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Abstract: As the proportion of renewable energy in energy use continues to increase, to solve the
problem of line impedance mismatch leading to the difference in the state of charge (SOC) of each
distributed energy storage unit (DESU) and the DC bus voltage drop, a distributed energy storage
system control strategy considering the time-varying line impedance is proposed in this paper. By
analyzing the fundamental frequency harmonic components of the pulse width modulation (PWM)
signal carrier of the converter output voltage and output current, we can obtain the impedance
information and, thus, compensate for the bus voltage drop. Then, a novel, droop-free cooperative
controller is constructed to achieve SOC equalization, current sharing, and voltage regulation. Finally,
the validity of the system is verified by a hardware-in-the-loop experimental platform.

Keywords: state of charge (SOC); energy storage system (ESS); droop-free control; current sharing

1. Introduction

The renewable energy in energy use is increasing, with the renewable energy in
the global electricity mix rising from the current 30 per cent to nearly 50 per cent by
2030. Microgrids can be an effective model for load management, renewable energy
management, and energy storage system (ESS) management [1,2]. For the past few years,
DC microgrids have been investigated because they integrate DC loads and DC sources
more efficiently and easily than AC microgrids [3]. In DC microgrids, various energy
storage systems can improve power quality and overcome the intermittency of renewable
energy sources [4–6]. However, in the case of an unbalanced state of charge (SOC), ESS
may experience overcharging or deep discharge, which may affect the battery’s lifespan [7].
Therefore, it is necessary to consider SOC issues to ensure SOC balance.

Therefore, many researchers have proposed various approaches to cope with the
problem of SOC balance. References [8,9] proposes an adaptive droop control method in
which the droop coefficient is related to the SOC so that each energy storage output power
is allocated according to its SOC and battery capacity, thus achieving SOC equalization.
The method proposed in [10] equalizes the change slope of SOC. However, when the SOC
initial value is different, the equalization control of SOC cannot be realized, which is lack of
universality. Reference [11] proposes an accurate power sharing scheme for distributed en-
ergy storage systems (DESS), which achieves SOC balancing through improved sag control
and introduction of a virtual power rating, and maintains the output voltage average of the
DESS at the nominal value through a voltage restoration approach. Reference [12] proposes
the use of a consistency algorithm to achieve SOC equalization and incorporates sliding
mode control to improve the reliability of the control strategy. Reference [13] designed a
multi-agent sliding mode algorithm to charge and discharge the energy storage unit (ESU)
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with a large charge state and the ESU with a small charge state together, which can quickly
achieve SOC equalization of the ESU, but it is still unable to avoid the overcharging and
discharging of the ESU when the transient output power is large. Exponential function was
used to adjust the dynamic consistency algorithm in [14] to improve its ability to identify
the difference of state variables, which can accelerate the SOC convergence speed.

In the equalization control strategy proposed in the above study, the ideal control effect
cannot be achieved without considering the effect of line impedance. Virtual impedance
has been added to the control to simulate the effect of impedance on the droop control
in [15], thus counteracting the effect of line impedance on load distribution and giving a
better equalization effect. In [16], the line resistance is compensated to the droop control,
and a communication interruption control formula is additionally set to guarantee the
control effect, but its control algorithm is relatively complex. A new parameter, ‘virtual
voltage drop’, is defined from the droop coefficient and line resistance in [17]; meanwhile,
the DC bus voltage does not need to be used as a feedback signal. Reference [18] injects a
short-time small voltage perturbation on the DC bus reference voltage and uses a closed-
loop estimation algorithm to estimate the line impedance value associated with the DC/DC
converter in the DC microgrid. Reference [19] proposes a dynamic droop coefficient
correction control, dynamically adjusting each converter’s droop coefficient to cope with
the impact of uncertain line impedance. Reference [20] proposed using a recursive least
squares algorithm for online estimation of feeder resistance, eliminating the need to test
the actual feeder resistance at the design stage.

In the above research content, references [9,12–14] are verified based on simulation soft-
ware, references [8,16,17] are verified by a hardware-in-the-loop experimental platform, and
references [10,11,15,18–20] are verified by building hardware models. For comprehensive
consideration, this paper carries out experimental verification based on the hardware-in-
the-loop experimental platform.

In summary, the above methods are based on the analysis of droop control, which
may bring some new problems, affecting system stability.

