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Abstract: Applying artificial intelligence (AI) and machine learning for chronic kidney disease (CKD)
diagnostics and characterization has the potential to improve the standard of patient care through
accurate and early detection, as well as providing a more detailed understanding of the condition.
This study employed reproducible validation of AI technology with public domain software ap-
plied to CKD diagnostics on a publicly available CKD dataset acquired from 400 patients. The
approach presented includes patient-specific symptomatic variables and demonstrates performance
improvements associated with this approach. Our best-performing AI models, which include patient
symptom variables, achieve predictive accuracies ranging from 99.4 to 100% across both hold-out
and 5-fold validation with the light gradient boosting machine. We demonstrate that the exclusion of
patient symptom variables reduces model performance in line with the literature on the same dataset.
We also provide an unsupervised learning cluster analysis to help interpret variability among, and
characterize the population of, patients with CKD.
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1. Introduction

The kidneys are a filtration system for removing waste and contaminants from the
body through the urine. The kidneys remove excess acid from the body and maintain
healthy levels of salts, water, and minerals in our blood, which are necessary for healthy
tissue function. They also produce hormones that assist in blood pressure regulation, the
creation of red blood cells, and maintaining healthy bones [1]. Chronic kidney disease
(CKD) is a “permanent, gradual, and progressive loss of kidney function over several years
caused by a variety of medical conditions” [2]. CKD does not have a known cure, so once it
is present, it will last the full life of the individual, and without proper management, it can
lead to tissue failure.

CKD is not restricted to a particular group or age. However, patients with diabetes
mellitus, heart disease, or high blood pressure are most likely to suffer from CKD. Patients
over the age of 60, or with a family history of CKD, or who are HIV positive are at an
elevated risk of developing CKD [3]. CKD is a challenge for public health globally, in part
due to the preliminary stages of the disease often going undetected, with patients unaware
of their condition until it becomes critical or even terminal [4].

The World Health Organization estimates that CKD affects 10% of the global popula-
tion [5]. CKD has a higher prevalence and morbidity in developing nations due to a lack of
access to adequate healthcare among most of the population [5].
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1.1. CKD Stages

Chronic kidney disease is categorized into five stages; this helps doctors to determine
the best care for each patient. CKD progresses from stage 1 to stage 5; a patient’s stage is
determined with the estimated glomerular filtration rare (eGFR) [6].

Patients with stage 1 CKD have mild kidney damage with an eGFR of 90 mL/min or
greater. At stage 1, there are no symptoms to suggest that the kidneys are damaged as the
kidneys appear to function normally at this stage, and most people with the condition are
unaware that they have stage 1 CKD [7]. At stage 2, the patient has mild kidney damage
with an eGFR of 60–89 mL/min, and as in stage 1 CKD, there are usually no symptoms
noticed by the patient, as the kidneys still function normally. At these stages, if the patient
discovers that they have CKD, it is usually because they were examined for another medical
condition [8].

A patient with stage 3 CKD has moderate to severe kidney damage with an eGFR
between 30 and 59 mL/min. This stage is subdivided into stage 3a (mild to moderate kidney
damage) with an eGFR of 45–59 mL/min and stage 3b (moderate to severe kidney damage)
with an eGFR of 30–44 mL/min. At this stage, the kidneys do not function effectively;
as kidney function declines, waste products build up in the blood, resulting in uremia.
At stage 3, the patient develops complications such as high blood pressure, anemia, and
early bone disease. At stage 3, symptoms may include frequent or less frequent urination,
urination changes (foamy; dark orange, brown, tea-colored, or red), fatigue, itchy or dry
skin, nausea, loss of appetite that leads to weight loss, and swelling in the hands or feet [9].

A patient with stage 4 CKD has severe loss of kidney function with an eGFR within
the range of 15–29 mL/min. In stage 4 CKD, the patient is at the highest risk of having
kidney failure and an elevated risk of heart disease. At this stage, the patient will require
hemodialysis, peritoneal dialysis, or a kidney transplant. It is characterized as the last stage
before kidney failure. At stage 4, damage to the kidney is irreversible. However, under the
guidance of a nephrologist and dietitian, efforts may be taken to slow down the kidney
damage and mitigate it from progressing to stage 5 (total failure). Unfortunately, even with
treatment, kidneys may still fail [10].

Patients with stage 5 kidney failure, commonly known as end-stage kidney disease
(ESKD), have an estimated (eGFR) of <15 mL/min. At stage 5, the patient is at the highest
risk of developing heart disease. Patients in stages 5 and 4 experience health complications
such as anemia, metabolic acidosis, mineral and bone disorders, and hyperkalemia, as
well as symptoms such as ammonia-smelling breath, changes in skin color, muscle cramps,
difficulty breathing, and little to no urine. Patients diagnosed with stage 5 CKD should
consult a nephrologist immediately. At this stage, the patient will need hemodialysis,
peritoneal dialysis, or a kidney transplant [11].

Treatment for CKD is expensive and often unsuccessful. Therefore, early detection
of CKD is particularly important for implementing preventative measures and managing
the disease to slow its progression. Initially, the diagnosis of CKD by a health practitioner
involves requesting the patient’s medical history, medications they are currently on, and a
description of symptoms. Following that, the healthcare practitioner requests a blood test,
also known as the estimated glomerular filtration rate (eGFR), and a urine test, also known
as the urine albumin–creatinine ratio (uACR), to assess kidney function. Having an eGFR
under 60 and a uACR over 30 for three months or more is a sign of kidney disease [12].

1.2. Machine Learning Applied to CKD

Machine learning research in this field has focused on a variety of applications, in-
cluding predicting the progression of diabetic kidney disease [13], the creation of deep
learning models for the prediction of intradialytic hypertension [14], and technology fo-
cused on patients with oliguric acute kidney injury [15]. Technologies focused specifically
on the prediction of CKD have been developed, using the same public domain dataset
relied upon in this study, including a rotation forest model yielding 99.2% accuracy [16],
an approach based on the random forest yielding 97% accuracy [17], a support vector
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machine approach yielding 98.86% accuracy [18], an approach using the K-Nearest Neigh-
bour classifier as well as the Extra Tree Classifier yielding 99% accuracy [19], and multiple
approaches based on the XGBoost algorithm (https://github.com/dmlc/xgboost, accessed
on 24 February 2024) achieving 94% accuracy [20] and 98.3% accuracy [21]. Additional
studies have been conducted on alternative CKD datasets as well [22–24]. It should be
noted that there are inevitably differences in the validation employed by each of these
studies, as standard validation requires data sample randomization, which would have
been performed multiple times independently across studies. As such, direct comparison
of these performance metrics has inherent challenges, and coming to firm conclusions as
to which algorithms perform the best for prediction of CKD should involve a controlled
and fair comparison across all algorithms being considered. Performance metrics reported
would ideally be part of an identical validation suite, rather than being compared across
studies. Regardless, there is value in comparing machine learning performance reported
across studies, even though differences always exist in the evaluation methods employed.
It is noteworthy that all studies were able to achieve generally high accuracy results with
clear room for further improvement of the technology’s predictive capacity.

