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Abstract: In today’s digital era, the abundance of online services presents users with a daunting array
of choices, spanning from streaming platforms to e-commerce websites, leading to decision fatigue.
Recommendation algorithms play a pivotal role in aiding users in navigating this plethora of options,
among which collaborative filtering (CF) stands out as a prevalent technique. However, CF encounters
several challenges, including scalability issues, privacy implications, and the well-known cold start
problem. This study endeavors to mitigate the cold start problem by harnessing the capabilities of
natural language processing (NLP) applied to user-generated reviews. A unique methodology is
introduced, integrating both supervised and unsupervised NLP approaches facilitated by sci-kit
learn, utilizing benchmark datasets across diverse domains. This study offers scientific contributions
through its novel approach, ensuring rigor, precision, scalability, and real-world relevance. It tackles
the cold start problem in recommendation systems by combining natural language processing (NLP)
with machine learning and collaborative filtering techniques, addressing data sparsity effectively.
This study emphasizes reproducibility and accuracy while proposing an advanced solution that
improves personalization in recommendation models. The proposed NLP-based strategy enhances
the quality of user-generated content, consequently refining the accuracy of Collaborative Filtering-
Based Recommender Systems (CFBRSs). The authors conducted experiments to test the performance
of the proposed approach on benchmark datasets like MovieLens, Jester, Book-Crossing, Last.fm, Amazon
Product Reviews, Yelp, Netflix Prize, Goodreads, IMDb (Internet movie Database) Data, CiteULike, Epinions,
and Etsy to measure global accuracy, global loss, F-1 Score, and AUC (area under curve) values.
Assessment through various techniques such as random forest, Naïve Bayes, and Logistic Regression
on heterogeneous benchmark datasets indicates that random forest is the most effective method,
achieving an accuracy rate exceeding 90%. Further, the proposed approach received a global accuracy
above 95%, a global loss of 1.50%, an F-1 Score of 0.78, and an AUC value of 92%. Furthermore, the
experiments conducted on distributed and global differential privacy (GDP) further optimize the
system’s efficacy.

Keywords: e-commerce; recommender system; collaborative filtering; machine learning techniques

1. Introduction

The challenge of cold starts in recommender systems presents a significant hurdle,
which is particularly noticeable when these systems encounter new users or recently intro-
duced items with limited historical data. Traditional recommendation algorithms heavily
depend on past user interactions and item preferences to tailor suggestions. However, when
faced with users who have recently joined the platform or entirely new items, the absence
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of such data poses a formidable challenge. This data gap complicates understanding user
preferences and the ability to provide relevant recommendations, potentially resulting in a
suboptimal user experience. Effectively addressing the cold start issue is crucial to meet
the demands of both new users and emerging items in recommendation systems.

The influx of new internet users has brought about an unprecedented amount of
data. Consequently, users are inundated with a staggering number of choices across
various platforms such as Netflix, Spotify, and Amazon. This abundance of options leads to
information overload, highlighting the importance of ensuring that users receive tailored
recommendations to enhance their experience. Ensuring that users get precisely what they
need is critical for improving the user experience of any product. User reviews play a
crucial role in addressing the cold start problem within recommender systems for several
compelling reasons.

User reviews provide a valuable source of data that empowers recommender systems
to offer informed recommendations, especially when dealing with the cold start problem.
By leveraging the capabilities of NLP (natural language processing) and meticulously
analyzing user sentiments and feedback, these systems can effectively bridge the cold start
gap, delivering accurate and highly personalized recommendations from the outset. Hence,
recommender systems prove valuable in this scenario by filtering the entire list of items
to obtain a smaller subset of items. The classical federated learning architecture can be
depicted after implementing a recommender system-based model where an initial list is
given as the input and a filtered list is obtained as the output.

A precise mathematical representation of a recommender system entails an algorithm
that takes an input set containing “N” items and generates an output list comprising
“K” recommended items. In this context, “N” signifies the entire item inventory, and
“K” represents the specified number of recommendations. To put it another way, the
recommender system assists the user in selecting the appropriate product or item, which
is crucial for a company. Recommender systems have proven highly beneficial in leading
technical organizations worldwide. For example, YouTube reports that 60% of video
clicks originate from the home screen, showcasing the impact of their recommendation
algorithms [1]. Similarly, Netflix effectively employs recommender systems to suggest
shows tailored to users’ preferences [2]. Previous studies offer valuable insights into the
varied applications of recommender systems across industries. One notable study by
Shuai Zhang et al. provides a thorough analysis of deep learning-based recommender
systems, identifying key research trends and proposing strategies for organizing the current
literature [1]. Additionally, addressing accuracy improvement remains a central challenge
in collaborative filtering recommendation systems, as highlighted in a study by W Lemus
Leiva, ML Li, and CY Tsai, which emphasizes the importance of considering rankings’
reliability as input data [2].

In the realm of real-world applications, Kai Wang et al. introduced the RL4RS resource,
which sets a standard for reinforcement learning-based recommender systems. This re-
source focuses on creating simulation environments and addressing supposition errors,
offline strategy learning, and policy evaluation, essential components in recommenda-
tion scenarios [3]. It complements NLP and machine learning methods to tackle the cold
start problem by improving collaborative filtering and optimizing recommendations. By
learning user preferences over time, reinforcement learning optimizes recommendations in
real-world environments, improving accuracy when recommending items to new users or
for new products, addressing the cold start challenge more effectively.

Another study by Kumar et al. examines the echo chamber effect in e-commerce plat-
forms, revealing that while tailored e-commerce recommender systems may exhibit echo
chamber tendencies in terms of user-click behavior, these tendencies are less pronounced
regarding user-buy behavior [4].The “DNNRec” paper of Kumar et al. [4] proposed a
hybrid recommender system using deep learning which complements NLP and machine
learning approaches for solving the cold start problem. By combining collaborative filter-
ing with deep neural networks, it improves the understanding of user preferences and
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item characteristics, enhancing the accuracy of recommendations for new users or items,
thereby addressing cold start challenges effectively. This research underscores the complex
dynamics of personalized online retail systems and their impact on user behavior [5].

Building a personalized recommender system involves multiple approaches, broadly
categorized into content-based, collaborative, and hybrid filtering techniques. Content-
based systems utilize user attributes to match them with relevant products, recommending
items with a significant match, typically defined as 80% or higher.

The conceptual construction of this research work focuses on solving the cold start
issue in recommendation systems due to sparse data. The NLP-based systems have better
performance for language translation that is used for recommendation systems. So, by
integrating NLP and machine learning with collaborative filtering, thisresearch aims to en-
hance prediction accuracy for new users and items, addressing challenges where traditional
recommendation techniques fall short due to limited interaction data.

The main research question (RQ) of this paper describes how natural language pro-
cessing (NLP) techniques, integrating both supervised and unsupervised methods, can
improve the effectiveness, scalability, and reliability of collaborative filtering-based recom-
mendation systems while addressing cold start issues, enhancing review quality evaluation,
and safeguarding data privacy.