A control strategy for DESS considering time-varying line impedance is proposed.
The main contributions are:

(1) The proposed strategy can achieve impedance detection without additional hardware,
which is more stable and practical. The strategy effectively utilizes high-frequency rip-
ple, a characteristic of power electronic converters. The calculation of line impedance
values using characteristics and microgrid topology compensates for bus voltage
drops caused by line impedance.

(2) An inverse tangent function is introduced as an SOC information state factor. By
adjusting one parameter of the function, the accuracy and speed of SOC balance can
be improved, thereby simplifying the complexity of the design.

The rest of the paper is organized as follows. Section 2 analyzes the structure and
control of the DC microgrid. Detailed analysis was conducted on the proposed scheme
in Section 3. Section 4 analyzes the system’s stability. Section 5 obtains the parameter
range, keeping the system running stably via the simulation result. Section 6 presents the
experimental results to confirm the feasibility of the proposed scheme. Section 7 concludes
the paper.

2. DC Microgrid Droop Control
2.1. Structure of Island Microgrid

Figure 1 shows a typical island microgrid structure composed of renewable energy,
load, distributed energy storage systems, and a distribution station area.
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Figure 1. Structure of DC microgrid.

2.2. Downsides of Droop Control

The current distribution method usually adopts droop control in traditional DC micro-
grids. To reflect the correlation characteristics of the DC voltage and DC current of the ESU,
this paper adopts the U-I droop control, whose expression is:

uo = uref − Rio (1)

where: uo is the voltage of the ESU, uref is the reference voltage, io is the current of the ESU,
and R is the droop coefficient of the ESU.

For ease of analysis, this paper uses an example of a system model with two ESUs of
the same capacity connected in parallel, as shown in Figure 2. The bus voltage expression is:

ubus = uoi − Rlineiioi (2)

where: uoi represents the voltages of the ith ESU, ioi represents the currents of the ith ESU,
Rlinei denotes the line impedance of the ith ESU, and ubus is the bus voltage.
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The output current expression is:

ioi =
(uoi − ubus)

Rlinei
(3)

At the same time, the SOCi [21] is:

SOCi = SOCi0 −
1

Cbati

∫ t

0
ioidt (4)
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where: SOCi and SOCi0 are the current SOC value and initial SOC value, and Cbati is the
rated capacity.

Through derivation of Equation (4), we can obtain:

.
SOCi = − ioi

Cbati
(5)

Based on Equations (1)–(5), the ratio of SOC derivatives of any two ESUs is:

.
SOCi

.
SOCj

=
(Rj + Rlinej)Cbatj

(Ri + Rlinei)Cbati
(6)

To complete the appropriate control objectives, the difference between the ESU capacity
and the line impedance must be taken into account. However, the conventional droop
control has a fixed droop coefficient and can only allocate power according to a fixed
value, so it is not possible to adaptively adjust the droop coefficient and maintain the
SOC equilibrium of the DESUs. In addition, due to the existence of line impedance,
the bus voltage will deviate from the reference, which is a pair of contradictions of the
droop control.

3. An Energy Management System for DESS

An energy management system for DESS considering time-varying linear resistance is
proposed, as shown in Figure 3.
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3.1. Line Impedance Detection Method

A method of impedance detection based on the fundamental frequency component of
the pulse width modulation (PWM) carrier is used [22]. Since the PWM signal frequency is
usually very high, generally above 10 kHz, it has the characteristics of a stable frequency,
being free from link interference, and being free from converter device parameter interfer-
ence. By utilizing this characteristic, the collected voltage and current signals are processed
by the controller to obtain the voltage and current components at each frequency. In each
frequency, the frequency of the group with the highest energy is equal to the PWM carrier
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frequency value provided by the controller. The transducer output voltage and current
collected by the sensor are carried out, and the voltage and current signal in the time
domain is transferred to the frequency domain.

u f =
∫ t+T

t sin(ωt)uodt
i f =

∫ t+T
t sin(ωt)iodt

ω = 2π f
(7)

where: T is the period corresponding to this frequency.
The line impedance of the ith converter can be obtained from Figure 4:

Rlinei =
u f i

i f i
(8)
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3.2. Cooperative Control

From Figure 3:
urefi = uref + δui (9)

where urefi is bus voltage reference; uref is reference voltage; and δui is the voltage compensation.

