes, it
is straightforward to deduce that the empirical probability density distribution of the
normalized FICO score approximates the respective empirical probability distribution of
the complete dataset. Thus, the following equation is approximately satisfied:

P(y ∈ Yk) ≈ P(y ∈ Yk | x̂ ∈ X̂(l)), ∀k ∈ [M], ∀l ∈ [L]. (54)

The approximate validity of Equation (54) is verified by Table A1 in Appendix A, which
presents the right-hand-side quantities of the aforementioned equation for various values of
k and l, considering that, throughout our experimentation, we use a total of L = 13 layers.
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Figure 7. Data segmentation process.

5. Experimental Results

In this section, we demonstrate that the approximation capability of the proposed
GP-based symbolic regression approach is comparable to well-established machine learning
regression models. Specifically, we compare the proposed approach with Multilayer Percep-
trons, Gaussian Support Vector Machines, Radial Basis Function Networks, and Regression
Trees. The performance of the employed methods is evaluated based on regression accuracy
measures, namely, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
the coefficient of determination (R2). For each method, two tables are presented: one for
training and one for testing, each containing the aforementioned measures for each layer.
It is important to note that the regression performance metrics reported in this section
correspond to the best-performing individuals in the genetic population for the GP-based
symbolic regression.

Our experiment is conducted on two overlapping sets of features, D1 and D2, as
defined by Equations (10) and (18) in Section 2. The first set, D1, is a four-dimensional
feature set that captures core financial metrics critical for credit risk assessment. In contrast,
D2 is a twelve-dimensional feature set that extends D1 by incorporating additional variables
that provide a more comprehensive view of a borrower’s financial profile, enabling more
nuanced analysis and predictions. It is important to note that D1 is a subset of D2, which
allows us to explore the impact of adding more features to our models. This relationship
between the sets highlights the progressive refinement of our feature space from a basic
four-dimensional framework to a more detailed twelve-dimensional one.

The results discussed in the following subsections indicate that all methods are com-
petitive. Moreover, the experiments reveal that the approximation ability of the employed
regression mechanisms deteriorates as the layer index increases, as suggested by the grad-
ual decrease in R2. This reflects a reduced confidence that the actual FICO class of the
data points in each layer corresponds to the class indicated by the respective layer index.
In other words, data points that are more distant from the centroid of each FICO bin are



Electronics 2024, 13, 4324 19 of 37

more likely to belong to a different FICO class. This deterioration is attributed to the
incomplete information upon which the FICO score is calculated, as the actual features
used remain undisclosed.

5.1. GP Regression

We employ a GP-based regression mechanism with one gene with the aim of obtaining
a simple symbolic expression that approximates the FICO score. Table 2 exhibits the
parameters used in GP regression with one gene.

Table 2. Run parameters of GP regression with 1 gene.

Run Parameter Value

Population Size 100
Maximum Generations 50

Input Variables 4
Training Instances 20,472
Tournament Size 10

Elite Fraction 0.3
Maximum Genes 1
Maximum Depth 5

Maximum Total Nodes +∞
Ephemeral Random Constant Probability 0.05

Crossover Probability 0.38
Mutation Probability 0.60

The regression accuracy measures of the GP model for different layers of data segmen-
tation in experiments D1 and D2 are presented in Table A2 (training, in Appendix A) and
Table 3 (testing). In both experiments, as the layer index increases, RMSE and MAE increase,
while R2 decreases. As noticed, there are actual factors used in the FICO calculation that
cannot be accessed; thus, the discrimination ability of the utilized factors is reduced for the
distant data points from the FICO bin center.

Table 3. GP regression testing accuracy measures with 1 gene.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0611 0.050 0.84 0.0598 0.050 0.85
2 0.0791 0.064 0.74 0.0681 0.056 0.81
3 0.0895 0.071 0.67 0.0737 0.060 0.77
4 0.0954 0.075 0.62 0.0814 0.065 0.73
5 0.1019 0.080 0.57 0.0835 0.066 0.71
6 0.1067 0.083 0.53 0.0930 0.073 0.64
7 0.1100 0.085 0.50 0.1071 0.087 0.52
8 0.1149 0.088 0.45 0.1202 0.098 0.40
9 0.1187 0.091 0.41 0.1279 0.099 0.32

10 0.1229 0.094 0.37 0.1236 0.093 0.36
11 0.1286 0.098 0.31 0.1229 0.090 0.37
12 0.1344 0.102 0.25 0.1271 0.092 0.33
13 0.1487 0.112 0.11 0.1264 0.092 0.36

Experiment D2 (with 12 features) demonstrates the best performance across all mea-
sures for both training and testing data. In particular, across all layers, D2 consistently
outperforms D1 in terms of RMSE, MAE, and R2, indicating better fit and performance.
This suggests that the 12-feature set provides the most balanced and effective feature
combination for the GP model. Also, we note that a third experiment with 24 features (ad-
ditional features compared to D2 experiment: Car, Credit Card, Debt Consolidation, Home
Improvement, House Purchase, Major Purchase, Medical, Moving, Renewable Energy,
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Small Business, Vacation, Wedding) was conducted to incorporate categorical variables
representing the loan’s purpose. However, the incorporation of more explanatory variables
did not improve the regression performance.

Interestingly, the performance of GP during training and testing is similar at the lower-
index layers (particularly layers 1 and 2), which can be attributed to several factors specific to
the GP-based symbolic regression approach used in our experiments (see Tables A2 and 3):

1. Overfitting avoidance in early layers: In the early layers, the dataset segments contain
the most representative data points, closest to the centroids of the respective FICO
bins. These points exhibit well-behaved financial characteristics that strongly align
with the regression model’s predictive power. GP, being evolutionary, tends to focus
on simpler, more generalizable models in early iterations. This simplicity prevents
overfitting, which might explain the comparable performance on both training and
testing data.

2. Model simplicity: Genetic programming inherently follows Occam’s razor, favoring
simpler models with fewer parameters. In early layers, where data are more homoge-
neous and typical, the symbolic expressions derived by GP may be sufficiently simple
and general to perform equally well on both training and testing datasets.

3. Layer segmentation: The closer data points are to the centroids of the FICO bins, the
less variability exists between training and testing data. These layers likely contain very
similar examples across both datasets, which results in similar performance metrics.

4. Cross-validation and data consistency: The consistency of performance may also be
partially due to the cross-validation technique used, which ensures that the partition-
ing of the dataset into training and testing sets is balanced. This prevents significant
variability between the training and testing datasets for well-behaved, centralized
data points.

However, as the layer index increases (starting from layer 3), the data points in the
training and testing sets begin to exhibit more variability and less alignment with their
respective centroids. This leads to a noticeable drop in the testing performance, which
is reflected by the growing divergence in the RMSE, MAE, and R2 values between the
training and testing datasets, as seen in Tables A2 and 3.