This study makes several key contributions as described below:

i. Recommender systems have a variety of issues that warrant further study. The cold
start problem (CSP), one of the most prevalent issues that collaborative filtering-
based recommender systems (CFBRS) encounter is the topic of this research. One
of the core contributions of this research work is the further improvement of the
effectiveness of problem solutions for the CSP.

ii. In this study, we have applied an NLP-based approach to improve the quality of user
reviews, which will lead to an improvement in the accuracy of recommendations
made by the collaborative filtering- based recommender systems.

iii. Multiple techniques like random forest, Naïve Bayes, Logistic Regressions, etc., are
applied to detect the quality of a review submitted by the user.

iv. Recall, precision, and accuracy scores are computed after using different machine
learning methods.

v. A mix of supervised and unsupervised approaches to NLP are used using the sci-kit
to learn the method to further improve the performance of obtained results.

vi. It is observed that distributed and global differential privacy experiments are possi-
ble on both the client and server sides. Further, it has been suggested that modern
machine learning models might be compared to dynamic programming dataset-
based techniques in further studies.

2. Literature Review

The literature review is divided into four sections, namely, collaborative filtering, content-
based filtering, deep learning, and reinforcement learning-based models. Further classification is
based on specific algorithms employed in the recommender system, with various machine
learning and deep learning approaches utilized to enhance recommendation accuracy, as
depicted in Figure 1.

2.1. Collaborative Filtering-Based Models

Collaborative filtering neural network topologies are applied by researchers. Three
instantiations of the generic framework of NCF, GMF, MLP, and NeuMF, are provided by
the researchers and are meant to serve as a roadmap for the development of deep learning
recommendation techniques [6–8].

Venil P, G. et al. [9] provide a comprehensive survey of the cold start problem in
collaborative filtering systems. The authors explore the various approaches used to address
this issue, including content-based filtering, demographic-based filtering, and hybrid
approaches. They also discuss the limitations and challenges of these methods and suggest
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potential areas for future research. Their paper is an insightful read for anyone interested
in collaborative filtering systems and the challenges they face.
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In a study carried out by Fu et al. [10], they developed a multi-tasking, multi-policy
recommender system. First, the researchers created a task space for each similar user group.
BPR was used to pre-train users’ embeddings, which were then divided into K clusters
using KNN. They assumed that users belonging to the same cluster should be assigned
to the same task. To make recommendations for coldstart users, the system employed a
universal policy and a task-specific policy. The universal policy was used in the initial
recommendation phase, and a discriminator was used to select the most probable task for
the user based on the feedback received. Then, the task-specific policy was employed to
make the remaining recommendations.

Chen, Li et al. (2015) extensively surveyed the latest advancements in recommender
systems using user-generated reviews. Their paper explores sentiment analysis and opinion
mining techniques and their integration into recommendation systems, addressing chal-
lenges and proposing future research directions. This paper serves as a valuable resource
for researchers and practitioners in the field [11]. Wei and Zian [12] present a novel recom-
mendation system. This system effectively addresses the issue of recommending items with
minimal user data, often termed “cold start” items. Their approach, which integrates col-
laborative filtering and deep learning techniques, showcases substantial improvements in
recommending these items in real-world scenarios. Further, these methods can potentially
be applied in a range of domains, such as e-commerce and online advertising. Furthermore,
these approaches shed light on promising ways to improve recommendation systems
using deep learning techniques, contributing to the expanding literature on recommender
systems [13]. They offer practical guidance for personalized recommendations.

The following are the strengths, weaknesses, and limitations of collaborative filtering:
Strength: Collaborative filtering performs well in designing personalized recommen-

dations by analyzing the interactions between users and items. It enables users to uncover
new products based on the preferences of similar individuals.

Weakness: This method may face difficulties with the cold start problem, hinder its
ability to suggest items for new users or those with minimum interaction history. It may
face scalability issues when dealing with sparse datasets.
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Limitation: It primarily concentrates on the behavior of the user, and may overlook the
intrinsic characteristics of items.

2.2. Content-Based Filtering Models

By outlining the key characteristics of this type of system, the authors of [14] conducted
a field assessment of content-based recommender systems. Their paper examines the key
difficulties surrounding the representation of objects, starting with straightforward methods
for representing structured data and progressing to more intricate methods, from the field
of information retrieval for unstructured data-based items, which makes itunable to directly
use all pertinent information.

The researchers of [15] in their study presented a recommender system that uses
implicit feedback and is designed to be keyword-aware. The system was implemented
on the Hadoop framework and it was tested on a large dataset. The paper described the
system’s architecture, its algorithm for generating recommendations, and the evaluation
results, demonstrating its effectiveness in comparison to other state-of-the-art approaches.
The proposed system can be useful for various recommendation applications, especially
those that rely on keyword-based searching.

Onestudy [16] address the cold start problem in the insurance domain by proposing a
recommendation system that incorporates both user and item information using a heteroge-
neous information network (HIN). The system is designed to work across multiple domains,
including life, health, and automobile insurance, and employs a cross-domain adaptation
model, user and item representation learning models, and a recommendation model. The
system’s performance is evaluated on a large dataset, demonstrating its effectiveness com-
pared to state-of-the-art recommendation methods. The study highlights the potential
of HIN-based recommendation systems and provides insights into their effectiveness in
addressing cold start problems.

Study [17] focused on the difficulty of offering precise recommendations to new users
with minimal or no interaction history in the system. The study compared and reviewed
multiple approaches, such as content-based filtering, collaborative filtering, and hybrid
techniques, for addressing this challenge. The authors presented an in-depth analysis of
the pros and cons of each technique and emphasized the necessity for additional research
to generate successful solutions. This analysis can support professionals and researchers
in the recommender systems field in determining the optimal approach for managing the
new user cold start problem.

In another work by Deepjyoti R. and Mala D. [18], various topics related to rec-
ommender systems such as collaborative filtering, content-based filtering, and hybrid
approaches were covered. Additionally, they addressed the challenges and limitations of
these methods and suggested potential solutions and future directions for research. The
paper [19] is useful for researchers and practitioners interested in recommender systems as
it provides valuable insights and a comprehensive overview of the field. Overall, it is an
essential read for anyone looking to stay up to date with the latest trends and developments
in this area.

The following are the strengths, weaknesses, and limitations of content-based filter-
ing approaches:

Strength: Content-based filtering relies on item attributes to recommend similar prod-
ucts, effectively tackling cold start scenarios for new items. This approach operates inde-
pendently, as it does not depend on data from other users.

Weakness: It may lead to over-specialization, resulting in repetitive suggestions that
lack variety.