δui =
∫

(u∗ −
εavg

zi
) (10)

where u* is the virtual reference voltage with the expression shown in Equation (11); εavg
is the average value of the information factor ε; and zi is the transition factor with the
expression shown in Equation (14).

u∗ = uref + ∆ui (11)

∆ui = ioiRlinei (12)

εi = ziuoi (13)

zi = 1 − eiioi
irateb

(14)

where ∆ui is the line impedance compensation whose expression is shown and b is the gain
to avoid zi taking the value of 0 when eiioi = irate, so b = 0.4 is chosen. ei is the expression of
the SOC equalization factor:

ei =
Cmax

Cbati
((

2
π

arctan(c(SOCavg − SOCi))) + 1) (15)

where Cmax is the maximum rated capacity, SOCavg is the average value of the SOC, c is
the amplification factor, and the speed of equalization of the SOC can be controlled by
adjusting the amplification factor c. The value of c will be analyzed in the next section.
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An SOC equalization factor is designed, and an amplification factor is used to acceler-
ate the equalization speed.

According to the above analysis, we have:

u∗ =
εavgi

zi
=

εavgj

zj
. . . =

εavgn

zn
(16)

According to Equations (10)–(16), the following can be obtained:

uref =
uoi + uoj + · · · uon

n
= uavg (17)

ioi
Cbati

=
ioj

Cbatj
= · · · = ion

Cbatn
(18)

According to Equations (17) and (18), the proposed method can achieve the control
objective.

3.3. Parametric Analysis

In the analysis below, two ESUs in parallel are used as an example. The converter
from Equation (9) and SOCki = SOCavg − SOCi is assumed. The Arctan function and
amplification factor are introduced to construct the equalization factor. Because of the large
slope of the arctangent function near zero, its value increases faster near zero, and the
equalization factor can be limited to a certain range. This characteristic of the arctan function
is used to design the amplification factor, as shown in Figure 5. When the amplification
factor c is increased, the convergence speed and precision of information state factors are
guaranteed, so c = 25 is selected.
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4. Stability Analysis

In this paper, the strategy is analyzed in terms of stability in a system consisting of
two groups of ESUs of equal capacity, line impedance, and loads, and Figure 6 shows the
control block diagram of the ESUs.

According to Figure 2, we can obtain the output current:

ioi = αuoi − βuoi (19)

where  α =
Rlinej+RL

Rlinei Rlinej+Rlinei RL+RlinejRL

β = RL
Rlinei Rlinej+Rlinei RL+RlinejRL

(20)
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Through Figure 6 and Equations (19)–(20), the voltage can be obtained [23]:

uo1 =
2(1 + Gs)u∗

2 + GsGeGc
− GwGsGeGcz2uo2

(2 + GsGeGc)z1
(21)

where Gs is the integral link.
According to Equation (21), the expressions of Ge and Gw are:{

Ge = e−τes ≈ 1
1+τes

Gw = e−τws ≈ 1
1+τws

(22)

where τe and τw are the communication delay times.
According to Equations (19)–(22), we can obtain [24]:

∆uo1

∆u∗

∣∣∣∣
∆uo2=0

=
2(1 + Gs)

2 + GsGeGc
(23)
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Figure 7a,b display the pole distribution for k from 1 to 35 and τe from 10 ms to
100 ms. From Figure 7a, when the value of k increases, the poles are all on the left side
of the imaginary axis and move to the right, but the system can remain stable within the
maximum range of k. As can be seen from Figure 7b, the poles are located to the left of the
imaginary axis and move to the right as the τe increases. The increase in τe can ensure the
system’s stability.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
(a) 

 
(b) 

Figure 7. System stability analysis. (a) τe = 50 ms, κ increases. (b) k = 10, τe increases. 

5. Simulation Results 
In order to verify the influence on the system’s stability, when the battery capacity, line 

impedance, and load power of the three converters are changed, a Matlab/Simulink simula-
tion model is built, and it uses control variates to conduct the simulation. The key parame-
ters are shown in Table 1. 

Table 1. The key system parameters. 