5.2. Gaussian Support Vector Machines—GSVM Regression

The GSVM model was implemented using the “fitcsvm” function in MATLAB R2024a.
The following parameters were used:

• Kernel function (rbf): This specifies the kernel function used by the SVM model. The
radial basis function (RBF) kernel is a common choice that allows the model to handle
non-linear relationships between features.

• Kernel scale (auto): This parameter automatically scales the kernel function. MAT-
LAB chooses an appropriate scale factor for the RBF kernel, optimizing the kernel’s
performance based on the data.

• Standardize (false): This parameter determines whether the input data should be
standardized. Setting it to “false” means that the data were not standardized, and the
SVM used the initial normalization of the feature values in the [0, 1] interval.

The accuracy measures of Gaussian Support Vector Machines in the two experiments
(D1, D2) are displayed in Table A3 (training, in Appendix A) and Table 4 (testing). As in the
case of the GP regression model, in all experiments for GSVM, as the layer index increases,
R2 decreases. A sharp decrease in R2 is spotted for layer 13, and this is more severe for
experiment D1. GSVM performs better for both training and testing data in experiment D2
(12 features), indicated by the lowest RMSE and MAE and the highest R2 values.

Comparing the GP model with GSVM, we conclude that the latter outperforms the
former in terms of RMSE, MAE, and R2 in both experiments for both training and testing
data. This suggests that GSVM has better predictive performance compared to the GP
model. The paired t-test results, presented in Table A7 in Appendix A, confirm the above
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conclusion. In particular, the high t-statistics and the low p-values (less than 0.05) provide
strong evidence that the observed differences in performance are not due to random chance.

Table 4. Gaussian SVM regression testing accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0012 0.047 0.86 0.0011 0.044 0.88
2 0.0013 0.043 0.84 0.0012 0.043 0.86
3 0.0014 0.042 0.82 0.0013 0.045 0.85
4 0.0014 0.040 0.81 0.0014 0.046 0.82
5 0.0015 0.040 0.80 0.0015 0.048 0.80
6 0.0015 0.039 0.79 0.0015 0.050 0.79
7 0.0015 0.039 0.79 0.0015 0.046 0.79
8 0.0015 0.039 0.79 0.0015 0.040 0.79
9 0.0016 0.040 0.77 0.0014 0.034 0.81

10 0.0016 0.041 0.76 0.0015 0.036 0.79
11 0.0016 0.043 0.76 0.0015 0.040 0.79
12 0.0018 0.050 0.71 0.0016 0.050 0.75
13 0.0024 0.078 0.48 0.0021 0.070 0.59

5.3. Multilayer Perceptrons—MLP Regression

The MLP model in MATLAB was implemented using the “feedforwardnet” function,
and the following parameters were used:

• Hidden Layer 1 (Neurons): This refers to the number of neurons in the first hidden
layer. It was set to 3 ∗ m, where m represents the dimensionality of the input space.
The larger number of neurons in this layer allows for the broad capturing of patterns
in the input data.

• Hidden Layer 2 (Neurons): This is the number of neurons in the second hidden layer,
set to 2 ∗ m. Reducing the number of neurons progressively from the first to the second
hidden layer allows for more refined processing of features.

• Hidden Layer 3 (Neurons): This is the number of neurons in the third hidden layer,
which is equal to m. This layer captures the final patterns before the output.

• Training Function (trainrp): This is the training algorithm used for the MLP. “trainrp”
refers to the resilient back-propagation algorithm, which is a fast and robust opti-
mization technique for neural networks in MATLAB. It adjusts the weight updates to
improve the learning process.

The accuracy measures of Multilayer Perceptrons in the two experiments (D1, D2) are
exhibited in Table A4 (training, in Appendix A) and Table 5 (testing). Similar to the models
already discussed, as the layer index increases, R2 decreases in all experiments for the MLP.
Also, the MLP performs best in experiment D2 (12 features), indicated by the lowest RMSE
and MAE and the highest R2 values.

Comparing the MLP with GSVM shows that they perform similarly based on the given
measures and feature sets. Specifically, GSVM shows better performance in most training
measures and some testing measures, particularly in MAE. The MLP method demonstrates
comparable performance in terms of RMSE in some testing scenarios. Therefore, GSVM
may be considered the better model based on these evaluation metrics.

Regarding the comparison of the MLP with the GP model, the paired t-test results
reveal that the former significantly outperforms the latter in both the training and testing
phases: see Table A8 in Appendix A. The higher RMSE and MAE values, coupled with
lower R2 scores for the GP model, indicate that the MLP method performs better in terms
of prediction accuracy and goodness-of-fit.
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Table 5. MLP regression testing accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0012 0.047 0.86 0.0011 0.044 0.88
2 0.0013 0.046 0.84 0.0012 0.046 0.86
3 0.0014 0.045 0.82 0.0013 0.047 0.84
4 0.0014 0.043 0.82 0.0014 0.048 0.83
5 0.0014 0.044 0.81 0.0014 0.051 0.81
6 0.0015 0.044 0.80 0.0014 0.050 0.81
7 0.0015 0.043 0.80 0.0015 0.047 0.80
8 0.0015 0.044 0.79 0.0015 0.043 0.80
9 0.0015 0.045 0.78 0.0014 0.038 0.81

10 0.0016 0.046 0.77 0.0015 0.040 0.79
11 0.0016 0.047 0.77 0.0015 0.044 0.79
12 0.0017 0.055 0.72 0.0016 0.053 0.75
13 0.0024 0.081 0.48 0.0021 0.071 0.61

5.4. Radial Basis Function Networks—RBFN Regression

Radial Basis Function Networks are also employed to examine the capability of this
method to approximate the FICO score. The RBFN model was implemented using the
“newrb” function in MATLAB. The following parameters were used:

• Input Number (m): This refers to the dimensionality of the input space, denoted by m.
Each input dimension corresponds to a feature in the data.

• Hidden Units (20): This is the number of neurons (or radial basis functions) in the
hidden layer of the RBF network. A fixed number of 20 units were used, allowing the
model to capture non-linear patterns in the data.

• Output Number (1): This parameter indicates the number of output units, which, in
this case, is 1, as the task is regression (predicting a single continuous variable).

• Activation Function (gaussian): This refers to the activation function used in the
hidden layer. In this case, a Gaussian function was chosen, which is standard for RBF
networks and helps define the response of each hidden unit to the input data.

• Output Function (linear): This specifies that the output layer uses a linear function to
map the hidden layer’s output to the final prediction.

• EM Iterations (10): This refers to the number of iterations for the Expectation-
Maximization (EM) algorithm used to fit the RBFN model. EM is used to optimize the
Gaussian parameters of the hidden units.

• Covariance Collapse Check (1): This parameter ensures that the covariance matrix of the
Gaussian functions does not collapse during training, preventing numerical instability.