Although a wide variety of machine learning approaches have been developed for
CKD, our study attempted to address the potential value of clinical patient characteristics
in this publicly available dataset. In this study, we hypothesized that the use of open-source
software df-analyze, inclusive of the high-performing light gradient boosting machine
(LGBM), would provide valuable improvements to existing technologies for diagnostics of
CKD. We further hypothesized that the inclusion of patient clinical variables, not focused on
in other studies based on this dataset, would help further improve the quality of diagnostic
predictions in CKD. Finally, we hypothesized that unsupervised learning could assist in
the characterization of CKD.

2. Materials and Methods

The dataset was collected from Kaggle (https://www.kaggle.com/datasets/mansoordaku/
ckdisease) and is also available from the University of California Irvine Machine Learning
Repository (https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease), and was
accessed on 28 January 2024. This dataset is publicly available and published under a
Creative Commons Attribution 4.0 International (CC BY 4.0) license. This dataset was
created from a population of 400 patients over a period of 2 months in India, with the
acquisition of 24 feature measurements collected with the target variable CKD status [25].
It has 12 numerical columns and 13 categorical or nominal values. In this dataset, 250 of
the samples were from patients with CKD, and 150 samples were acquired from patients
without CKD. The machine learning task addressed in this analysis is to predict the CKD
status from the set of feature measurements acquired from each patient, thus we are using
AI technology to perform CKD diagnoses. To summarize our methods, we downloaded the
above dataset and divided it into two parts, one with and one without our patient clinical
characteristics, and then public domain software was used to fairly compare a collection
of machine learning and feature selection algorithms on each of the two versions of the
dataset considered. An unsupervised learning cluster analysis was also performed to help
assess sample groupings in the dataset. Details are provided below.

2.1. Dataset Description

Tables 1 and 2 below provide the different variables with their description, data type,
and units along with the mean and standard deviation values for the numerical variables
for both the CKD and not CKD groups.

https://github.com/dmlc/xgboost
https://www.kaggle.com/datasets/mansoordaku/ckdisease
https://www.kaggle.com/datasets/mansoordaku/ckdisease
https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease
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Table 1. CKD dataset description for numerical variables.

Variable Definition Type Value Class of Interest =
CKD

Class of Not Interest =
NOTCKD

Mean Standard
Deviation Mean Standard

Deviation

age—age Age of the patient Numerical years 54.5 17.4 46.3 15.5

bp—blood
pressure (Diastolic)

Pressure of blood
pumped by heart into

wall’s vessels
Numerical mm/Hg 79.6 15.2 71.4 8.6

sg—specific
gravity

Specific indicator of
renal function; varies

between 1.005 and
1.025 for humans

Numerical (1.005, 1.010, 1.015, 1.020,
1.025) 1.0 0.0 1.0 0.0

bgr—blood glucose
random

Measure of the glucose
in the blood at the
moment of the test

Numerical mgs/dL 175.4 92.1 107.7 18.6

bu—blood urea

Measurement of urea
nitrogenic blood or

serum, a major
indicator of kidney

failure

Numerical mgs/dL 72.4 58.6 32.7 11.4

sc—serum
creatinine

Creatinine is a waste
component that is

removed by the
kidneys from the blood

Numerical mgs/dL 4.4 7.0 0.9 0.3

sod—sodium Concentration of
sodium in blood Numerical mEq/L 133.9 12.4 141.7 4.8

pot—potassium Concentration of
potassium in blood Numerical mEq/L 4.9 4.3 4.3 0.6

hemo—
hemoglobin

Hemoglobin is a
protein in charge of

transport of oxygen in
the red blood cells

Numerical gms 10.6 2.2 15.2 1.3

pcv—packed cell
volume

Proportion of blood
cells within serum Numerical percentage 32.9 7.2 46.3 4.1

wc—white blood
cell count

Count of white blood
cells Numerical cells/cmm 9069.5 3580.5 7687.3 1833.2

rc—red blood cell
count Count of red blood cells Numerical millions/cmm 3.9 0.9 5.4 0.6

Table 2. CKD dataset description for categorical variables.

Variable Definition Counts for Each Value Values as a Percentage (%) of All
Samples

al—albumin Measurement of albumin protein
in blood

(199:0, 44:1, 43:2, 43:3, 24:4, 1:5,
46:undefined)

(49.75% 0, 11% 1, 10.75% 2, 10.75%
3, 6% 4, 0.25% 5, 11.5% undefined)

su—sugar Measurement of sugar (glucose)
in blood

(290:0, 13:1, 18:2, 14:3, 13:4, 3:5,
49:undefined)

(72.5% 0, 3.25% 1, 4.5% 2, 3.5% 3,
3.25% 4, 0.75% 5, 12.25%

undefined)

rbc—red blood cells Assessment of red blood cells (201 normal, 47 abnormal,
152 undefined)

(50.25% normal, 11.75% abnormal,
38% undefined)

pc—pus cell Accumulation of dead white blood
cells in the urine

(259 normal, 76 abnormal,
65 undefined)

(64.75% normal, 19% abnormal,
16.25% undefined)

pcc—pus cell clumps
Presence of dead cells in urine, which

indicates kidney infection, or a
sexually transmitted disease

(42 present, 354 not present,
4 undefined)

(10.5% present, 88.5% not present,
1% undefined)

ba—bacteria Presence of bacteria in urine (22 present, 374 not present,
4 undefined)

(5.5% present, 93.5% not present,
1% undefined)



Electronics 2024, 13, 4326 5 of 18

Table 2. Cont.