Item Symbol Unit Value 
Nominal voltage uref V 400 

 Rline1 Ω 0.3 
Line resistance of ESU Rline2 Ω 0.33 

 Rline3 Ω 0.36 
Common load resistance Rload Ω 20 

 Cbat1 Ah 6 
Capacity of ESU Cbat2 Ah 6 

 Cbat3 Ah 4 
Switching frequency fk kHz 20 

Inductance of DC/DC converter L mH 2 

Figure 7. Cont.



Electronics 2024, 13, 4327 8 of 21

Electronics 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
(a) 

 
(b) 

Figure 7. System stability analysis. (a) τe = 50 ms, κ increases. (b) k = 10, τe increases. 

5. Simulation Results 
In order to verify the influence on the system’s stability, when the battery capacity, line 

impedance, and load power of the three converters are changed, a Matlab/Simulink simula-
tion model is built, and it uses control variates to conduct the simulation. The key parame-
ters are shown in Table 1. 

Table 1. The key system parameters. 

Item Symbol Unit Value 
Nominal voltage uref V 400 

 Rline1 Ω 0.3 
Line resistance of ESU Rline2 Ω 0.33 

 Rline3 Ω 0.36 
Common load resistance Rload Ω 20 

 Cbat1 Ah 6 
Capacity of ESU Cbat2 Ah 6 

 Cbat3 Ah 4 
Switching frequency fk kHz 20 

Inductance of DC/DC converter L mH 2 

Figure 7. System stability analysis. (a) τe = 50 ms, κ increases. (b) k = 10, τe increases.

5. Simulation Results

In order to verify the influence on the system’s stability, when the battery capacity,
line impedance, and load power of the three converters are changed, a Matlab/Simulink
simulation model is built, and it uses control variates to conduct the simulation. The key
parameters are shown in Table 1.

Table 1. The key system parameters.

Item Symbol Unit Value

Nominal voltage uref V 400
Rline1 Ω 0.3

Line resistance of ESU Rline2 Ω 0.33
Rline3 Ω 0.36

Common load resistance Rload Ω 20
Cbat1 Ah 6

Capacity of ESU Cbat2 Ah 6
Cbat3 Ah 4

Switching frequency f k kHz 20
Inductance of DC/DC converter L mH 2

5.1. Simulation Analysis of Changing the Third Battery Capacity

In terms of battery capacity, the capacity of the first and second group of batteries is
kept unchanged, and only the capacity of the third group of batteries is changed in order to
analyze the impact to the system when the battery capacity changes.

First, the battery capacity of the third group is reduced by 25% of the standard capacity;
that is, the battery capacity of the third group is set to 3. The simulation results are shown
in Figure 8. The output current is distributed at 6:6:3, which is the same as the standard
capacity ratio; the DC bus voltage is maintained at 400 V; the SOC balancing time is 15.6 s;
and the system remains stable.

Secondly, the battery capacity of the third group is increased by 25% of the standard
capacity; that is, the battery capacity of the third group is set to 5. The simulation results
are shown in Figure 9. The DC bus voltage remains stable, the SOC balancing time and the
output current equalization time are 5.2 s, and the output current distribution ratio is 6:6:5;
the system remains stable.

Therefore, when the battery capacity changes within a reasonable range, the proposed
strategy can maintain system stability.
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5.2. Simulation Analysis of Changing the Line Impedance of the Third Converter

In terms of line impedance, the line impedance of the first and second converters is
kept unchanged, and only the line impedance of the third converter is changed in order to
analyze the influence with line impedance variation.
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First, the line impedance of the third converter is reduced by 50% of the standard line
impedance; that is, the line impedance of the third converter is set to 0.18Ω. The simulation
results are shown in Figure 10. The SOC equalization time is 7.1 s, the DC bus voltage is
maintained as stable, the output current is distributed proportionally, and the system is
maintained as stable.
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Secondly, the line impedance of the third converter is increased by 50% of the standard
line impedance; that is, the line impedance of the third converter is set to 0.54Ω. The
simulation results are shown in Figure 11. The DC bus voltage remains stable, the output
current is properly distributed, the SOC equalizes after 7.2 s, and the system is stable.
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Therefore, when line impedance changes reasonably, the proposed strategy can effec-
tively eliminate the effect of line impedance on accurate current distribution and ensure
stable system operation.
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5.3. Simulation Analysis of Changing the Load Power

In terms of load power, the standard load power is set to 8 kW, and the influence of
load power change on the system’s stability is analyzed.