The accuracy measures of RBFNs in both experiments (D1, D2) are exhibited in
Table A5 (training, in Appendix A) and Table 6 (testing). Similar to the previously discussed
methods, the negative effect on R2 is also observed for the RBFN when the layer index is
increased. However, for experiment D2 (12 features), the accuracy measures do not change
sharply for the last layers.

The RBFN method is consistently outperformed by the MLP method in both exper-
iments (D1, D2) for both training and testing data in terms of RMSE and MAE, which
indicates better performance in minimizing errors. Also, the MLP generally has higher R2

values, suggesting a better fit to the data. On the other hand, the RBFN performs better
than the GP model in terms of RMSE and MAE in both training and testing. The R2 values
also indicate that the RBFN model performs better, and these differences are statistically
significant (Table A9 in Appendix A). Overall, the RBFN model appears to offer better
prediction accuracy and goodness-of-fit for most cases compared to the GP model.
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Table 6. RBFN regression testing accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0012 0.048 0.85 0.0012 0.046 0.87
2 0.0015 0.057 0.78 0.0014 0.053 0.82
3 0.0017 0.060 0.74 0.0015 0.058 0.78
4 0.0017 0.059 0.73 0.0016 0.061 0.75
5 0.0018 0.061 0.70 0.0017 0.065 0.72
6 0.0018 0.061 0.69 0.0018 0.070 0.68
7 0.0018 0.061 0.69 0.0021 0.079 0.60
8 0.0018 0.060 0.69 0.0023 0.089 0.49
9 0.0019 0.061 0.67 0.0024 0.087 0.45

10 0.0019 0.062 0.66 0.0023 0.080 0.50
11 0.0019 0.061 0.65 0.0023 0.081 0.48
12 0.0020 0.065 0.62 0.0024 0.085 0.44
13 0.0026 0.091 0.36 0.0025 0.085 0.44

5.5. Regression Trees

The Regression Tree model is the last method employed for obtaining a credit score
that approximates the FICO score. The Regression Tree model was implemented using the
“fitrtree” function in MATLAB. The following parameter was used:

• Maximum Splits (50): This parameter controls the maximum number of splits that
the decision tree is allowed to make. By setting the maximum number of splits to
50, we limit the tree’s depth and complexity, which helps prevent overfitting while
maintaining interpretability.

Tables A6 (training, in Appendix A) and Table 7 present the regression accuracy
measures for the two experiments (D1, D2). As observed with other methods, R2 generally
decreases as the layer index increases. However, in experiment D2, both training and
testing R2 values for layer 13 are slightly higher than for layer 12. Based on the regression
measures (RMSE, MAE, and R2), the Regression Tree method performs best in experiment
D1 (four features) in terms of both training and testing accuracy. The smallest RMSE and
MAE, along with the highest R2, indicate that the Regression Tree model fits and predicts
best with four features in experiment D1. The performance slightly decreases as the number
of features increases to 12 in experiment D2.

Table 7. Regression Tree testing accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0013 0.049 0.85 0.0012 0.046 0.87
2 0.0015 0.056 0.78 0.0014 0.053 0.82
3 0.0017 0.062 0.73 0.0015 0.056 0.80
4 0.0018 0.064 0.70 0.0016 0.058 0.77
5 0.0019 0.067 0.66 0.0016 0.061 0.75
6 0.0019 0.068 0.64 0.0017 0.063 0.72
7 0.0020 0.070 0.62 0.0018 0.064 0.68
8 0.0021 0.071 0.60 0.0022 0.075 0.56
9 0.0021 0.073 0.57 0.0021 0.070 0.59

10 0.0022 0.074 0.55 0.0022 0.073 0.54
11 0.0022 0.074 0.54 0.0022 0.075 0.53
12 0.0023 0.076 0.51 0.0023 0.080 0.48
13 0.0026 0.088 0.40 0.0024 0.081 0.49

The comparison of RBFN with Regression Trees shows that they perform similarly in
terms of RMSE and MAE for both training and testing datasets. However, Regression Trees
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exhibit slightly better consistency in R2 values, indicating a marginally better performance
in capturing the variance in the data. Overall, Regression Trees may be preferable for
their consistent performance in R2 across different layers and datasets. The Regression
Tree model generally performs better than the GP model in terms of RMSE and MAE in
both experiments D1 and D2. The R2 values also indicate that the Regression Tree model
performs better, with these differences being statistically significant; see the results of the
paired t-test in Table A10 in Appendix A.

Overall, GSVM appears to be the overall best-performing method across most experi-
ments, showing consistently low RMSE and MAE values along with high R2 values. The
MLP method also shows strong performance, particularly in experiments with four fea-
tures. The GP model, while not performing as well as the others, remains competitive
and provides valuable insights, as it offers interpretability of the mechanism behind the
computation of the credit risk measure.

5.6. Challenges in Regression Accuracy Across Higher-Index Layers

The results of our experiments indicate a significant decline in the approximation
ability of the regression models as the layer index increases, particularly within the higher-
index layers of the data. This degradation in performance can be attributed to several
interconnected factors that collectively challenge the predictive capabilities of the em-
ployed models.

First, increased data variability in the outer layers plays a critical role. As the layer
index rises, data points become progressively distant from the centroids of their respective
FICO bins, resulting in greater variability and more pronounced outlier behavior. These
higher-index data points often exhibit financial patterns that deviate substantially from the
core characteristics defining their FICO class, reflecting more extreme or atypical behaviors.
This increased dispersion introduces substantial noise into the dataset, complicating the
task of the regression models, which struggle to identify consistent patterns. As a result,
the predictive accuracy diminishes significantly as the data points become farther from the
bin center.

Additionally, overlapping between FICO classes in higher-level layers contributes to
the observed performance decline. The data points in these layers frequently lie near the
boundaries separating different FICO categories, leading to shared characteristics among
multiple classes and blurring the lines between distinct FICO scores. This ambiguity makes
it difficult for regression models to accurately classify such points, leading to increased
errors and reduced confidence in the predictions. The uncertainty grows as data points
move farther from the bin center, undermining the model’s ability to make precise and
reliable classifications.

Moreover, data points in higher layers are often less representative of the typical
behaviors associated with their FICO class. The farther a point is from the centroid, the
more it reflects behaviors that are atypical, such as outlier financial actions or unusual
circumstances that do not align with the standard characteristics of the class. This di-
vergence presents a significant challenge for regression models, which rely on patterns
observed in the training data to make predictions. These atypical data points are frequently
underrepresented in the training set, leading to decreased model accuracy as the models
are less equipped to handle such variability.