Limitation: Its performance can be affected when item features are not clearly defined
or are insufficient.
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2.3. Deep Learning Based Models

This research paper employs a novel approach rooted in NLP to elevate the quality
of user reviews, subsequently enhancing the accuracy of recommendations generated
by CFBRS. The self-generated and standard benchmark datasets utilized in this research
encompass diverse user-generated reviews and meticulously pre-processed data from
multiple sources. The proposed work carefully applies a blend of supervised and unsuper-
vised NLP approaches through the sci-kit learn method. Rigorous experimental analysis is
conducted, involving a range of techniques, including random forest, Naïve Bayes, and
Logistic Regressions, to assess the quality of user reviews. These techniques yield varying
recall, precision, and accuracy scores across different machine learning methods, with the
random forest method emerging as the most accurate, achieving remarkable accuracy.

The major objective of this study [20] was to develop a machine learning-based rec-
ommender system for Amazon consumers that includes the clothing category. This deep
learning algorithm [20] predicts a user’s rating on products and recommends the product
that is most likely to receive a good rating. The focus of this study [20] is the dilemma
of the standard slopes of one algorithm’s lower sensitivity and the unreliable rankings in
recommender systems. Additionally, the study suggested a gradient methodology based
on the combination of reliable data and user-homogenous attributes [20]. The research
offers a novel deep-learning structure to improve recommendation system results through
collaborative filtering. To retrieve the existing non-linear cognations, researcher presages,
reliabilities, and exact suggestions, the authors use the deep learning approach [21]. To
provide better and much more accurate homogeneous product recommendations for E-
commerce items, the article proposes the e-SimNet visual recommendation systems. Such
deep learning approaches, as well as the approximation of the most proximate neighbors
for retrieving the Top-N suggestions, were used to create their models [22].

The results of the study [22,23] demonstrated that the cross-border e-commerce astute
information recommendation system based on deep learning, which is suggested in this
study, has a strong selection impact and fits the cross-border e-commerce recommenda-
tion requirements.

A deep learning-based hybrid recommender system is suggested in the study [24].
For CF, it makes use of user–item interaction, while CBF makes use of auxiliary data on
both users and items. To anticipate the top n-list of things, Deep Hybrid uses MF and DNN
connected via a shared common layer. Because there is no explicit feedback, all encounters
are considered positive, and examples of negative interaction are picked at random [24].

The researchers suggest using CF-UIcA, a neural co-autoregressive model for CF tasks
that makes use of structural auto-repressiveness in both the user and item domains. The
authors illustrate the efficacy of CF-UIcA by evaluating it against two well-known bench-
marks, MovieLens 1M and Netflix, and achieve cutting-edge prediction performance [25].
The study [26] introduced a two-stage CS recommendation engine to address the issues
with cold starts. The system is composed of two components, namely the NNCF predictor
and the DACR generator.

The paper [27] proposed a novel model for medical diagnosis that incorporates artifi-
cial intelligence and trust mechanisms. They introduced the concept of a Medical-assisted
Diagnosis Model as a Service (MDMaaS), which allows healthcare providers to access
diagnosis models through a cloud-based platform. The MDMaaS employed a multi-stage
trust model to ensure the accuracy and reliability of the diagnosis results, as well as a hybrid
artificial intelligence model that combines machine learning and rule-based systems. The
proposed model was evaluated using a real medical dataset, demonstrating its effectiveness
and potential to reduce the workload of medical professionals. The study highlighted the
importance of trust mechanisms in medical AI systems and provided valuable insights into
their design and implementation.

B. Yi et al. [28] presented an innovative solution to enhance recommendation systems
utilizing deep matrix factorization with implicit feedback embedding. By considering
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implicit feedback from user–item interactions, the proposed models of [29–31] learn latent
representations of users and items via matrix factorization.

The authors evaluated the model on two actual datasets and compared it with vari-
ous state-of-the-art recommendation algorithms. The experimental outcomes of [32–34]
demonstrate that the suggested models outperform existing techniques regarding efficiency
and accuracy.

The following are the strengths, weaknesses, and limitations of Deep Learning based
approaches:

Strength: Deep learning techniques can identify complicated patterns in data, enhance
recommendation accuracy, and effectively process various types of data.

Weakness: These models require large amounts of data and higher computational power.
Limitation: Training deep learning models may be a high time-consuming process, and

it may have overfitting risks if not managed and controlled appropriately.

2.4. Reinforcement Learning-Based Model

The paper proposed by G. Zheng et al. [21] suggests a reinforcement learning frame-
work that is based on DQN for online personalized news suggestions. In contrast to earlier
approaches, this system effectively models changing news characteristics and user prefer-
ences, allowing it to anticipate the future and yield greater payouts (like CTR) in the long
run. The studies [33,34] proposed unique framework called DEERS that uses reinforcement
learning to model the recommendation session as a Markov Decision Process. They sug-
gested learning approaches for how to automatically identify the best recommendation
methods. In [34], the researchers present Deep Page, a unique page-wise recommendation
system that uses Deep Reinforcement Learning to simultaneously optimize a page of items
and automatically learn the best recommendation tactics. Comprehensive tests are con-
ducted using information from a real e-commerce company to demonstrate the efficacy of
our system [34].

In the study [35]. Pseudo Dyna-Q (PDQ) is proposed by the researchers. In PDQ, the
World Model is used, a customer simulator that is intended to imitate the environment
and handle the selection bias of logged data, in place of dealing with actual consumers.
Continually updated and adaptively optimized throughout policy improvement, it uses
the most recent suggestion policy [35]. To solve these issues, the study suggests a brand-
new Attribute-aware Neural Attentive Model (ANAM). To model users’ changing appetite for
goods, ANAM implements an attention mechanism and employs a hierarchical architecture.

Lei and Li [36] described an interactive recommender system that employs user-
specific deep reinforcement learning. This system can generate personalized recommenda-
tions in real-time and adjust to the user’s feedback and preferences through interaction. The
authors [30] reviewed the models in detail and present evaluation outcomes that show the
efficacy of the proposed technique in contrast to other advanced recommendation methods.
The analysis suggests that the interactive recommender system that employs user-specific
deep reinforcement learning has the potential to enhance the accuracy of recommendations
and improve the user experience.

The following are the strengths, weaknesses, and limitations of reinforcement learning:
Strength: It is very much effective for optimizing user engagement in changed environ-

ments where real-time interactions are required.
Weakness: The implementation of reinforcement learning may be a complex process

and it may require a noteworthy amount of user interaction data.
Limitation: It may have lower efficiency with respect to sparse feedback, and it may

complicate the whole learning process.

3. Issues with Recommender Systems

There are several problems that industries encounter when attempting to deploy a
recommender system on a large scale. A few of these difficulties are addressed in Table 1 of
this section.
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Table 1. Problems with recommender systems and corresponding important findings.

Problem Name Authors Important Findings

1. Cold Start Problem [20,21,24,26,29–34,36–38]

• We do not have sufficient information to determine a user’s
choice for a certain item whenever a new product is added to the
platform or a new user registers.

• If we add a new product and no customers have given it a review
as of yet, or if just a negligible number of people have seen the
latest movie as of yet, we do not have enough data on the
brand-new item.

• Because of a lack of information, assumptions are made
incorrectly, which results in poor recommendations.