Variable Definition Counts for Each Value Values as a Percentage (%) of All
Samples

htn—hypertension Patient with hypertension diagnosed (147 yes, 251 no, 2 undefined) (36.75% yes, 62.75% no,
0.50% undefined)

dm—diabetes mellitus Failure of the body to react to insulin
to control blood glucose levels (137 yes, 261 no, 2 undefined) (34.25% yes, 65.25% no, 0.50%

undefined)

cad—coronary artery disease Narrow arteries can cause
obstructions of blood flow (34 yes, 364 no, 2 undefined) (8.5% yes, 91% no,

0.50% undefined)

appet—appetite Abnormal appetite (317 good, 82 poor, 1 undefined) (79.25% good, 20.5% poor,
0.25% undefined)

pe—pedal edema Excess fluid in the lower extremities
or knees (76 yes, 323 no, 1 undefined) (19% yes, 80.75% no,

0.25% undefined)

ane—anemia Reduction in red blood cells (60 yes, 339 no, 1 undefined) (15% yes, 84.75% no,
0.25% undefined)

class—diagnosis The target value to predict (250 CKD, 150 not CKD) (62.5% CKD, 37.5% not CKD)

2.2. Machine Learning

The current framework used for executing the machine learning algorithms considered
is the public domain software package df-analyze (https://github.com/stfxecutables/df-
analyze/), which is available for download and was accessed on 24 February 2024. “df-
analyze is a command-line tool for performing AutoML on small to medium-sized tabular datasets.
In particular, df-analyze attempts to automate:

1. Feature type inference.
2. Feature description (e.g., univariate associations and stats).
3. Data cleaning (e.g., NaN handling and imputation).
4. Training, validation, and test splitting.
5. Feature selection.
6. Hyperparameter tuning.
7. Model selection and validation.

and saves all key tables and outputs from this process.” [26]. This tool was first used in
a study on schizophrenia [27] and has since had a variety of features added, including
additional feature selection and analytics. Detailed instructions are provided for the use of
this software (Instructions).

The software package df-analyze was used to fairly compare the following machine
learning algorithms: K-Nearest Neighbour (KNN), light gradient boosting machine (LGBM),
random forest, logistic regression, Stochastic Gradient Descent, Multi-layered Perceptron
Artificial Neural Network, and the support vector machine. A dummy classifier that
simply predicts the majority class was also included as a baseline for comparison. All
algorithms were compared with two forms of validation: K-fold validation, and evaluation
on a holdout dataset. Missing values in the dataset were imputed with the corresponding
median value for the numerical attributes after an initial robust normalization scheme
documented online, and missing values for categorical variables were converted to a single
additional category, which was then clearly labeled as a NaN (Not a Number) indicator
after the categorical variable was one-hot encoded (i.e., a new feature is created that is 1 for
all samples missing that entry in their categorical variable, and 0 for all other samples).
Entries in the dataset containing “?” symbols were converted to NaN, which is compatible
with df-analyze alongside blank entries. Hyperparamater tuning was performed within the
training set, with the search spaces outlined online for the KNN, LGBM, logistic regression,
and Stochastic Gradient Descent. Validation runs were repeated 50 times.

The analysis was repeated two times, once with all the feature measurements available
(both numerical features and patient clinical characteristic features), and the second run
was performed while excluding the patient clinical characteristic features, which are further
presented below to illustrate their predictive potential. Feature selection was included as

https://github.com/stfxecutables/df-analyze/
https://github.com/stfxecutables/df-analyze/


Electronics 2024, 13, 4326 6 of 18

part of each run of df-analyze, including wrapper, filter (both prediction and association-
based), and embedded methods, each applied to each machine learning algorithm included
in the analysis.

2.3. Statistical Analysis

For each machine learning and feature selection algorithm pairing trained for CKD
prediction as part of df-analyze, we computed the overall accuracy (ACC), area under
the receiver operating characteristic curve (AUROC), F1 score, negative predictive value
(NPV), positive predictive value (PPV), as well as the sensitivity (sens) and specificity
(spec) values. Comparisons of statistical metrics computed were performed on both the
holdout set and 5-fold validation on the holdout set, for both the cases with and without
the aforementioned clinical patient characteristic features.

3. Results
3.1. Patient Clinical Characteristics

The patient clinical characteristic variables, included in one of our runs of df-analyze
but not the other, are outlined in Figures 1 and 2 below, broken down between CKD and
not CKD status. These features include whether the patient has the following symptoms:
abnormal appetite (APPET), pedal edema (PE), anemia (ANE), hypertension (HTN), di-
abetes mellitus (DM), and coronary artery disease (CAD). These figures are provided to
illustrate the difference between our two runs of our validation software (with and without
these features), in order to assess their potential for informing CKD diagnosis, as they were
not considered in this manner in previous analyses on this dataset.
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It is noteworthy from these bar plots that 100% of the patients who do not have CKD
also do not exhibit any of these symptoms in this dataset. Thus, these variables have
predictive potential to inform multivariable machine learning technologies, which may
contribute towards making more accurate predictions of CKD vs. not CKD.
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3.2. Machine Learning with Patient Clinical Characteristics

Table 3 provides the results of the machine learning analysis for the complete dataset
inclusive of patient clinical characteristics applied to the holdout set. Table 4 provides the
machine learning results for the complete dataset inclusive of patient clinical characteristics
as part of 5-fold cross-validation. Tables 3 and 4 are provided to illustrate the results
of our detailed comparative analysis across machine learning technologies for the entire
dataset. The LGBM (light gradient boosting machine) with either no feature selection or
with embedded (embed_lgbm)-based feature selection performed the best among all the
machine learning techniques compared, producing 99.4 to 100% accuracy (inclusive of
clinical patient characteristic features) across the two validation approaches employed. The
feature selection reports for the embedded feature selection (embed_lgbm) are provided in
Appendix A. The next best performing approach, using prediction-based feature selection
(pred), is provided for comparative reference in Appendix B.

Table 3. Holdout set performance for the complete dataset.