The increasing complexity and non-linearity of relationships between input features
and the target FICO score in higher layers further exacerbate the challenges. While simpler
models trained on lower-index layers may perform adequately near the bin center, they
struggle to capture the intricate and complex dynamics present in higher-index data. These
data points often involve more sophisticated interactions among features, demanding ad-
vanced models capable of accurately interpreting and predicting outcomes. This complexity
significantly hampers the performance of regression models, which find it difficult to map
and understand these non-obvious relationships.
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Lastly, the effect of feature scaling and transformation can vary dramatically across
layers, particularly in higher-index layers, where data variability is most pronounced.
Inconsistent feature scaling introduces biases that disproportionately impact model perfor-
mance, distorting the relationships between inputs and outputs. While standard scaling
techniques may work effectively for lower-index layers, they are often inadequate for higher
layers, where the variability in feature scales complicates model training and evaluation.
This disparity in scaling across layers highlights the need for more tailored approaches
that address the unique characteristics of each layer, ensuring more consistent and reliable
model performance.

6. Interpretable FICO Score Models

In this section, we emphasize the role of interpretability in understanding and en-
hancing the predictive power of credit risk models through symbolic regression. One of
the key advantages of obtaining explicit analytical expressions is the ability to conduct
comparative statics—analyzing how changes in input variables impact the output in a
controlled manner. By examining these derived mathematical models, we can isolate the
influence of individual credit-related features on the predicted FICO scores. This approach
allows stakeholders to discern the sensitivity of credit risk assessments to various financial
behaviors, offering insights that are not readily available in traditional black-box models.
Comparative statics not only reveal the direct effect of each variable but also help iden-
tify non-obvious interactions, enabling a deeper understanding of how credit scores are
determined. Consequently, this facilitates a more transparent decision-making process,
enhancing the overall reliability and usability of the model’s predictions in real-world
financial assessments.

Additionally, by reporting the percentage occurrence of each primitive credit-related
feature within the best population of evolved models that exceed a specified R2 thresh-
old (this threshold value corresponds to the minimum R2 achieved by the top 10% of
the evolved population of models for the first five layers across all folds), as shown in
Tables 8 and 9, we effectively introduce a layer-specific feature selection method. This
approach allows us to identify and rank the most influential features within each layer
of the dataset, highlighting which variables are most critical in driving the predictive
performance of the models. Such detailed insights enable us to distinguish the features that
consistently contribute to higher accuracy across different segments of the data, providing
a clear understanding of the varying importance of features at different levels of credit
risk. Notably, the reported frequency values correspond to the first five (higher confidence)
layers, where GP regression achieved its best regression accuracy measurements. This
feature selection process not only enhances the interpretability of the models but also sup-
ports more informed decisions by pinpointing key drivers of creditworthiness, ultimately
refining the model’s applicability and reliability for stakeholders.

Table 8 reports the frequency values of the credit-related features from D1 within
the top-performing models, highlighting the most influential variables across the higher-
confidence layers. The results indicate that the features RU (Revolving Utilization) and RB
(Revolving Balance) are the most frequently selected variables, underscoring their critical
role in driving the predictive accuracy of the evolved models. This finding aligns with
the insights from the previous section, where RU and RB were thoroughly analyzed and
identified as key indicators of credit risk, directly influencing FICO scores. According
to Equations (1), (2), (7), and (8), all four credit-related features in D1 are interconnected,
illustrating the dependencies among these financial metrics. Thus, it is no surprise that
the models consistently select two out of the four features, as their influence is inherently
tied to the broader financial profile represented in the dataset. Their consistent selection
of the best models reaffirms their importance and supports the earlier discussion on their
significant impact on creditworthiness, emphasizing the practical value of these features in
assessing financial behavior and risk.
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As shown in Table 9, the frequency analysis of the credit-related features from
D2 within the best-performing models identifies RU (Revolving Utilization) and MSLD
(Months Since Last Delinquency) as the most frequently selected variables, highlighting
their importance in driving regression accuracy across the higher-confidence layers. RU
remains a critical feature due to its direct link to credit utilization behavior, while MSLD
captures essential information about recent credit delinquencies, providing valuable predic-
tive insights into a borrower’s financial risk profile. On the other hand, features such as AI
(Annual Income), DTI (Debt-to-Income Ratio), and RB (Revolving Balance) are selected less
frequently, likely because their predictive value overlaps with that of RU and MSLD. These
variables may offer redundant information or reflect aspects of credit risk that are already
encapsulated by the more impactful features. As a result, the models tend to prioritize RU
and MSLD, which directly capture key elements of credit risk, thereby reducing the need to
include less distinctive variables.

Table 8. Layer-wise frequency values for the independent regression variables AI, DTI, RB, and RU.

Layer AI DTI RB RU R2
thres

1 0.1278 0.1051 0.3345 0.4326 0.8401
2 0.1234 0.0588 0.2762 0.5416 0.7309
3 0.1340 0.1127 0.1706 0.5827 0.6476
4 0.1689 0.0611 0.1917 0.5783 0.6091
5 0.1819 0.0389 0.2827 0.4964 0.5522

Table 9. Layer-wise Frequency values for the independent regression variables AI, DTI, RB, RU,
ILSM, DLTY, MSLD, PR, BHCR, BCLA, TRHC, and PRB.

Layer AI DTI RB RU ILSM DLTY MSLD PR BHCR BCLA TRHC PRB R2
thres

1 0.0530 0.0236 0.0170 0.3423 0.0072 0.0137 0.2480 0.0340 0.0295 0.1348 0.0262 0.0707 0.8339
2 0.0551 0.0101 0.0178 0.4339 0.0302 0.0119 0.2134 0.0356 0.0403 0.0634 0.0095 0.0788 0.7881
3 0.0255 0.0154 0.0255 0.2916 0.0303 0.0178 0.2357 0.0285 0.0932 0.0499 0.0386 0.1479 0.7439
4 0.0287 0.0143 0.0208 0.2237 0.0523 0.0186 0.2502 0.0380 0.0222 0.1333 0.0545 0.1434 0.6755
5 0.0904 0.0149 0.0194 0.2676 0.0284 0.0306 0.2220 0.0172 0.0845 0.0635 0.0411 0.1203 0.6949

6.1. Insights from Comparative Statics

In this subsection, we delve into the impact of key credit-related features on the
FICO score through comparative statics, focusing specifically on the first data layer, which
represents the maximum regression confidence. By examining the mathematical relation-
ships and partial derivatives of the analytical models within these layers, we uncover how
changes in specific variables influence the FICO score at varying levels of credit risk. This
analysis provides a detailed sensitivity assessment, revealing the conditions under which
certain features exert the greatest influence and identifying critical thresholds across these
contrasting confidence levels. The comparative statics approach allows us to quantify the
sensitivity of the score to changes in each feature, evaluate compensatory effects between
variables, and understand the dynamics at different levels of the primary regression vari-
ables. The insights gained from this analysis enhance the interpretability of the regression
models and provide practical guidance for credit management. The following subsections
present a detailed exploration of the sensitivity of the most influential variables from D1
and D2 in the first and fifth layers, demonstrating how these features interact within the
scoring framework and influence the overall predictive performance of the models.

Table 10 presents the GP-based symbolic expressions derived from the models trained
on the first data layer for the subsets of credit-related features D1 and D2.
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Table 10. GP−based symbolic regression expressions for D1 and D2.