• The effectiveness of customized suggestions increases whenever
they have adequate product information and user interaction.

2. Overspecialization
Problem (OPS) [39–45]

• The OPS becomes evident when the recommended items have a
high degree of similarity with each other.

• The user is bombarded with only a few types of options, in which
the user has already shown interest. This leads to the creation of
an echo chamber of content.

• Because of the repeated recommendations of the same items, the
user experience deteriorates.

3. Scalability Problem [46–51]

• The recommendation system’s operation necessitates complicated
multidimensional matrix multiplications as well as heavy
computations, like discovering an item or user’s nearest
neighbors.

• More and more resources are needed as a platform’s user base
grows to give users appropriate recommendations.

• The scaling issue becomes so much more significant when
considering the affordability and use of recommender
system (RS).

4. Sparsity Problem [52–55]

• We may have very few ratings from these users regarding many
products they have loved, bought, or even despised.

• Users regularly do not spend enough time giving correct reviews;
occasionally, they may provide a random rating without even
realizing what kind of item it is.

• Unwanted and inaccurate results are displayed to the user
whenever the RS accepts this incorrect ranking as an input.

5. Insufficient Data
Problem [56–58]

• The fact that recommender systems require a lot of information to
create suggestions is likely their largest problem.

• The likelihood of receiving useful recommendations would
increase with the amount of items and user data a
recommendation system has at its disposal.

6. Changing User
Preferences [59–61]

• The user’s preference varies occasionally.
• A person might visit the same e-commerce site one day to look for

a book and another day to look for home goods. Therefore,
predicting whatever the user would want to buy is difficult.

7. Gathering Known
Ratings for Matrix [62–64]

• The majority of users, it has been found, do not rate anything.
Therefore, the question of how to determine whether and to what
extent people are satisfied with the product emerges.

• We can extrapolate from the users’ choices for other items how
users will rate a certain item. This technique is referred to as an
implied approach to rating collection.

8. Unpredictable items [65,66]

• To determine the sorted list of predictable and unexpected lists of
items, an item recommender is utilized. This could include
unique products that have existed before or are related to those
that already exist; in this case, the system might not be happy to
suggest a suitable product to any users, and all those items would
end up being discarded for a long time.
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4. Proposed Model for Improvement of Existing Solutions

We use an NLP-based pre-processing module on the reviews provided by the users to
enumerate the ratings based on their usefulness. This module will also remove any fake or
inconsistent ratings. The recommender systems’ trained data after applying NLP will have
cleaner data for training the machine learning models. Hence, the accuracy of the overall
model will increase by using the following algorithmic steps:

The algorithmic steps of Figure 2 can be expressed using a diagram (Figure 3) of
different components with a flow of the proposed approach [39,40].
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4.1. Pre-Processing the User Review and Meta-Data Submitted by the Users

We pre-process the information gathered from the user. This includes their review of
an item and some metadata about the user demography. These data will be further used to
give the actual recommendations. Using this method, we can recognize the types of views
and ideas the review text is conveying, and it can be determined whether the given review
is positive or negative. This can further differentiate real reviews from fake reviews. The
diagram (Figure 4) represents the general flow of ReSA [41–43]:

The ReSA process can be divided into two phases, namely, Phase-A (Pre-process the
User-Review-Text), and Phase-B (Feature Extraction and Create Document Vectors).

In Phase-A, the collected user review goes through a series of operations to fit for
ReSA. If we try to include the text and predict its legitimacy, the results obtained will not
be satisfactory. Therefore, the contents can be processed [43,44]. Figure 5 represents the
flow of review pre-processing for the ReSA approach. The pre-processing involves the
following steps:

Step 1: Input the user review textas raw_text_data.
Step 2: Start Text_Pre-processing using the steps from Step 3 to Step 7.
Step 3: Remove punctuation marks from raw_text_data.
Step 4: Filter out numbers from raw_text_data.
Step 5: Remove stop words from raw_text_data.
Step 6: Convert all text of raw_text_data to lowercase.
Step 7: Perform stemming on words.
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Step 8: Obtain the cleaned_text_data as output.
Step 9: End the text pre-processing task.
Figure 6 describes the flow of preprocessed user review for ReSA approach where

indexed data is obtained as the output. Finally, we feed in index data containing the bag of
words and create a document vector from the same dataset. This document vector will be
used for the processing of the data.

4.2. Proposed Mathematical Model

In this section, the mathematical model is formulated for describing the process of
recommendations along with NLP in a collaborative-filtering-based recommender system.
The proposed mathematical model is based on the following hypotheses:

Hyp1: Pre-processing user reviews will increase the accuracy of recommendations.

Hyp2: The user might have given the wrong review.

Hyp3: The user might have given the right review.

Hyp4: The user might have given a satisfactory review.

Hyp5: The accuracy of recommendations might be poor.

Hyp6: The accuracy might be satisfactory.

Hyp7: The accuracy might be good.

Hyp8: The accuracy may be very good.

Hyp9: The rate of increase in the number of positive reviews is proportional to the accuracy of
predictions.

Hyp10: The accuracy might be outstanding.

Hyp11: The accuracy might be very poor.
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Further, Table 2 presents and describes the variables employed in the mathemati-
cal model.

Table 2. Nomenclature of the variables used in the research work.

Symbol Description

1. X The number of accurate recommendations made by the model.

2. I The number of inaccurate recommendations made by the model.

3. U1 Prediction accuracy after Phase A of review pre-processing.

4. M Already given inaccurate recommendations.

5. U2 Prediction accuracy after Phase B of the review pre-processing.

6. V The number of recommendations changed from incorrect to correct.

7. E Data generation rate.

8. η1 Rate of general filtering of user reviews.

9. η2 Rate of filtering after passing ReSA Phase A.

10. η3 Rate of filtering after passing ReSA Phase B.

11. γ1 Transfer rate of positive review to negative review at Level 1.

12. γ2 Rate of transfer of positive review to filtered data.

13. δ Change in the rate of incorrect recommendations.

14. α1 Transfer rate of positive review to already filtered data.

15. α2 Transfer of positive review to negative review block where a negative review was already stored.

16. ω1 The rate at which filtered data are transferred to vulnerable data.

17. ω2 Rate of data transfer from filtered to recovered data.

18. Ψ The rate of filtered data recovery following NLP.

19. Z A matrix with Jacobians for the frequency of additional transitions between filtered data blocks and various blocks.

20. J A matrix with the Jacobians for the frequency of fresh reviews appearing inside the filtered data blocks.

21. MRFE Jacobian at the equilibrium of review pre-processing.

22. ꞇ ESP τ at the Equilibrium at a final block of processing.