Model Selection Embed_Selector ACC AUROC BAL-ACC F1 NPV PPV Sens Spec

lgbm none none 1 1 1 1 1 1 1 1
lgbm embed_lgbm lgbm 1 1 1 1 1 1 1 1
lgbm embed_linear linear 0.994 1 0.995 0.993 0.984 1 0.995 1
lgbm assoc none 0.994 1 0.995 0.993 0.984 1 0.995 1

rf assoc none 0.994 1 0.992 0.993 1 0.99 0.992 0.983
lr wrap none 0.988 0.998 0.99 0.987 0.968 1 0.99 1
rf embed_lgbm lgbm 0.988 0.999 0.987 0.987 0.983 0.99 0.987 0.983

lgbm pred none 0.988 1 0.99 0.987 0.968 1 0.99 1
mlp pred none 0.988 1 0.99 0.987 0.968 1 0.99 1
sgd wrap none 0.988 0.998 0.99 0.987 0.968 1 0.99 1
mlp wrap none 0.981 0.999 0.985 0.98 0.952 1 0.985 1

rf pred none 0.981 0.999 0.978 0.98 0.983 0.98 0.978 0.967
lr pred none 0.981 0.998 0.982 0.98 0.967 0.99 0.982 0.983
rf none none 0.969 0.997 0.962 0.966 0.982 0.961 0.962 0.933

knn pred none 0.963 0.97 0.97 0.961 0.909 1 0.97 1
lgbm wrap none 0.956 0.996 0.958 0.954 0.921 0.979 0.958 0.967

rf embed_linear linear 0.956 0.992 0.962 0.954 0.908 0.989 0.962 0.983
rf wrap none 0.938 0.989 0.937 0.934 0.903 0.959 0.937 0.933

sgd pred none 0.906 0.888 0.888 0.897 0.925 0.897 0.888 0.817
knn assoc none 0.863 0.927 0.86 0.855 0.797 0.906 0.86 0.85
knn embed_linear linear 0.844 0.835 0.835 0.834 0.787 0.879 0.835 0.8
knn embed_lgbm lgbm 0.838 0.911 0.83 0.828 0.774 0.878 0.83 0.8
mlp embed_linear linear 0.812 0.919 0.773 0.786 0.841 0.802 0.773 0.617
knn none none 0.775 0.77 0.77 0.764 0.682 0.84 0.77 0.75
knn wrap none 0.769 0.854 0.785 0.765 0.646 0.889 0.785 0.85
mlp embed_lgbm lgbm 0.769 0.882 0.778 0.763 0.653 0.871 0.778 0.817
sgd embed_linear linear 0.688 0.67 0.67 0.669 0.581 0.755 0.67 0.6
sgd assoc none 0.681 0.737 0.648 0.651 0.585 0.729 0.648 0.517
lr none none 0.675 0.83 0.583 0.559 0.722 0.669 0.583 0.217

sgd none none 0.662 0.654 0.627 0.629 0.558 0.713 0.627 0.483
lr embed_linear linear 0.656 0.821 0.548 0.492 0.778 0.649 0.548 0.117
lr assoc none 0.644 0.819 0.532 0.462 0.714 0.641 0.532 0.083
lr embed_lgbm lgbm 0.631 0.761 0.515 0.43 0.6 0.632 0.515 0.05

mlp none none 0.625 0.61 0.5 0.385 nan 0.625 0.5 0
mlp assoc none 0.625 0.66 0.5 0.385 nan 0.625 0.5 0

dummy embed_lgbm lgbm 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy wrap none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy pred none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0

sgd embed_lgbm lgbm 0.625 0.593 0.593 0.594 0.5 0.692 0.593 0.467
dummy none none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy embed_linear linear 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy assoc none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
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Table 4. Five-fold holdout set performance for complete dataset.

Model Selection Embed_Selector ACC AUROC BAL-ACC F1 NPV PPV Sens Spec

lgbm pred none 1 1 1 1 1 1 1 1
lgbm embed_lgbm lgbm 0.994 1 0.992 0.993 1 0.99 0.992 0.983
lgbm assoc none 0.994 1 0.992 0.993 1 0.99 0.992 0.983
lgbm none none 0.994 1 0.992 0.993 1 0.99 0.992 0.983
lgbm embed_linear linear 0.994 1 0.992 0.993 1 0.99 0.992 0.983
sgd wrap none 0.988 1 0.99 0.987 0.971 1 0.99 1
lgbm wrap none 0.981 0.997 0.982 0.98 0.969 0.99 0.982 0.983
rf embed_linear linear 0.981 1 0.985 0.98 0.954 1 0.985 1
lr wrap none 0.981 1 0.982 0.98 0.971 0.99 0.982 0.983
lr pred none 0.975 0.995 0.977 0.974 0.955 0.99 0.977 0.983
rf wrap none 0.969 0.994 0.972 0.967 0.937 0.99 0.972 0.983
rf none none 0.963 0.995 0.957 0.96 0.966 0.962 0.957 0.933
rf assoc none 0.956 0.998 0.962 0.954 0.913 0.99 0.962 0.983
rf embed_lgbm lgbm 0.95 0.993 0.957 0.948 0.903 0.99 0.957 0.983
knn pred none 0.95 0.957 0.957 0.948 0.903 0.99 0.957 0.983
rf pred none 0.944 0.993 0.948 0.941 0.901 0.98 0.948 0.967
sgd pred none 0.9 0.897 0.897 0.894 0.864 0.932 0.897 0.883
knn embed_lgbm lgbm 0.838 0.91 0.833 0.83 0.784 0.883 0.833 0.817
sgd embed_linear linear 0.819 0.815 0.815 0.806 0.775 0.885 0.815 0.8
sgd assoc none 0.812 0.889 0.807 0.801 0.744 0.873 0.807 0.783
sgd none none 0.812 0.872 0.793 0.797 0.776 0.837 0.793 0.717
knn assoc none 0.812 0.929 0.833 0.809 0.693 0.939 0.833 0.917
knn embed_linear linear 0.794 0.785 0.785 0.781 0.731 0.849 0.785 0.75
knn none none 0.781 0.782 0.782 0.771 0.689 0.862 0.782 0.783
sgd embed_lgbm lgbm 0.725 0.715 0.71 0.708 0.648 0.786 0.71 0.65
knn wrap none 0.706 0.791 0.738 0.702 0.57 0.905 0.738 0.867
lr none none 0.65 0.907 0.533 0.452 1 0.641 0.533 0.067
lr embed_lgbm lgbm 0.637 0.855 0.52 0.424 0.75 0.636 0.52 0.05
lr embed_linear linear 0.631 0.908 0.508 0.402 1 0.629 0.508 0.017
dummy embed_lgbm lgbm 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
lr assoc none 0.625 0.907 0.5 0.385 nan 0.625 0.5 0
dummy wrap none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy pred none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy none none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy embed_linear linear 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy assoc none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
mlp assoc none 0.575 0.642 0.5 0.362 0.375 0.625 0.5 0.2
mlp pred none 0.475 0.735 0.5 0.317 0.375 0.625 0.5 0.6
mlp embed_linear linear 0.475 0.637 0.5 0.317 0.375 0.625 0.5 0.6
mlp embed_lgbm lgbm 0.475 0.63 0.5 0.317 0.375 0.625 0.5 0.6
mlp wrap none 0.444 0.724 0.472 0.368 0.35 0.565 0.472 0.583
mlp none none 0.375 0.652 0.5 0.273 0.375 nan 0.5 1