Feature Set Expression

D1 0.895 − 1.718 · tanh(tanh(RU − tanh(RB)))
D2 0.3599 · exp(−BCLA − 2 · RU) exp(MSLD)− 0.00702

6.1.1. Dynamic Sensitivity Analysis of D1 Variables in Layer 1

According to Table 10, the analytical expression for the FICO score is obtained in the
following form:

F(RU, RB) = Ca − Cb · tanh(tanh(RU − tanh(RB))), (55)

where RU (Revolving Utilization) and RB (Revolving Balance) are constrained within the
[0, 1] interval, as per the data normalization process described in Section 2. Here, Ca and
Cb are positive constants with the values Ca = 0.895 and Cb = 1.718. Equation (55) offers
a detailed understanding of how an individual’s credit-related behavior can impact their
FICO score.

The inner term Q = tanh(RU − tanh(RB)) within the nested hyperbolic function
defined by Equation (55) exhibits a highly non-linear response to changes in RU and RB.
The steep slope, particularly at moderate levels of RU and RB, reflects regions where
the FICO score changes rapidly with small adjustments in these variables. When both
independent regression variables vary within moderate levels, the quantity Q is neither
too close to 0 nor at its extremes. This is where the tanh function is steepest, indicating
that small changes in RU and RB can lead to significant modifications in the FICO score.
This steepness around the mid-range values emphasizes a sensitive zone where behavior
management is crucial. For example, small increases in RU or RB in these moderate zones
can rapidly decrease the FICO score, reinforcing the importance of carefully managing
these variables to avoid unintentional dips in creditworthiness. This finding is in complete
alignment with the relevant literature [65], where the authors show that balances in the
middle range, especially those nearing credit limits, are seen as riskier and result in rapid
score deterioration. When the quantity Q approaches its extreme values (either very low or
very high), the tanh function flattens out. For very low values of RU and RB, the changes
have a diminishing impact on the FICO score, and the corresponding credit behavior is
perceived as low-risk or already fully utilized and thus stable in either context.

The partial derivative of F with respect to RU is given by

∂F
∂RU

= −Cb · (1 − tanh2(tanh(RU − tanh(RB)))) · (1 − tanh2(RU − tanh(RB))). (56)

This derivative shows that the FICO score is most sensitive to changes in RU when RU
is around mid-range values (near 0.5) and less sensitive at the extremes (0 or 1). This
behavior is due to the tanh function, which has its steepest slope around zero, indicating
that moderate changes in RU can significantly impact the score, while changes near the
extremes have a diminished effect. It is easy to deduce that ∂F

∂RU < 0 since the 1 − tanh2(x)
quantities appearing in Equation (56) are less than 1. This indicates that the FICO score is a
monotonically decreasing function with respect to RU, meaning that lower values of RU
result in a higher FICO score. This result aligns with the relevant literature, which often
emphasizes that maintaining a credit utilization ratio below 30% can maximize the respec-
tive credit score [66,67]. The function’s steep response near moderate RU values supports
this advice, demonstrating that scores are highly responsive to utilization changes around
these critical thresholds, aligning with widely recognized credit management strategies.

The partial derivative of F with respect to RB is given by
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∂F
∂RB

= Cb · (1 − tanh2(tanh(RU − tanh(RB)))) · (1 − tanh2(RU − tanh(RB)))·

(1 − tanh2(RB)). (57)

This expression reveals that the effect of RB on the FICO score diminishes at high RB
values because tanh(RB) approaches 1, thereby reducing the impact of further increases.
Equation (57) suggests that RB’s most substantial impact occurs when it takes on moderate
values, emphasizing the importance of managing balances carefully. Interestingly, it is
straightforward to conclude that ∂F

∂RB > 0. At first glance, this observation might seem
contradictory, as it suggests a different monotonicity for the FICO score as a function
of RB than what is typically expected. Empirical evidence indicates that moderate to
high revolving balances can signal financial strain, which is associated with lower credit
scores [67]. Therefore, the sign of ∂F

∂RB would also be expected to be negative, similar to ∂F
∂RU .

The opposing signs of the partial derivatives highlight that RU and RB are not inde-
pendent drivers of credit risk; their effects are intertwined and context-dependent. Indeed,
RU and RB are inherently related, as shown in Equation (9) which expresses a linear re-
lationship between the two variables (RB = TRCL · RU). As RB increases, RU naturally
increases unless TRCL (Total Revolving Credit Limits) increases proportionally. However,
when analyzed independently in the model, these partial derivatives reflect localized,
marginal effects rather than broad empirical trends. When RB changes, the FICO score is
affected both by RB’s direct contribution and through its indirect effect on RU. The partial
derivative ∂F

∂RB quantifies only the immediate effect of RB on the FICO score, which does
not directly translate to the expected negative impact. The overall effect of RB on the FICO
score can be accurately quantified by considering the corresponding total derivative as:

dF
dRB

=
∂F

∂RB
+

∂F
∂RU

· dRU
dRB

. (58)

In this setting, we assume that the primary variable driving changes in the FICO score is
RB, such that F(RU, RB) = F(RU(RB), RB). Therefore, the overall negative impact of RB
on the FICO score can be confirmed by examining the condition under which dF

dRB ≤ 0. It
can be easily derived that this condition requires∣∣∣∣ ∂F

∂RB

∣∣∣∣ · dRB
dRU

≤
∣∣∣∣ ∂F
∂RU

∣∣∣∣. (59)

The analytical expressions for the partial derivatives with respect to RU and RB can be
combined to show that

∂F
∂RB

= − ∂F
∂RU

· (1 − tanh2(RB)). (60)

In this framework, inequality (59) is equivalent to

(1 − tanh2(RB)) · dRB
dRU

≤ 1 (61)

which would ultimately confirm the negative impact of RB on the FICO score if the
inequality dRB

dRU < 1 (or equivalently, dRU
dRB > 1) were satisfied. Nevertheless, the non-

positive sign of the quantity dF
dRB is guaranteed by enforcing the following inequality:

dRU
dRB

≥ 1 − tanh2(RB) (62)

which, in turn, implies that inequality (61) can be satisfied even if dRB
dRU > 1 (or equivalently,

dRU
dRB < 1).

The positive signs of the derivatives dRB
dRU and dRU

dRB can be justified by the proportional
relationship between RB and RU, even though the relationship is non-linear. Since RB
is proportional to RU across individual borrowers, increasing RU generally leads to an
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increase in RB, and vice versa, which implies that both derivatives are positive. However,
the linear dependence of RB and RU only holds at the level of an individual borrower,
where RB = TRCL · RU, and it cannot be generalized across the dataset, where TRCL
varies among borrowers. Despite this variation, the proportionality of RB and RU at the
individual level ensures the positive signs of their respective derivatives.