Through the above hypothesis (Hyp1 to Hyp11) and Figure 7 of the recommender system
review processing, the authors have formulated the equations and theorems described in
Appendix A of this paper. Further, the asymptotically stable state described in Appendix A
may be useful in rejecting the obtained cold start spam reviews. Hence, the mathematical
equations (Equation (A1) to Equation (A17)) of Appendix A are directly connected with
various datasets used in conducting experiments in terms of feature matching (feature-
based review selection and feature-based fake review rejection). Descriptions of various
datasets and the implementation of the proposed ReSA process are presented in the next
section (Section 5).
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5. Results and Discussions
5.1. Datasets Used

The following are the datasets used for enhancing the solutions of cold start problems
using recommender system-based machine learning approaches:

MovieLens: This dataset consists of movie ratings provided by users on the MovieLens
website and is frequently used to evaluate recommender systems.

Jester: The Jester dataset contains user ratings of jokes on the Jester website and is
commonly used to evaluate collaborative filtering-based recommender systems.

Book-Crossing: This dataset comprises book ratings and metadata provided by users
of the Book-Crossing website and is often used to evaluate content-based and hybrid
recommender systems.

Last.fm: This dataset includes the music listening histories of users on the Last.fm web-
site and is frequently used to evaluate collaborative filtering-based recommender systems.

Amazon Product Reviews: This dataset contains product ratings and reviews provided
by users on the Amazon website and is widely used to evaluate recommender systems.

Yelp: The Yelp dataset contains user reviews and ratings of businesses on the Yelp
website and is often used to evaluate content-based and hybrid recommender systems.

Netflix Prize Dataset: Renowned for movie recommendations, it contains user ratings
for films.

Goodreads Dataset: Invaluable for book recommendations, it is filled with book reviews
and ratings.

IMDb Data: Key for media recommendations, it contains user ratings and reviews for
movies and TV shows.

CiteULike Dataset: Perfect for academic paper recommendations, it includes academic
papers, tags, and user profiles.

Epinions Dataset: Valuable for trust-aware recommendations, it contains user reviews
and trust networks.

Etsy Dataset: Beneficial for item recommendations, it comprises user interactions,
product listings, and user profiles.

These datasets, varying in size and focus, are essential resources for researchers
and practitioners in recommendation systems, tailored to specific research objectives and
evaluation criteria.
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5.2. Word Cloud Generation

In this section, the authors have explored the attributes of a good review using a word
cloud. The following images in Figure 8 are a representation of the same [44–46]:
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Figure 8. Word cloud for the positive reviews.

Word clouds are the graphical representation of the data based on the frequency in
which these occur in a specific price of content: in our case, the user reviews. The size of
a word in the word cloud depends on how high the frequency of the specific word is in
the dataset [47]. These are also called tag clouds or text clouds. These are ideal ways to
pull out the most pertinent parts of textual data, from blog posts to databases. It can also
help business users to compare and contrast two different pieces of text to find the wording
similarities between the two. In our word cloud, the prominent words are features of a
good review for a Gaming Keyboard Product.

The Amazon product review dataset is given in Figure 9 [48,49].

Electronics 2024, 13, x FOR PEER REVIEW 15 of 32 
 

 

 

Figure 8. Word cloud for the positive reviews. 

Word clouds are the graphical representation of the data based on the frequency in 

which these occur in a specific price of content: in our case, the user reviews. The size of a 

word in the word cloud depends on how high the frequency of the specific word is in the 

dataset [47]. These are also called tag clouds or text clouds. These are ideal ways to pull 

out the most pertinent parts of textual data, from blog posts to databases. It can also help 

business users to compare and contrast two different pieces of text to find the wording 

similarities between the two. In our word cloud, the prominent words are features of a 

good review for a Gaming Keyboard Product. 

The Amazon product review dataset is given in Figure 9 [48,49]. 

 

Figure 9. Amazon review dataset. 

Figure 9 represents multiple tuples in our data from Amazon. The authors used 

Figure 9 for the ReSA process. The data points were obtained from Web Scraping reviews 

on Amazon. Here, each tuple contains the following fields: 

Field 1: Date of review (which represents the date on which the review was con-

ducted). 

Field 2:URL of the product (which represents the Uniform Resource Locator). 

Field 3: Review title (which represents the title of the review). 
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Figure 9 represents multiple tuples in our data from Amazon. The authors used
Figure 9 for the ReSA process. The data points were obtained from Web Scraping reviews
on Amazon. Here, each tuple contains the following fields:
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Field 1: Date of review (which represents the date on which the review was conducted).
Field 2: URL of the product (which represents the Uniform Resource Locator).
Field 3: Review title (which represents the title of the review).
Field 4: Author (which shows the author’s name).
Field 5: Rating (which shows the given rating).
Field 6: Review text (which shows the description of the review).
Field 7: Review Sentiment (which represents the linked sentiments related to the review).
Field 8: Review Subjectivity (which represents the mental depth or the seriousness of

the review).

5.3. The Logic of the Study’s Instrumentation

The following criteria, indicators, and methods are instrumentation for our study:
Criteria 1: Mitigation of Cold Start Issues (evaluating how effectively the system gener-

ates recommendations for new users or items);
Criteria 2: Performance Metrics (utilizing accuracy, precision, recall, F1-score, and area

under the curve to measure model effectiveness);
Criteria 3: Collaborative Filtering Efficacy (assessing the success of user- or item-based

filtering techniques);
Criteria 4: NLP Integration (analyzing the impact of text-based reviews in sentiment

assessment);
Indicator 1: Effectiveness in Cold Start Resolution (analyzing the quality of initial recom-

mendations);
Indicator 2: Model Evaluation Standards (employing metrics like confusion matrices and

AUC for assessment;);
Indicator 3: Scalability Considerations (the model’s adaptability across various datasets

and domains, such as MovieLens and Yelp etc.);
Indicator 4: Reproducibility Aspects (making datasets and algorithms publicly available

for verification);
Method 1: Data Collection (gathering datasets from sources like IMDb or Amazon for

NLP applications);
Method 2: Implementation of Models (using machine learning techniques such as random

forest and Naive Bayes);
Method 3: Assessment of Performance (evaluating models through confusion matrices

and loss graphs);
Method 4: Visualization Techniques (employing heatmaps and performance charts to

illustrate optimization and sentiment analysis).
This structured approach will support the investigation of the cold start problem,

enhancing NLP and machine learning solutions while ensuring scalability.

5.4. Results of the Proposed ReSA Process

Numerous factors have a substantial impact on the accuracy of CFBRS. Data sparsity
is a prevalent challenge in collaborative filtering, where a significant proportion of users
or items possess limited or no interaction data, particularly affecting niche or less popular
items. The cold start problem compounds these challenges by emerging when new users
or items lack historical interaction data. Collaborative filtering heavily depends on past
interactions, rendering recommendations for these “cold start” entities a formidable task.
Scalability concerns arise as the user and item populations grow, elevating computational
complexity and affecting recommendation speed and efficiency. Data quality is pivotal,
with inaccurate or noisy user data, including fake reviews or erroneous ratings, signif-
icantly impairing recommendation quality. Detecting and addressing outliers and data
inconsistencies is crucial.