3.3. Machine Learning Without Patient Clinical Characteristics

Table 5 provides the results of the machine learning analysis for the reduced dataset,
not inclusive of patient clinical characteristics, applied to the holdout set. Table 6 provides
the machine learning results for the reduced dataset not inclusive of patient clinical char-
acteristics as part of 5-fold cross-validation. Tables 5 and 6 are provided to illustrate the
results of our detailed comparative analysis across machine learning technologies for the
reduced dataset that does not include the clinical variables outlined in Figures 1 and 2. Note
that there is no clear winning algorithm across the two validation approaches addressed
and that the performance of the classifiers is generally degraded relative to the results from
the complete dataset inclusive of patient clinical characteristics provided in Tables 3 and 4.

Our leading performing models were consistently the light gradient boosting machine
(LGBM) applied to the complete dataset inclusive of clinical patient characteristics. It is
noteworthy that the predictive performance of the LGBM with no feature selection was
nearly the same as the performance of the LGBM with embedded feature selection (em-
bed_lgbm). The features selected for from the embedded feature selection (embed_lgbm)
are summarized in Appendix A, while the features selected for from the filter-prediction-
based method (pred) are provided in Appendix B. These appendices provide an indication,
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based on competing methods, of what feature measurements are most important to rely
upon for accurate prediction of CKD.

Table 5. Holdout set performance for dataset without clinical patient characteristics.

Model Selection Embed_Selector ACC AUROC BAL-ACC F1 NPV PPV Sens Spec

lgbm none none 1 1 1 1 1 1 1 1
rf wrap none 0.994 1 0.995 0.993 0.984 1 0.995 1
lgbm wrap none 0.994 1 0.995 0.993 0.984 1 0.995 1
lgbm pred none 0.994 1 0.995 0.993 0.984 1 0.995 1
lgbm assoc none 0.994 1 0.995 0.993 0.984 1 0.995 1
knn wrap none 0.988 0.999 0.99 0.987 0.968 1 0.99 1
mlp pred none 0.988 1 0.987 0.987 0.983 0.99 0.987 0.983
lr wrap none 0.988 0.999 0.987 0.987 0.983 0.99 0.987 0.983
rf assoc none 0.988 1 0.987 0.987 0.983 0.99 0.987 0.983
lgbm embed_lgbm lgbm 0.988 1 0.99 0.987 0.968 1 0.99 1
sgd wrap none 0.988 0.999 0.987 0.987 0.983 0.99 0.987 0.983
mlp wrap none 0.988 1 0.99 0.987 0.968 1 0.99 1
rf pred none 0.988 0.998 0.99 0.987 0.968 1 0.99 1
lr pred none 0.981 0.999 0.978 0.98 0.983 0.98 0.978 0.967
rf none none 0.981 0.999 0.982 0.98 0.967 0.99 0.982 0.983
knn pred none 0.975 0.977 0.977 0.974 0.952 0.99 0.977 0.983
lgbm embed_linear linear 0.963 0.988 0.957 0.96 0.966 0.961 0.957 0.933
rf embed_lgbm lgbm 0.956 0.993 0.952 0.953 0.949 0.96 0.952 0.933
rf embed_linear linear 0.944 0.988 0.938 0.94 0.932 0.95 0.938 0.917
lr embed_lgbm lgbm 0.925 0.98 0.917 0.919 0.914 0.931 0.917 0.883
sgd pred none 0.912 0.935 0.907 0.907 0.883 0.93 0.907 0.883
sgd embed_lgbm lgbm 0.906 0.969 0.892 0.898 0.909 0.905 0.892 0.833
knn embed_linear linear 0.869 0.932 0.855 0.859 0.842 0.883 0.855 0.8
knn embed_lgbm lgbm 0.85 0.92 0.847 0.842 0.781 0.896 0.847 0.833
knn assoc none 0.812 0.797 0.797 0.799 0.759 0.843 0.797 0.733
mlp assoc none 0.8 0.885 0.747 0.762 0.889 0.774 0.747 0.533
knn none none 0.787 0.877 0.783 0.777 0.697 0.851 0.783 0.767
mlp embed_lgbm lgbm 0.775 0.97 0.7 0.709 1 0.735 0.7 0.4
mlp none none 0.775 0.896 0.783 0.769 0.662 0.872 0.783 0.817
mlp embed_linear linear 0.762 0.852 0.777 0.758 0.641 0.878 0.777 0.833
lr none none 0.738 0.865 0.67 0.675 0.8 0.723 0.67 0.4
lr assoc none 0.738 0.865 0.67 0.675 0.8 0.723 0.67 0.4
lr embed_linear linear 0.719 0.866 0.645 0.645 0.778 0.707 0.645 0.35
sgd assoc none 0.681 0.632 0.632 0.635 0.605 0.709 0.632 0.433
sgd embed_linear linear 0.681 0.635 0.635 0.639 0.6 0.713 0.635 0.45
sgd none none 0.662 0.79 0.603 0.603 0.579 0.689 0.603 0.367
dummy embed_lgbm lgbm 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy wrap none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy pred none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy none none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy embed_linear linear 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy assoc none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0

Table 6. Five-fold holdout set performance for dataset without clinical patient characteristic variables.