It is reasonable to assume that dRB
dRU < 1 and dRU

dRB > 1 in typical scenarios, where the
growth of RB (Revolving Balance) slows down relative to RU (Revolving Utilization) as
borrowers approach their credit limits. This behavior occurs when incremental increases in
RU result in diminishing returns on the corresponding increases in RB, meaning that as
more credit is utilized, the balance grows at a slower rate. This is particularly evident when
borrowers are near their maximum available credit, leading to saturation effects. In such
cases, RU is more sensitive to small changes in RB, reflected by dRU

dRB > 1, as slight shifts in
the balance can result in larger proportional changes in utilization.

However, a scenario where dRB
dRU > 1 could arise under specific conditions where an

increase in RU leads to a disproportionately large increase in RB. This might happen when
borrowers suddenly tap into more expensive credit sources or accumulate higher levels of
debt quickly, particularly in situations where dynamic adjustments in credit limits (TRCL)
are applied. For example, when lenders modify credit policies or increase the total available
credit limit based on borrowing patterns, the relationship between RB and RU becomes
more sensitive, allowing for steep increases in balances relative to utilization. In this case,
dRB
dRU > 1 reflects a sharp growth in balances, while dRU

dRB < 1 would indicate that large
increases in balance cause relatively small changes in utilization.

Likewise, the negative impact of RU on the FICO score can be reaffirmed by consider-
ing its overall contribution according to the respective total derivative as

dF
dRU

=
∂F

∂RU
+

∂F
∂RB

· dRB
dRU

. (63)

In this setting, we assume that the primary variable driving changes in the FICO score is
RU, such that F(RU, RB) = F(RU, RB(RU)). Once again, inequality (61) can be utilized to
derive that dF

dRU ≤ 0, which proves the overall negative impact of RU on the FICO score, as
anticipated in the literature.

By evaluating the total derivative of the FICO score, dF, we can determine regions
where the FICO score remains unchanged, specifically where dF = 0. This calculation
uncovers how RU and RB interact to preserve a constant score. These regions of stability
offer insight into the conditions under which changes in RU can compensate for variations
in RB, providing a strategy for maintaining a stable credit score. The total derivative of F
can be obtained as

dF =
∂F

∂RU
· dRU +

∂F
∂RB

· dRB (64)

which, according to Equation (60), yields

dF =
∂F

∂RU
· (dRU − (1 − tanh2(RB)) · dRB) (65)

Therefore, the contour regions of constant FICO scores can be identified by setting dF = 0
and solving the following differential equation:

dRU
dRB

= 1 − tanh2(RB) (66)

which ultimately gives
RU = tanh(RB) + C0 (67)

where C0 represents the integration constant.
Equation (67) defines surfaces within the RU, RB space where changes in these two

variables can be compensated to maintain a constant FICO score. It is easy to deduce (since
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RB is normalized in the [0, 1] interval, we have 1 − tanh2(RB) < 1, which, in turn, suggests
that dRU

dRB < 1) that, along these surfaces, dRU
dRB < 1, meaning increases in RB lead to smaller

increases in RU, while the FICO score remains unchanged. At low balances, where RB
is small, tanh(RB) ≈ RB, making the relationship nearly linear. In this region, although
dRU
dRB < 1, the sensitivity to changes in RB is relatively high. Small increases in RB require
larger compensatory adjustments in RU to keep the FICO score constant. As RB increases,
tanh(RB) approaches 1, leading to smaller changes in RU, reflecting a saturation effect.
Consequently, RU becomes less sensitive to further increases in RB, and the score stabilizes,
since the compensatory adjustments between RB and RU become smaller. This diminishing
sensitivity aligns with dRU

dRB < 1, particularly at higher balances, where the contour surfaces
flatten. Thus, Equation (67) suggests that any increase in RB must be offset by a smaller
increase in RU to maintain the same FICO score. Borrowers who increase their balance
while keeping utilization steady or decreasing it can maintain unchanged FICO scores.

6.1.2. Dynamic Sensitivity Analysis of D2 Variables in Layer 1

Table 10 suggests that the analytical expression for the FICO score can be obtained in
the following form:

F(RU, BCLA, MSLD) = Ca + Cb · exp(−BCLA − 2 · RU) · exp(MSLD). (68)

where BCLA represents the Balance to Credit Limit on All Trades, which indicates the
ratio of the borrower’s total balances to their overall credit limit, and MSLD refers to
the Months Since Last Delinquency, measuring the time elapsed since the borrower’s last
recorded delinquency. Here, Ca and Cb are constants with the values Ca = −0.00702 and
Cb = 0.3599.

The expression in Equation (68) demonstrates a complex interaction between the three
independent variables: Revolving Utilization (RU), Balance to Credit Limit on All Trades
(BCLA), and Months Since Last Delinquency (MSLD). The exponential decay in the term
exp(−BCLA − 2 · RU) emphasizes the negative impact that both high credit utilization
and large balances relative to the credit limit have on the FICO score. This is also justified
by computing the signs of the respective partial derivatives of the FICO score with respect
to RU and MSLD as follows:

∂F
∂RU

= −2Cb · exp(−BCLA − 2RU) · exp(MSLD) < 0 (69)

and
∂F

∂BCLA
= −Cb · exp(−BCLA − 2RU) · exp(MSLD) < 0 (70)

Evidently, as the previously mentioned quantities increase, the overall FICO score decreases
sharply, reflecting the heightened risk associated with borrowers who utilize a significant
portion of their credit limit. This behavior aligns with findings in the credit scoring litera-
ture, which show that high utilization and near-limit balances signal a greater likelihood of
default, thereby lowering the score [65,68].

Moreover, the exponential term involving MSLD introduces a positive influence on
the score, reflecting the recovery period after delinquency. This is further supported by the
sign of the respective partial derivative, shown below:

∂F
∂MSLD

= Cb · exp(−BCLA − 2 · RU) · exp(MSLD) > 0. (71)

As the months since the last delinquency increase, this term grows, helping to offset the
negative impact of other factors. In effect, borrowers who have avoided delinquencies for
a longer period are considered lower risk, which is factored into the FICO score through
this exponential term. This finding is consistent with credit behavior studies, where longer
gaps since the last delinquency are associated with improved creditworthiness [69].
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The interaction between these factors suggests a delicate balance. While increasing
RU and BCLA leads to a rapid score decline, the positive contribution from MSLD helps
to mitigate this impact. In this model, borrowers with high utilization or balances near
their limits must focus on maintaining a long period without delinquency to stabilize or
improve their FICO scores, demonstrating the importance of credit management over time.
The exponential terms reflect the compounded effect of these variables, emphasizing the
need for careful balancing between them to maintain creditworthiness.