Malicious users can manipulate systems through spam and shilling attacks, providing
biased ratings or reviews, necessitating the detection and mitigation of such activities.
Privacy concerns may result in users withholding preferences, leading to incomplete or
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unreliable preference data, undermining recommendation accuracy. Diverse user prefer-
ences, termed user heterogeneity, pose challenges, as collaborative filtering assumes user
similarity. Varied tastes and preferences can lead to less precise recommendations. Collabo-
rative filtering often exhibits a bias towards popular items, introducing item popularity
bias and potentially neglecting niche or lesser-known items. Algorithm scalability is a
concern, with some algorithms struggling to process large datasets efficiently. Careful algo-
rithm selection and optimization techniques are vital. Sparse user–item interactions make
identifying similar users or items challenging, impacting recommendation accuracy. User
preferences evolve over time, affecting recommendation relevance in temporal dynamics.
Contextual information, such as location, time, or user behavior, significantly impacts
recommendations. Traditional collaborative filtering may not consider these factors, affect-
ing accuracy. Algorithm selection, with different collaborative filtering algorithms having
distinct strengths and weaknesses, influences recommendation accuracy. Addressing these
factors is crucial to enhancing CFBRS accuracy.

Experiments are conducted on the self-generated and standard benchmark datasets to
obtain positive and negative review distribution values. These values are given in Figure 10.
After analyzing the results of Figure 10, the authors observed that approx. 80% of the
reviews are positive and the rest, 20% of reviews, are negative. Further, it has been observed
that there are more positive reviews and fewer negative reviews for the self-generated and
benchmark datasets.
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5.5. Comparison of Algorithms Using Confusion Matrices

Figure 11 is a description of the performance evaluation of the ReSA process for the
improved method to form the recommender cold start problem using machine learning.
Two commonly used confusion matrices used in this paper to evaluate performance are the
random forest confusion matrix and the Naive Bayes confusion matrix. The random forest
confusion matrix in Figure 11 displays the number of true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) values obtained by the random forest model.
TP represents the number of correctly predicted positive reviews, while FP represents the
number of incorrectly predicted positive reviews. TN represents the number of correctly
predicted negative reviews, while FN represents the number of incorrectly predicted
negative reviews.
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The Naive Bayes confusion matrix of Figure 11 displays the performance of the Naive
Bayes model in predicting the sentiments of reviews. Similar to the random forest confusion
matrix, it displays the number of TP, FP, TN, and FN. However, the Naive Bayes model is
based on probabilistic principles, which allows it to take into account the probability of
each feature in the review being indicative of a positive or negative sentiment [49,50].

By comparing the performance of the ReSA method using both the random forest
and Naive Bayes models, it is possible to determine which model is more suitable for the
given task. If the random forest model is more accurate, its confusion matrix will show a
higher number of TPs and TNs and a lower number of FPs and FNs. Conversely, if the
Naive Bayes model is more accurate, its confusion matrix will show a higher F1 score and
recall. Other evaluation metrics such as accuracy, precision, recall, and F1-score can also be
used to compare the performance of the ReSA method using different models, providing a
more detailed view of the model’s strengths and weaknesses in predicting the sentiment
of reviews.

Figure 11 shows two confusion matrices, one for a random forest model and another
for a Naive Bayes model. These matrices are used to evaluate the performance of classifica-
tion models.

The following are the key elements of these matrices:
Quadrants: True positive (TP) means correctly predicted positive instances, true nega-

tive (TN) means correctly predicted negative instances, false positive (FP) means incorrectly
predicted positive instances, and false negative (FN) means incorrectly predicted nega-
tive instances.

Labels: “N” represents the predicted label, and “Y” represents the true label.
Color Scale: A blue-to-white gradient indicates the frequency of observations in

each quadrant.
By comparing the distribution of values in the two matrices, we can find the relative

performance of both the approaches for classifying the data. Random forest has a higher
precision and higher F1 score than the Naïve-based approach. This means that it is more likely
to correctly and equally identify positive instances. Therefore, based on the calculated
precision values and F1 score of Figure 11, it can be said that random forest can be a better
choice than the Naïve-based approach for this particular classification task. But, the best
model depends on the specific requirements and trade-offs involved in the application. We
may consider the relative importance of precision, recall, F1 score, and accuracy in each
context to make an informed decision.
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Heat map generation is a powerful visualization tool that can help to identify patterns
and relationships in data. In the context of solving the cold start problem using the users’
review of the concept of machine learning, a heat map like Figure 12 can be generated to
visualize the relationship between the sentiment of user reviews and the performance of
the recommendation system [51].
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Figure 12 describes a correlation matrix, showing the relationships between features
within a dataset. The color gradient used in the heatmap visually represents correlation
strength and direction. Dark blue corresponds to a strong negative correlation, while dark
red indicates a strong positive correlation. The labels on the ‘X’ and ‘Y’ axes mark the
dataset’s features, with correlation coefficients displayed within each cell to measure these
relationships. The analysis of the heatmap identifies three main types of correlations: strong
positive, where both features increase together; strong negative, where one feature decreases
as the other increases; and weak correlations, indicating minimal or no association between
features. These values of strong positive, strong negative, weak correlations, label ‘X’, and label
‘Y’, discussed in Figures 11 and 12, are used in computing the precision score, the recall
value, the F1 score, and the accuracy.

The heatmap also highlights key aspects like correlations with the target variable,
which are particularly significant in predictive modeling tasks. Another important factor
discussed in Figure 12 is multiple feature-based correlations, where multiple features
exhibit strong correlations with each other.

Further, the heat map of Figure 12 is divided into different sections that represent dif-
ferent levels of sentiment, such as highly positive, moderately positive, neutral, moderately
negative, and highly negative. The performance of the proposed ReSA recommendation
system can be represented using different colors or shades, with darker shades indicating
better performance and lighter shades indicating poorer performance. By analyzing the
heat map of Figure 12, the authors have identified the patterns and relationships between
the sentiment of user reviews and the performance of the recommendation system [53].
For example, we might find that the recommendation system performs well for highly
positive reviews but poorly for highly negative reviews, or that the system performs well
for reviews that use certain words or phrases but poorly for reviews that use other words
or phrases. Further, Figure 13 shows the best score achieved after using several models
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on our self-generated and standard datasets. The authors obtained the following results
(Figure 13) using the random forest and Naïve Bayes approaches [54].
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Figure 13. Accuracy, recall, and precision Scores for random forest and Naive Baye’s models.