Model Selection Embed_Selector ACC AUROC BAL-ACC F1 NPV PPV Sens Spec

sgd wrap none 0.981 1 0.982 0.98 0.969 0.99 0.982 0.983
lr wrap none 0.981 1 0.982 0.98 0.969 0.99 0.982 0.983

knn wrap none 0.975 0.995 0.98 0.974 0.941 1 0.98 1
lgbm none none 0.975 0.998 0.97 0.973 0.985 0.972 0.97 0.95
lgbm assoc none 0.975 0.997 0.97 0.973 0.985 0.972 0.97 0.95
lgbm embed_lgbm lgbm 0.975 0.998 0.97 0.973 0.985 0.972 0.97 0.95
lgbm pred none 0.969 0.997 0.965 0.966 0.966 0.971 0.965 0.95
lgbm wrap none 0.963 0.996 0.963 0.96 0.938 0.981 0.963 0.967

rf assoc none 0.963 0.997 0.96 0.96 0.95 0.971 0.96 0.95
rf none none 0.956 0.996 0.958 0.954 0.922 0.981 0.958 0.967
lr pred none 0.956 0.997 0.958 0.954 0.922 0.981 0.958 0.967

lgbm embed_linear linear 0.956 0.992 0.955 0.953 0.938 0.971 0.955 0.95
rf wrap none 0.944 0.99 0.942 0.94 0.92 0.96 0.942 0.933
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Table 6. Cont.

Model Selection Embed_Selector ACC AUROC BAL-ACC F1 NPV PPV Sens Spec

knn pred none 0.938 0.94 0.94 0.934 0.895 0.969 0.94 0.95
rf pred none 0.931 0.989 0.928 0.927 0.909 0.951 0.928 0.917
rf embed_linear linear 0.925 0.982 0.927 0.921 0.881 0.959 0.927 0.933
rf embed_lgbm lgbm 0.919 0.992 0.928 0.915 0.846 0.981 0.928 0.967
lr embed_lgbm lgbm 0.906 0.973 0.902 0.9 0.873 0.93 0.902 0.883

sgd pred none 0.9 0.922 0.893 0.894 0.882 0.92 0.893 0.867
sgd embed_lgbm lgbm 0.881 0.955 0.872 0.873 0.852 0.903 0.872 0.833
knn none none 0.844 0.945 0.872 0.842 0.73 0.988 0.872 0.983
knn embed_linear linear 0.844 0.95 0.838 0.834 0.789 0.89 0.838 0.817
knn embed_lgbm lgbm 0.831 0.924 0.835 0.825 0.765 0.903 0.835 0.85
sgd none none 0.806 0.875 0.795 0.794 0.746 0.85 0.795 0.75
sgd assoc none 0.794 0.785 0.785 0.782 0.725 0.845 0.785 0.75
knn assoc none 0.787 0.793 0.793 0.78 0.687 0.879 0.793 0.817
sgd embed_linear linear 0.781 0.762 0.762 0.764 0.728 0.815 0.762 0.683
lr none none 0.631 0.876 0.512 0.415 0.75 0.631 0.512 0.033
lr assoc none 0.631 0.876 0.512 0.415 0.75 0.631 0.512 0.033

dummy embed_lgbm lgbm 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy wrap none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy pred none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy none none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy embed_linear linear 0.625 0.5 0.5 0.385 nan 0.625 0.5 0
dummy assoc none 0.625 0.5 0.5 0.385 nan 0.625 0.5 0

lr embed_linear linear 0.619 0.872 0.495 0.382 0 0.623 0.495 0
mlp embed_lgbm lgbm 0.556 0.724 0.525 0.402 0.292 0.709 0.525 0.4
mlp pred none 0.537 0.813 0.543 0.4 0.435 0.702 0.543 0.567
mlp wrap none 0.525 0.736 0.5 0.34 0.375 0.625 0.5 0.4
mlp none none 0.475 0.619 0.5 0.317 0.375 0.625 0.5 0.6
mlp embed_linear linear 0.475 0.579 0.5 0.317 0.375 0.625 0.5 0.6
mlp assoc none 0.375 0.633 0.5 0.273 0.375 nan 0.5 1

3.4. Cluster Analysis Results

In order to help illustrate and improve understanding of the complete dataset, we also
performed a cluster analysis with the unsupervised K-means algorithm. For the purpose of
determining an optimal K value, both silhouette scores and Calinski–Harabasz scores [28]
were applied, respectively, producing Figures 3 and 4.

Based on both the silhouette score and the Calinski–Harabasz score, the highest
K value occurred with K = 2. We were also separately interested in K = 6, as this value
exhibited a remarkable drop-off in the silhouette score when K was further raised beyond
6, indicating possible value from this granularity of clustering. Another reason why we
were interested in the K value of 6 is that there are five distinct stages of CKD, as outlined
in the introduction, as well as a normal/healthy control group (6 total). The clustering
results with K = 2 are visualized using a principal component analysis (PCA) projection of
the data in Figure 5, showing loose alignment with the main group status (CKD vs. not
CKD). Furthermore, the PCA-projected clustering with K = 6 produced the results shown in
Figure 6, which appear to loosely align with the severity of CKD, implying that the feature
measurements included in this analysis hold considerable value, a finding with relevance
for possible future applications of CKD staging. This implies the potential for extending
machine learning technology in this domain, to be used in stage predictions and monitoring
of disease progression. Figure 7 is provided as a comparative reference for Figures 5 and 6,
demonstrating the ground truth diagnoses of CKD and not CKD. This is further reinforced
by the resultant cluster centers, with centroids illustrating characteristic underlying feature
profiles, the results of which are provided in Figure 8, which demonstrates group-wise
differences between the learned clusters.
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3.5. Results Summary

In summary, our findings demonstrate that the inclusion of patient clinical charac-
teristics is associated with a broad improvement in predictive accuracy across algorithms
when compared to an analysis where they were excluded, an approach not considered
in pre-existing studies. Our findings also indicate that multiple configurations of the
LGBM consistently produce high-performing models with accuracies ranging from 99.4
to 100%. Cluster analysis results demonstrate the potential for machine-learning-based
characterization of CKD severity, with potential long-term applications in CKD staging.

4. Discussion
4.1. Patient Clinical Characteristics

It is noteworthy from Figures 1 and 2 that non CKD patients are distributed in just
one of the two possible values for these clinical variables. Thus, these clinical patient
characteristic variables have predictive potential in informing multivariable machine learn-
ing technologies, which would allow them to contribute towards making more accurate
predictions of CKD vs. not CKD.