Equations (69)–(71) can be combined to obtain

∂F
∂RU

= 2 · ∂F
∂BCLA

(72)

and
∂F

∂MSLD
= − ∂F

∂BCLA
(73)

Under these conditions, the total derivative of the FICO score can be written as

dF =
∂F

∂RU
· (dRU +

1
2

dBCLA − 1
2

dMSLD) (74)

Thus, identifying the contour regions of constant FICO scores can be accomplished by
setting dF = 0, which finally yields

dMSLD = dBCLA + 2 · RU. (75)

One should pay careful attention to the interdependence between RU and RU. Al-
though the equation BCLA = RU·TRCL+BCHR·HCL

TRCL+HCL does not hold dataset-wise, any increase
in RU simultaneously impacts BCLA. This intertwining must be carefully considered, as
increases in both RU and BCLA can amplify the negative effects on the FICO score unless
compensated by an increase in MSLD, which represents the time since the last delinquency.

Equation (75) suggests that changes in RU have twice the impact on the FICO score
compared to BCLA. Since RU directly influences BCLA, any increase in RU compounds
the effect, creating a double negative impact on the score. This highlights the importance
of managing Revolving Utilization carefully, as even small increases in RU can lead to
significant decreases in the FICO score. Borrowers who let their RU rise need to compensate
through substantial increases in MSLD, meaning they must maintain a longer delinquency-
free period to mitigate these negative effects.

Moreover, because of the interplay between RU and BCLA, managing Revolving
Utilization becomes even more crucial. Small changes in RU affect the score not only
directly through the 2 · dRU term but also indirectly through their impact on BCLA. This
results in amplified sensitivity to changes in RU, making it essential for borrowers to
maintain low utilization rates to avoid the compounding effects on their FICO score.

Finally, Equation (75) underscores the critical role of MSLD in stabilizing the FICO
score. Borrowers with high RU or BCLA can only keep their score constant if they have
a sufficiently long delinquency-free period. As such, borrowers need to focus on both
managing their credit utilization and avoiding delinquencies over time to maintain their
FICO score.

7. Conclusions and Future Work

The conclusions of this study are centered on the results obtained through the pro-
posed data segmentation process and the comparative statics analysis. The primary aim of
this research was to construct a transparent, interpretable model of credit risk assessment
using symbolic regression via genetic programming (GP). By employing a methodology
that replicates the FICO scoring system in a closed-form analytical expression, our approach
offers an alternative to black-box models by providing human-readable formulas. These ex-
pressions allow for a clearer understanding of the relationships between key credit-related
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features and credit risk outcomes, making the models more interpretable for financial
institutions and regulators. The method’s intention is to generate interpretable models
that can help demystify the decision-making process in credit risk assessment while also
achieving a balance between predictive accuracy and transparency.

By partitioning the dataset into distinct layers based on Euclidean distances from the
FICO bin centroid, we uncovered significant insights into the behavior of the credit risk
model. One of the key findings is the notable drop in regression accuracy in higher-index
layers, which suggests that these data points represent more extreme or atypical behaviors.
This data segmentation process provides a deeper understanding of the variability across
different levels of credit risk, demonstrating that a uniform model cannot adequately
capture the complexity inherent in the dataset.

Our analysis also highlighted the limitations of the proposed approach. The perfor-
mance degradation in higher-index layers underscores the need for more sophisticated
modeling techniques that can accommodate the increased variability and overlap between
FICO classes. Furthermore, the limited sample sizes in the outer layers pose challenges
to the model’s generalization capability, pointing to the necessity for enhanced sampling
techniques or data augmentation to ensure robust predictive performance across all layers.

In addition to these observations, the comparative statics analysis offered valuable
insights into the sensitivity of the FICO score with respect to key variables, such as Re-
volving Utilization (RU) and Revolving Balance (RB). This analysis was conducted using
GP-derived models trained on the higher-confidence layers, where the regression accuracy
was most reliable. The findings reveal how RU and RB interact in more nuanced ways than
previously understood, showing regions of constant FICO scores, where small changes
in these variables can balance each other out to maintain the credit score. Moreover, the
GP-based results demonstrate comparable performance to state-of-the-art machine learning
models such as Multilayer Perceptrons (MLPs) and Gaussian Support Vector Machines
(GSVMs) while providing the added advantage of interpretability. This balance between
accuracy and transparency makes GP an appealing approach to credit risk assessment,
particularly in financial applications where decision-making must be easily understood
and explained.

Taken together, these findings highlight both the strengths and areas for improvement
in the symbolic regression approach. The data segmentation method proved useful for
dissecting the dataset into more manageable and interpretable subsets, but it also pointed
to the need for further refinement, especially in the higher layers. The comparative statics
analysis provided actionable insights that could be used to inform credit policy adjustments,
offering a more granular understanding of how key financial behaviors impact credit scores.
Future work will focus on enhancing the model’s capacity to handle the complexities
of higher-index layers, possibly through ensemble methods or more advanced feature
selection techniques. Specifically, regression accuracy in the higher-index layers could be
improved by incorporating non-linear and complex models capable of capturing the intri-
cate relationships in these data points. Additionally, addressing data variability through
careful feature scaling and employing strategies to mitigate class overlap—such as expand-
ing the dataset with synthetic samples or using distance-sensitive loss functions—will
likely enhance the model’s robustness and accuracy in these challenging regions.
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Appendix A

Table A1. Probability density distribution of normalized FICO scores per distance layer.

FICO Class Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

1 20.6428 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.6291 20.5769
2 18.2905 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2789 18.2080
3 15.6701 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.6607 15.5857
4 12.8605 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8536 12.8191
5 9.9807 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9763 9.9257
6 7.3778 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3757 7.3689
7 2.6776 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.6797 2.7010
8 3.7636 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7647 3.7587
9 2.4886 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.4908 2.5262

10 1.7367 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7396 1.7832
11 1.3366 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3398 1.3505
12 0.9981 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0140
13 0.7299 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7336 0.7343
14 0.2770 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.2811 0.3016
15 0.4529 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4569 0.4589
16 0.3342 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3383 0.3802
17 0.2023 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2065 0.2054
18 0.1143 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1186 0.1617
19 0.0484 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0527 0.0962
20 0.0176 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0437

Table A2. GP regression training accuracy measures with 1 gene.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0611 0.050 0.84 0.0597 0.050 0.85
2 0.0791 0.064 0.74 0.0681 0.056 0.81
3 0.0896 0.071 0.67 0.0736 0.060 0.77
4 0.0954 0.075 0.62 0.0814 0.065 0.72
5 0.1018 0.080 0.57 0.0834 0.066 0.71
6 0.1067 0.083 0.53 0.0928 0.073 0.64
7 0.1100 0.085 0.50 0.1072 0.087 0.52
8 0.1147 0.088 0.45 0.1204 0.098 0.40
9 0.1187 0.091 0.41 0.1275 0.099 0.32

10 0.1231 0.094 0.37 0.1236 0.093 0.36
11 0.1286 0.098 0.31 0.1232 0.091 0.37
12 0.1342 0.102 0.25 0.1266 0.091 0.33
13 0.1485 0.112 0.12 0.1265 0.092 0.36