The graph of Figure 14 represents the training loss versus epoch for different optimizers
used in the recommenders’ cold start problem using a machine learning approach. The
x-axis of Figure 14 shows the number of epochs, while the y-axis shows the training loss.
The graph is composed of multiple lines, each corresponding to a different optimizer [67].
The model/training loss measures how well the model can fit the training data. A lower
model/training loss indicates a better fit. The graph of Figure 14 shows how the training
loss changes over time as the model is trained for more epochs. The different lines in
the graph of Figure 15 represent the training loss for different optimizers, such as Adam,
RMSProp, SGD, and so on. By comparing the lines of Figure 14, the authors can see which
optimizer produces the best training loss. In general, a lower training loss indicates better
performance of the model [55].
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The validation loss vs. epoch graph is an essential tool for assessing and selecting the
best optimizer for a given task. The validation loss vs. epoch graph of Figure 15 displays
the performance of various optimization algorithms in training a model for solving the
cold start problem in a machine learning environment while minimizing errors [56]. The
y-axis of the graph of Figure 15 represents the validation loss, which indicates the model’s
error rate on a validation dataset at each epoch during the training process, while the
x-axis represents the epoch number. The primary objective is to reduce the validation loss
over the epochs to enhance the accuracy of the model. By plotting the validation losses
of different optimization algorithms on the same graph, the graph of Figure 15 allows for
easy comparison and identification of the superior performing algorithm. The graph of
Figure 15 shows trends in validation loss over time, which helps to detect the overfitting or
underfitting of the model [57].

The AUC of Figure 16 is a performance metric for evaluating a cold start problem
recommendation system in a machine learning environment. It is calculated by plotting
the true positive rate (TPR) against the false positive rate (FPR) at various thresholds of
the classifier. TPR represents the proportion of true positive recommendations, while FPR
represents the proportion of false positive recommendations. The AUC ranges from 0 to 1,
with a higher value indicating better performance [58]. A perfect model has an AUC of 1,
while a random model has an AUC of 0.5. The AUC of Figure 16 measures the model’s
ability to differentiate between positive and negative recommendations. Along with other
metrics such as precision, recall, and F1-score, it provides a comprehensive evaluation of
the model’s performance [59].

Table 3 presents the performance of three machine learning algorithms, namely Naïve
Bayes, random forest, and Logistic Regression, on a specific task using four evaluation
metrics, accuracy, precision, recall, and F1 score. Each row of Table 3 corresponds to a
particular metric, while each column of Table 3 represents a specific algorithm. The values
listed in the table indicate the scores achieved by each algorithm for each metric. For
instance, Naïve Bayes obtained an accuracy score of 0.792136, a precision score of 0.702792,
a recall score of 0.988681, and an F1 score of 0.9829470. Similarly, random forest achieved an
accuracy score of 0.890750, a precision score of 0.848830, a recall score of 0.942077, and an
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F1 score of 0.893026, while Logistic Regression achieved an accuracy score of 0.9464930, a
precision score of 0.9457630, a recall score of 0.9357150, and an F1 score of 0.9403620. Finally,
Table 3 provides a comparative view of the performance of these algorithms, allowing us to
evaluate which algorithm is the most effective for the given task.
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Table 3. Result summary of different algorithms used for proposed ReSA.

Factors Considered Naïve Bayes Random Forest Logistic Regression Best Score

1. Accuracy 0.792136 0.890750 0.9464930 Random Forest

2. Precision 0.702792 0.848830 0.9457630 Random Forest

3. Recall 0.988681 0.942077 0.9357150 Naive Bayes

4. F1 Score 0.9829470 0.893026 0.9403620 Naive Bayes

Table 4 describes the results of various algorithms used for addressing the cold start
problem in the domains of blockchain, smart grid, and edge computing. Further, Table 4
lists the performance metrics of 11 different algorithms, out of which the first four and
the Hybrid Storage architecture do not have available results for global accuracy, global
loss, F1-score, and AUC. The other six algorithms, including Model Chain, Block Deep Net,
Deep Coin, Deep Block Scheme, and the Asynchronous advantage actor–critic algorithm,
have varying levels of performance in terms of global accuracy and global loss. Finally,
the proposed approach that utilizes machine learning for user review pre-processing has
achieved a global accuracy of more than 96% and an F1-score of 0.78 and above, with an
AUC of 92% and above for almost each of the datasets taken, outperforming the other
algorithms. Hence, this approach can be effective in mitigating the cold start problem by
utilizing machine learning approaches.
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Table 4. Performance comparison of various security provision approaches for edge computing on various datasets [12–36].

Algorithm Name Classifier Taken/Technologies Used
Results/Observation

Global Accuracy Global Loss F1-Score AUC

1. SDN Based on Blockchain [12,13] S.D.N., Blockchain, Fog Nodes 87% 3% Not Available Not Available

2. Edge Chain [14,15] Edge Computing, Blockchain Not Available Not Available Not Available Not Available

3. Smart Grid [16,17] Smart Grids, Edge Computing,
K-Nearest Neighbors 91% 8% Not Available Not Available

4. Hyper Ledger Fabric Blockchain [18,19] Edge Computing, Hyper ledger Fabric, IoT Not Available Not Available Not Available Not Available

5. Hybrid Storage Architecture [20,21] Blockchain, smart computing, Edge Computing Not Available Not Available Not Available Not Available

6. Model Chain [22,23] Blockchain, Machine Learning 78% 7% Not Available Not Available

7. Block Deep Net [24–26] Blockchain, Deep Learning 72% 5.4% Not Available Not Available

8. Deep Coin [27,28,30] Deep Learning, Blockchain, Smart Grid 92% 3.98 0.761 Not Available

9. Deep Block Scheme [29] [30–32] Blockchain, Deep Learning 89% 2.65 0.697 Not Available

10. Asynchronous Advantage Actor–critic
Algorithm [30,33–36]

Blockchain, Edge Computing, Deep
Reinforcement Learning 76% 1.91% Not Available Not Available

11. Proposed Approach
An Improved Method to Recommender’s Cold

Start by User Reviews Pre-processing Using
Machine Learning

96% 1.5% 0.78 92%
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The comparison between random forest and Naive Bayes in ReSA for sentiment
analysis introduces an innovative approach to resolving the cold start problem. This method
combines NLP with machine learning techniques, combining both algorithms and advanced
evaluation tools such as confusion matrices, F1 scores, and AUC to improve sentiment
prediction. The ReSA method’s dependence on widely used algorithms and publicly
available data ensures that its findings are reproducible. Its accuracy is demonstrated
through various metrics like precision, recall, and validation loss graphs, with random
forest consistently showing superior performance. Scalability is achieved by applying these
machine learning models across diverse domains like blockchain and edge computing. The
practical impact of this approach lies in its ability to enhance recommendation systems by
addressing performance inconsistencies and mitigating cold start challenges. By doing so, it
leads to significant improvements in system performance and user satisfaction. The method
has been successfully tested across multiple datasets, including MovieLens, Yelp, Amazon
Product Reviews, and Netflix Prize, demonstrating its flexibility and effectiveness in different
applications. This comprehensive approach not only addresses technical challenges but
also improves user experience on a wide range of platforms, making it a robust solution for
modern recommendation systems across industries.

The proposed approach of Table 4 demonstrates several strengths when compared
to other state-of-the-art approaches. The key strengths, and weaknesses of the proposed
approach are described below:

Strength 1: Global Accuracy (the proposed approach achieves a 96% global accuracy,
outperforming methods such as SDN, based on Blockchain (87%) and Block Deep Net
(72%). Even the Deep Coin method, which reaches 92%, falls short. This high accuracy
makes the proposed method particularly effective in providing accurate recommendations).