First, the load power is reduced by 25% of the standard load power; that is, the load
power is set to 6 kW. The simulation results are shown in Figure 12. After a period of jitter,
the DC bus voltage and output current are held steady, the SOC equalizes after 11.6 s, and
the system remains stable.
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Secondly, the load power is increased by 25% of the standard load power; that is,
the load power is set to 10 kW. The simulation results are shown in Figure 13. The SOC
balancing time is 5.6 s, the DC bus voltage remains stable, and the system remains stable.
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Therefore, when the load power changes reasonably, the proposed strategy can main-
tain the stable operation of the system.
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Through the simulation results, it can be seen that when the battery capacity, line
impedance, and load power of the converters are changed, respectively, within the ranges
of [3–5], [1.8 Ω − 5.4 Ω], and [6 kW − 10 kW], the system can maintain stability.

6. Experiment Results

To verify the effectiveness of the proposed strategy, a hardware-in-the-loop experi-
mental platform is established based on an RT-Lab real-time platform combined with a
DSP control board for experimental verification, as shown in Figure 14. The experimental
platform is equipped with a master computer, oscilloscope, OP5707, and DSP. In this case,
the main circuit model is built in the RT-Lab system. The control strategy is implemented
on the DSP board. The key parameters are shown in Table 1.
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6.1. Experimental Case I: Normal Discharge Mode and Its Comparison Experiment with
Existing Methods

The initial values of SOC for the three ESUs are 93%, 88%, and 83%. The load ratings
are all 8 kW. Reference [25] proposes an improved distributed cooperative control strategy
to achieve SOC equalization. In this case, Figure 15 shows the experimental results of the
control strategy proposed in this paper, and Figure 16 demonstrates the control strategy
proposed in [25].

From Figure 15a, it can be seen that there is a certain drop in the bus voltage at the
beginning of the discharge phase, but since the proposed control strategy in this paper can
compensate for the voltage drop caused by the line losses, the bus voltage can be quickly
restored to 400 V and stable operation can be maintained. Although the control strategy
of [25] shown in Figure 16a can also restore the bus voltage and keep it stable, its voltage
can only be maintained at about 397 V.

Further, from the output current and the SOC waveform under the proposed control
method, as shown in Figure 15b,c, respectively, it can be seen that the larger the SOC of the
ESUs, the larger their output currents correspondingly; conversely, the smaller the SOC,
the smaller their output currents correspondingly. At t = 9.8 s, the SOC of each ESU tends
to converge, satisfying the 3:3:2 capacity allocation requirement. In contrast, the proposed
control strategy in [25] takes 13.4 s when the output currents are uniformly distributed (as
shown in Figure 16b), and the SOC equalization (as shown in Figure 16c) is 3.6 s slower
than the proposed method in this paper.

In summary, the proposed control method in this paper achieves SOC equalization
and accurate current distribution faster than the comparative methods, and also better
maintains the bus voltage at the rated value.
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6.2. Experimental Case II: Line Impedance Change

To confirm the control effect of the strategy under the condition of a sudden change in
line impedance, the line impedance of the first converter is set to be reduced from 1 Ω to
0.5 Ω at t = 2.8.

At t = 2.8 s, the line impedance of the first ESU becomes 0.5Ω. From Figure 17a, the
bus voltage drops briefly when the line impedance is reduced, but it returns to the reference
value of 400 V after only 0.01 s and maintains stable operation. From Figure 17b, the
control strategy of this paper is adopted. t = 9.8 s satisfies the output current distribution
by capacity. From Figure 17c, SOC1, SOC2, and SOC3 reach t = 9.8 s.
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6.3. Experimental Case III: Load Switching in ESSs

The experiment is set to run until 4.2 s, when the system load changes abruptly. The
equivalent load of the system is abruptly changed from the initial 20Ω to 15Ω. Figure 18
shows the experimental results.

The ESU is regular discharge before the load is incorporated, and a 60 Ω resistive
load is incorporated into the load when t = 4.2 s. From Figure 18a, the bus voltage can
be restored to the reference value of 400 V after a fluctuation of 0.02 s. From Figure 18b,
because a 60 Ω resistive load is incorporated after 4.2 s, the output current increases. The
increase in power of the load leads to an increase in output current. At t = 7.9 s, the output
currents are 10 A, 10 A, and 6.6 A, respectively, which satisfy the output current distribution
by capacity. After adopting the proposed strategies, the difference between different SOCs
continues to decrease, and in the end, the SOC reaches equilibrium at t = 7.9 s, as shown in
Figure 18c.
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6.4. Experimental Case IV: DESU Exits Randomly

The stability of the control method is verified when ESU fluctuates in Case IV. The
system cuts off the third ESU at t = 5 s. In Figure 19, the experiment of random DESU exits
is shown.