Table A3. Gaussian SVM regression training accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0004 0.046 0.86 0.0004 0.041 0.89
2 0.0004 0.043 0.84 0.0004 0.041 0.87
3 0.0005 0.042 0.82 0.0004 0.042 0.86
4 0.0005 0.040 0.82 0.0004 0.044 0.83
5 0.0005 0.040 0.80 0.0005 0.046 0.82
6 0.0005 0.039 0.79 0.0005 0.047 0.80
7 0.0005 0.038 0.79 0.0005 0.043 0.80
8 0.0005 0.039 0.79 0.0005 0.037 0.81
9 0.0005 0.039 0.78 0.0005 0.032 0.82

10 0.0005 0.041 0.77 0.0005 0.033 0.81
11 0.0005 0.042 0.76 0.0005 0.038 0.81
12 0.0006 0.049 0.72 0.0005 0.047 0.77
13 0.0008 0.076 0.49 0.0007 0.065 0.63
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Table A4. MLP regression training accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0004 0.047 0.86 0.0004 0.043 0.88
2 0.0004 0.045 0.84 0.0004 0.044 0.87
3 0.0005 0.045 0.83 0.0004 0.045 0.86
4 0.0005 0.043 0.82 0.0004 0.046 0.84
5 0.0005 0.043 0.81 0.0005 0.049 0.83
6 0.0005 0.044 0.80 0.0005 0.048 0.82
7 0.0005 0.043 0.80 0.0005 0.045 0.82
8 0.0005 0.044 0.80 0.0005 0.041 0.82
9 0.0005 0.044 0.78 0.0004 0.036 0.83

10 0.0005 0.045 0.78 0.0005 0.038 0.81
11 0.0005 0.047 0.77 0.0005 0.042 0.81
12 0.0005 0.054 0.72 0.0005 0.051 0.77
13 0.0008 0.080 0.49 0.0007 0.069 0.65

Table A5. RBFN regression training accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0004 0.048 0.85 0.0004 0.046 0.87
2 0.0005 0.057 0.78 0.0005 0.053 0.82
3 0.0006 0.060 0.74 0.0005 0.058 0.78
4 0.0006 0.059 0.73 0.0005 0.061 0.75
5 0.0006 0.061 0.70 0.0006 0.065 0.72
6 0.0006 0.061 0.69 0.0006 0.070 0.68
7 0.0006 0.060 0.69 0.0007 0.079 0.60
8 0.0006 0.060 0.69 0.0008 0.089 0.49
9 0.0006 0.061 0.67 0.0008 0.087 0.45

10 0.0006 0.062 0.66 0.0008 0.080 0.50
11 0.0006 0.061 0.66 0.0008 0.081 0.48
12 0.0007 0.065 0.62 0.0008 0.085 0.44
13 0.0009 0.091 0.36 0.0008 0.085 0.44

Table A6. Regression Tree training accuracy measures.

Layer
D1—4 Features D2—12 Features

RMSE MAE R2 RMSE MAE R2

1 0.0004 0.048 0.86 0.0004 0.045 0.87
2 0.0005 0.056 0.79 0.0004 0.052 0.83
3 0.0006 0.061 0.74 0.0005 0.055 0.81
4 0.0006 0.063 0.71 0.0005 0.057 0.78
5 0.0006 0.066 0.67 0.0005 0.059 0.76
6 0.0006 0.066 0.66 0.0006 0.062 0.73
7 0.0007 0.068 0.63 0.0006 0.063 0.70
8 0.0007 0.070 0.62 0.0007 0.073 0.58
9 0.0007 0.071 0.59 0.0007 0.068 0.61

10 0.0007 0.072 0.57 0.0007 0.071 0.56
11 0.0007 0.073 0.57 0.0007 0.073 0.55
12 0.0007 0.075 0.53 0.0008 0.078 0.51
13 0.0008 0.086 0.44 0.0008 0.079 0.53
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Table A7. Paired t-test results for training and testing of GP vs. GSVM.

Measure
Training Testing

t-Statistic p-Value t-Statistic p-Value

RMSE (D1) 16.5310 1.2729 × 10−9 16.4654 1.3326 × 10−9

MAE (D1) 9.5911 5.6120 × 10−7 9.4685 6.4402 × 10−7

R2 (D1) −7.3849 8.4449 × 10−6 −7.4042 8.2279 × 10−6

RMSE (D2) 14.3256 6.5691 × 10−9 14.2521 6.9654 × 10−9

MAE (D2) 6.4930 2.9669 × 10−5 5.9779 6.4317 × 10−5

R2 (D2) −5.4275 1.5313 × 10−4 −5.1304 2.4891 × 10−4

Table A8. Paired t-test results for training and testing of GP vs. MLP regression.

Measure
Training Testing

t-Statistic p-Value t-Statistic p-Value

RMSE (D1) 16.5259 1.2775 × 10−9 16.4617 1.3361 × 10−9

MAE (D1) 9.4390 6.6583 × 10−7 9.3757 7.1538 × 10−7

R2 (D1) −7.4702 7.5285 × 10−6 −7.4262 7.9874 × 10−6

RMSE (D2) 14.3218 6.5892 × 10−9 14.2591 6.9265 × 10−9

MAE (D2) 6.1405 5.0178 × 10−5 5.8225 8.1810 × 10−5

R2 (D2) −5.5358 1.2866 × 10−4 −5.2638 1.9982 × 10−4

Table A9. Paired t-test results for training and testing of GP vs. RBFN regression.

Measure
Training Testing

t-Statistic p-Value t-Statistic p-Value

RMSE (D1) 16.5286 1.2750 × 10−9 16.4527 1.3446 × 10−9

MAE (D1) 7.2390 1.0301 × 10−5 7.2260 1.0485 × 10−5

R2 (D1) −5.9443 6.7732 × 10−5 −5.9822 6.3887 × 10−5

RMSE (D2) 14.3524 6.4306 × 10−9 14.3422 6.4832 × 10−9

MAE (D2) 5.8596 7.7214 × 10−5 5.9594 6.6174 × 10−5

R2 (D2) −4.9460 3.3864 × 10−4 −4.8186 4.2003 × 10−4

Table A10. Paired t-test results for training and testing of GP vs. Regression Trees.

Measure
Training Testing

t-Statistic p-Value t-Statistic p-Value

RMSE (D1) 16.5270 1.2765 × 10−9 16.4670 1.3312 × 10−9

MAE (D1) 8.1019 3.3021 × 10−6 7.7605 5.1253 × 10−6

R2 (D1) −6.0252 5.9811 × 10−5 −5.7756 8.8031 × 10−5

RMSE (D2) 14.3516 6.4351 × 10−9 14.3213 6.5917 × 10−9

MAE (D2) 5.8078 8.3710 × 10−5 5.3632 1.6992 × 10−4

R2 (D2) −5.4000 1.6009 × 10−4 −5.0101 3.0413 × 10−4
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