4.2. Impact of Patient Clinical Characteristics on Machine Learning

Our results indicate that the approach developed achieved 99.4 to 100% accuracy
across multiple types of validation. When applying the same analyses but on the reduced
version of the dataset, not including the set of clinical patient characteristics, the perfor-
mance degrades to be in line with the results presented in previous literature studies,
outlined in the introduction. These results imply value from the inclusion of clinical patient
characteristics in the prediction/diagnosis of CKD by machine learning. This information
could be of potential value to clinicians involved in the management of patients with CKD.
Our leading feature-reduced models, based on LGBM and embedded feature selection,
indicate useful predictive value from knowledge of the patient’s diabetes mellitus status
(see Appendix A). Our findings also demonstrate that an unsupervised machine learning
analysis, inclusive of patient clinical characteristics, loosely aligns with the severity of CKD.
These findings lead us to propose that future work should involve the development of CKD
characterization/staging technologies and potentially disease progression and treatment
monitoring technologies, which may be of future clinical interest.

4.3. Comparative Machine Learning Results Across Studies

The leading models were obtained with the light gradient boosting machine (LGBM),
noteworthy in that it is a lightweight computationally efficient alternative to the extreme
gradient boosting machine, which was the leading machine learning technique in several
studies on this topic [20,21,24]. High-quality results were obtainable with the LGBM
inclusive of all of our features, but we were also able to produce similarly performing
models with reduced feature sets, outlined in Appendices A and B. These findings imply
that feature measurements not selected for inclusion in Appendices A and B are either not
useful for CKD diagnosis by machine learning, or are redundant to other features included
in the selection process. Our results compare favorably with existing research focused
on the same dataset, including a rotation forest model yielding 99.2% accuracy [16], an
approach based on the random forest yielding 97% accuracy [17], a support vector machine
approach yielding 98.86% accuracy [18], an approach using the K-Nearest Neighbour
classifier as well as the Extra Tree Classifier yielding 99% accuracy [19], and multiple
approaches based on the XGBoost algorithm (https://github.com/dmlc/xgboost, accessed
on 24 February 2024) achieving 94% accuracy [20], and 98.3% accuracy [21]. Thus, our
finding that multiple configurations of the LGBM can produce 99.4 to 100% accuracy across
two validation methods potentially adds value to the machine learning literature on this
topic. It should also be noted that the LGBM is a computationally efficient ‘lightweight’
machine learning algorithm, so it offers advantages in terms of computational complexity.

https://github.com/dmlc/xgboost
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4.4. Limitations and Future Work

Limitations of this study include that it was performed on a dataset with relatively
few samples (n = 400). Machine learning algorithms often achieve peak performance on
balanced datasets (i.e., in the context of this work, a balanced dataset would have an
equal number of samples in the group of interest—CKD—and in the control group). Our
dataset is not balanced, and as such, this can cause a potential bias, possibly reducing the
predictive accuracy of the technologies trained (on unbalanced data). Acquiring a larger,
balanced dataset may help reduce associated machine learning class imbalance bias in this
application. Noteworthy, however, is that if you sample a large population, people with
CKD are expected to be a small minority. As such, a balanced dataset with equal numbers
of CKD and controls would not be expected to be representative of the population that
such a tool would be tasked with diagnosing in the real world. Training the algorithm on a
non-representative population relative to how the tool will be used in the real world can
cause a different type of bias, in that the performance estimates from validation on the
balanced dataset will necessarily shift to align with the reality of the technology’s use on
a population in which CKD is comparatively rare. Future work will involve evaluating
the approaches developed herein on larger and independently acquired datasets. Future
work should also involve a direct comparison of high-performing competing algorithms
applied in similar studies on CKD, such as XGBoost [20,21,24] and the Rotation Forest [16].
Strengths of this study include the use of open-source machine learning technology (https:
//github.com/stfxecutables/df-analyze/), inclusive of a standardized validation suite and
an array of feature selection technologies, the consideration of the light gradient boosting
algorithm, and the consideration of patient clinical characteristics in the models developed,
providing a thorough analysis with high-performing predictive results. The inclusion of an
unsupervised clustering analysis is another strength of this study.

Many people live with CKD and are unaware of their status until it reaches an ad-
vanced stage of development [4]. As such, the lack of efficient diagnostics applied to
asymptomatic populations results in many cases of CKD going untreated, and thus, likely
progressing towards more severe manifestations of the condition. In this context, AI tech-
nologies that can be easily applied to large populations of individuals, which has a lot
of potential to improve the clinical management of CKD by identifying the condition in
asymptomatic people through screening and thus supporting earlier treatment, which is
commonly associated with better prognoses/outcomes.

The advantages of the approaches taken in this study and in the literature [16–24]
include the creation of objective learning machines that are approaching perfect accuracy
for the diagnosis of the condition. The major limitations of using artificial intelligence, at
this time, include limited datasets and samples upon which to train the learning machines,
potentially limiting their robust applicability in the real world. The limited explainability
of existing machine learning technologies is another limitation of the use of the current
methods, as when an AI technology makes a diagnosis, we want to be able to report the
specific logical reasons why the AI came to its diagnostic conclusion. Unfortunately, this is
largely an unsolved problem in AI technologies generally.

The work presented herein has the potential to assist with early diagnoses, potentially
accurately predicting patient CKD status in the early stages of disease progression, which
could theoretically result in earlier interventions and thus an improved standard of patient
care and improved prognoses/outcomes. While the population in this study is relatively
small (n = 400), such high-performing technologies could be the subject of future research
in CKD screening, potentially helping to identify the disease prior to patients exhibiting
symptoms, which has tremendous potential for reducing the morbidity associated with
the condition. Machine learning clustering results demonstrate the potential for further
characterizing CKD into stages and creating technologies that can assist in the monitoring
of disease and treatment progression. Future work will investigate the staging of CKD
with a dataset that contains ground truth knowledge of CKD stages, established by clinical
experts in the field, which was unavailable in our dataset.

https://github.com/stfxecutables/df-analyze/
https://github.com/stfxecutables/df-analyze/
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5. Conclusions

In summary, the progression of chronic kidney disease can be managed if detected
early, which can help prevent damage to the kidney, and thus the development of tech-
nologies that can assist in early detection has considerable potential for improving the
standard of patient care in CKD. This study highlights the efficacy of artificial intelligence
and machine learning in diagnosing chronic kidney disease. Using public domain software,
we demonstrated that the light gradient boosting machine (LGBM) with embedded feature
selection performed the best across all metrics, with accuracies ranging from 99.4 to 100%
across multiple validation trials. Cluster analysis results demonstrate potential towards
the creation of staging technology for disease characterization, as well as treatment and
disease progression technologies.