At t = 5 s, the third ESU opens from system interruption, causing a change in com-
munication topology. In Figure 19a, although the DC voltage briefly drops by 8 V when
ESU decreases, it is still within acceptable limits, and the voltage returns to the reference
value of 400 V in just 0.02 s. From Figure 19b, after adopting the proposed strategy, when
the third ESU is disconnected, io3 becomes 0, and the other ESUs increase accordingly. At
t = 5 s, the output currents io1 and io2 are both 10 A, which meets the requirements of
capacity allocation. Figure 19c shows that due to io3 = 0, the SOC of the third ESU remains
unchanged, while the SOC difference between ESU1 and ESU2 gradually decreases until
SOC1 and SOC2 reach equilibrium at t = 7 s.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 22 
 

 

 

 

 

Figure 19. Experiment of random DESU exits. (a) DC bus voltage. (b) Output current. (c) SOC. 

7. Conclusions 
To eliminate the effect of line impedance, it is ensured that each ESU can achieve SOC 

equilibrium while ensuring reasonable current distribution. In this paper, a distributed en-
ergy storage system control strategy considering time-varying line impedance is proposed. 
After theoretical and simulation analyses, it can be concluded that: 
1) The ripple signal on the PWM carrier frequency of the controller can be overlaid onto 

the output current of the converter. This frequency can be unaffected and can stably 
transmit information about the line impedance. By analyzing the ripple signal, the im-
pedance value of the circuit can be obtained. 

2) The speed of SOC equalization is improved by using the advantage of the arctan func-
tion and a designed acceleration factor. 

3) By analyzing the acceleration factor, the SOC can maintain the equalization quickly 
when the acceleration factor c is 5 ~ 25. 

Figure 19. Cont.



Electronics 2024, 13, 4327 20 of 21

Electronics 2024, 13, x FOR PEER REVIEW 20 of 22 
 

 

 

 

 

Figure 19. Experiment of random DESU exits. (a) DC bus voltage. (b) Output current. (c) SOC. 

7. Conclusions 
To eliminate the effect of line impedance, it is ensured that each ESU can achieve SOC 

equilibrium while ensuring reasonable current distribution. In this paper, a distributed en-
ergy storage system control strategy considering time-varying line impedance is proposed. 
After theoretical and simulation analyses, it can be concluded that: 
1) The ripple signal on the PWM carrier frequency of the controller can be overlaid onto 

the output current of the converter. This frequency can be unaffected and can stably 
transmit information about the line impedance. By analyzing the ripple signal, the im-
pedance value of the circuit can be obtained. 

2) The speed of SOC equalization is improved by using the advantage of the arctan func-
tion and a designed acceleration factor. 

3) By analyzing the acceleration factor, the SOC can maintain the equalization quickly 
when the acceleration factor c is 5 ~ 25. 

Figure 19. Experiment of random DESU exits. (a) DC bus voltage. (b) Output current. (c) SOC.

7. Conclusions

To eliminate the effect of line impedance, it is ensured that each ESU can achieve SOC
equilibrium while ensuring reasonable current distribution. In this paper, a distributed en-
ergy storage system control strategy considering time-varying line impedance is proposed.
After theoretical and simulation analyses, it can be concluded that:

(1) The ripple signal on the PWM carrier frequency of the controller can be overlaid onto
the output current of the converter. This frequency can be unaffected and can stably
transmit information about the line impedance. By analyzing the ripple signal, the
impedance value of the circuit can be obtained.

(2) The speed of SOC equalization is improved by using the advantage of the arctan
function and a designed acceleration factor.

(3) By analyzing the acceleration factor, the SOC can maintain the equalization quickly
when the acceleration factor c is 5 ~ 25.

We will further investigate the effectiveness of the proposed control strategy in large-
scale microgrids in the future while considering the impact of the aging of the battery pack
on the convergence accuracy and system stability.
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