Author Contributions: Conceptualization, J.F., P.E., A.K.S. and J.L.; methodology, J.F., P.E. and A.K.S.;
df-analyze software, D.B. and J.L.; validation, D.B. and J.L.; formal analysis, J.F., P.E., A.K.S. and
J.L.; investigation, J.F., P.E. and A.K.S.; resources, D.B. and J.L.; data curation, J.F., P.E. and A.K.S.;
writing—original draft preparation, P.E., J.F. and A.K.S.; writing—review and editing, P.E., J.F. and
J.L.; visualization, J.F.; supervision, J.L.; project administration, J.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was financially supported by a Canada Foundation for Innovation grant, a
Nova Scotia Research and Innovation Trust grant, an NSERC Discovery grant, a Compute Canada
Resource Allocation, and a Nova Scotia Health Authority grant to J.L.

Data Availability Statement: The dataset used in this study is publicly available and can be accessed
from Kaggle at https://www.kaggle.com/datasets/mansoordaku/ckdisease and the University of
California Irvine (UCI) Machine Learning Repository at https://archive.ics.uci.edu/ml/datasets/
Chronic_Kidney_Disease (accessed on 24 February 2024). No new data were created or collected
specifically for this study. Since this was a retrospective analysis of public domain data, no institu-
tional review board approval was necessary.

Acknowledgments: We would like to extend our heartfelt thanks to St. Francis Xavier University
and the Department of Computer Science for providing the computational resources and facilities
that made this research possible. We would like to express our sincere gratitude to Jacob Levman
for his invaluable guidance and supervision throughout this project. His expertise and insight were
instrumental in our research, and his support with both the technical aspects and report preparation
was greatly appreciated; without him all of this would not have been possible. We are also grateful
to Derek Berger and Jacob Levman for their key role in developing and maintaining the df-analyze
software, which was fundamental to our analysis. Finally, we specifically extend our gratitude to all
those who offered technical support and guidance throughout the project such as Xuchen Guo.

Conflicts of Interest: Levman is founder of Time Will Tell Technologies, Inc. The authors declare no
relevant conflicts of interest. The funders had no role in the design of this study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

Appendix A

The results of embedded feature selection (embed_lgbm) with the LGBM algorithm
on the entire dataset.

# Wrapper-Based Feature Selection Summary
Wrapper model: LGBM
## Selected Features
[‘sod_NAN’, ‘rc_NAN’, ‘age’, ‘sg’, ‘al’, ‘bgr’, ‘sc’, ‘sod’, ‘pot’, ‘hemo’, ‘pcv’, ‘wc’,
‘dm_yes’, ‘pc_nan’, ‘rbc_normal’]
## Selection scores (Importances: Larger magnitude = More important)
| feature | score |
|:------------|----------:|
| age_NAN | 0.000e+00 |
| bp_NAN | 0.000e+00 |

https://www.kaggle.com/datasets/mansoordaku/ckdisease
https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
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| sg_NAN | 0.000e+00 |
| al_NAN | 0.000e+00 |
| su_NAN | 0.000e+00 |
| bgr_NAN | 0.000e+00 |
| bu_NAN | 0.000e+00 |
| sc_NAN | 0.000e+00 |
| sod_NAN | 1.700e+01 |
| pot_NAN | 1.200e+01 |
| hemo_NAN | 6.000e+00 |
| pcv_NAN | 2.000e+00 |
| wc_NAN | 3.000e+00 |
| rc_NAN | 2.400e+01 |
| age | 2.800e+01 |
| bp | 1.200e+01 |
| sg | 3.800e+01 |
| al | 3.800e+01 |
| su | 0.000e+00 |
| bgr | 2.500e+01 |
| bu | 1.100e+01 |
| sc | 8.000e+01 |
| sod | 2.600e+01 |
| pot | 2.700e+01 |
| hemo | 1.160e+02 |
| pcv | 2.400e+01 |
| wc | 2.000e+01 |
| rc | 1.100e+01 |
| ane_yes | 0.000e+00 |
| ane_nan | 0.000e+00 |
| appet_poor | 5.000e+00 |
| appet_nan | 0.000e+00 |
| ba_present | 0.000e+00 |
| ba_nan | 0.000e+00 |
| cad_yes | 0.000e+00 |
| cad_nan | 0.000e+00 |
| dm_yes | 1.800e+01 |
| dm_nan | 0.000e+00 |
| htn_yes | 1.300e+01 |
| htn_nan | 0.000e+00 |
| pc_normal | 3.000e+00 |
| pc_nan | 1.700e+01 |
| pcc_present | 0.000e+00 |
| pcc_nan | 0.000e+00 |
| pe_yes | 0.000e+00 |
| pe_nan | 0.000e+00 |
| rbc_normal | 1.100e+02 |
| rbc_nan | 4.000e+00 |

Appendix B

The results of filter-prediction-based feature selection (pred) with the LGBM algorithm
on the entire dataset.

# Filter-Based Feature Selection Summary
## Selected Features
[‘hemo’, ‘pcv’, ‘rc’, ‘sc’, ‘sg’, ‘al’, ‘sod’, ‘rbc’, ‘htn’, ‘dm’, ‘pc’, ‘ba’]
## Selection Prediction Scores
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### Continuous Features (Accuracy: Higher = More important)
| feature | acc |
|:----------|----------:|
| hemo | 2.750e-01 |
| pcv | 2.583e-01 |
| rc | 2.208e-01 |
| sc | 2.083e-01 |
| sg | 1.417e-01 |
| al | 1.417e-01 |
| sod | 1.333e-01 |
| bgr | 6.667e-02 |
| bp | 3.750e-02 |
| age | 3.333e-02 |
| bu | 2.917e-02 |
| su | 0.000e+00 |
| pot | 0.000e+00 |
| wc | 0.000e+00 |
### Categorical Features (Accuracy: Higher = More important)
| feature | acc |
|:----------|----------:|
| rbc | 2.000e-01 |
| htn | 1.125e-01 |
| dm | 8.333e-02 |
| pc | 2.917e-02 |
| ba | 1.250e-02 |
| pcc | 1.250e-02 |
| ane | 0.000e+00 |
| appet | 0.000e+00 |
| cad | 0.000e+00 |
| pe | 0.000e+00 |
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