Strength 2: Global Loss (the method shows a global loss of 1.5%, significantly lower
than other methods like Smart Grid (8%) and Deep Block Scheme (2.65%). This low
loss highlights the model’s precision and ability to minimize errors, which is critical in
recommendation systems for better user experience).

Strength 3: F1-Score (reporting an F1-score of 0.78, the proposed approach balances
precision and recall well. It slightly outperforms Deep Coin, which has an F1-score of 0.761.
This makes the method particularly useful for applications involving imbalanced datasets
or the cold start problem, where both precision and recall are critical).

Strength 4: AUC (with an AUC of 92%, the proposed method stands out, showing a
strong ability to distinguish between positive and negative outcomes. This makes it more
effective for classification tasks compared to other methods, such as SDN and Block Deep
Net, which do not provide AUC values for direct comparison).

Weaknesses 1: Limited Use of Emerging Technologies (unlike methods like Edge Chain and
Hyperledger Fabric Blockchain, the proposed method does not incorporate technologies
like blockchain or edge computing, which are beneficial in decentralized and scalable sys-
tems. These methods provide added security, scalability, and data management capabilities,
making them better suited for decentralized applications).

Weakness 2: Lack of Real-Time Capabilities (methods like Deep Coin and the Asyn-
chronous Advantage Actor–Critic Algorithm use advanced technologies such as deep
reinforcement learning and smart grids, which allow for adaptability in real-time, dy-
namic environments. The proposed method focuses primarily on cold start and user
review processing, making it less versatile in contexts requiring real-time processing and
decision-making).

Weakness 3: Absence of Blockchain Integration (Other approaches, such as Model Chain
and Hybrid Storage Architecture, combine blockchain for secure, decentralized data han-
dling. The proposed method does not include blockchain technology, which could limit its
application in systems that require high security and decentralized data storage and pro-
cessing).

It can be said that the proposed method excels in key areas like global accuracy, F1-
score, and AUC, making it an effective solution for improving recommendation systems
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and addressing the cold start problem. However, it lacks the integration of advanced
technologies such as blockchain and edge computing. Despite this, the proposed method’s
superior accuracy and low loss rates make it a highly effective tool, particularly for recom-
mender systems.

6. Conclusions

In this study, an NLP-based approach is applied to improve the quality of user reviews,
which will lead to an improvement in the accuracy of recommendations made by the CFBRS.
Various datasets obtained in this study contained reviews submitted by different users and
pre-processed data, etc. Further, multiple techniques are applied, which include random
forest, Naïve Bayes, Logistic Regressions, etc., to detect the quality of a review submitted by
the user. They yielded different recall, precision, and accuracy scores after using different
machine learning methods.

This study applied a mix of supervised and unsupervised approaches to NLP using the
sci-kit learn method. The researchers evaluated their proposed method on several bench-
mark datasets, including MovieLens, Jester, Book-Crossing, Last.fm, Amazon Reviews,
Yelp, Netflix Prize, Goodreads, IMDb, CiteULike, Epinions, and Etsy. They measured
performance using metrics such as Global Accuracy, Global Loss, Precision Score, Recall values,
F1 score, and AUC. The results from various models like random forest, Naïve Bayes, and
Logistic Regression showed that random forest was the most effective, achieving over 90%
accuracy. The proposed method recorded a global accuracy of 95%, a global loss of 1.50%,
an F1 score of 0.78, and an AUC of 92%.

The results from this study can be further enhanced by doing further trials with other
databases that may be gathered using techniques like web-scraping; the authors need to
check the compatibility of dynamic programming dataset-based techniques (DPDBTs) with
modern machine learning (MML) models.

This study has the following limitations:

(i) The dataset was gathered from a small number of sources, lacking diversity.
(ii) This study only concentrated on improving user review quality, ignoring other cru-

cial factors.
(iii) Other influential factors affecting CFBRS performance were not considered.

To address these limitations, following future research could explore the use of other
machine learning techniques and models to improve the accuracy and efficiency of the
proposed model:

(i) Explore the integration of DPDBTs with advanced machine learning techniques,
including neural networks, deep learning, and decision-based models, to further
improve system accuracy.

(ii) Implement distributed experiments to enhance performance across client and server
environments.

(iii) The MML models might be compared to DPDBTs in further study. On both the
client and server sides, distributed and global differential privacy (GDP) experiments
are possible. Hence, the authors may conduct GDP experiments in the DPDBT
environment after including and adjusting various result-affecting parameters to
further improve the performance of the proposed system.

(iv) Collect diverse data and address privacy, data quality, and user engagement chal-
lenges to refine recommendations.

(v) Incorporate state-of-the-art NLP frameworks, such as transformers and generators,
to elevate analysis capabilities. Gather user feedback to fine-tune recommendation
effectiveness.

(vi) Create hybrid models that integrate collaborative and content-based approaches. Ex-
plore real-time data processing methods to boost user engagement and responsiveness.
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Appendix A

The formulated mathematical model for describing the process of recommendations
along with NLP in a CFBRS can be represented by Equation (A1).

dX
dt = E − δTM − η1X + α2U1
dI
dt = TδM − (γ1 + γ2 + η1)I

dU1
dt = γ1 I − (α1 + α2 + η1)U1

dM
dt = α1U1 − (ω1 + ω2 + η1 + η2)M + γ2 I

dU2
dt = ω1M − (η1 + η3 + ψ)U2

dV
dt = ψU2 + ω2M − η1V

(A1)

Appendix A.1. Correlation Between Review Pre-Processing and Accuracy in the Proposed Model

The data and parameters associated with it are assumed to be non-negative. Thus, the
rate of change in accuracy concerning the time in pre-processing the user reviews can be
given by

dQ
dt

=
dX
dt

+
dI
dt

+
dU1

dt
+

dM
dt

+
dU2

dt
+

dV
dt

(A2)

⇒ dQ
dt

= E − η1Q − η2M − η3U2 (A3)

with Q = X + I + U1 + M + U2 + V.
Now, it can be concluded that whenever there is no error in recommendations, then

(I = M =U2 = 0).
Hence, dQ

dX = E− η1Q, which defined the size ‘Q’, having the capacity of E
η1

As t −→ ∞ .
Furthermore, the solution of (1) is defined to lie in the range of τ = {(X, I, U1, M, U2, V)

ϵR+
6 : X(t) ≥ 0, I(t) ≥ 0, U1 ≥ 0, M(t) ≥ 0, U2(t) ≥ 0, V(t) ≥ 0, X + I + U1 + M + U2 +

V ≤ Q
η1
}, because of the positive boundness of the solutions given in the region that is

defined by τ.

Appendix A.2. Review Pre-Processing Impact Magnitude (S0)

We will be applying next-generation matrix manipulations to define the Review Pre-
processing Impact Magnitude (RPIM) at “Phase A: User-Text-Review-based pre-processing”.
The RPIM is designated as the mean of all inaccurate re-accommodating after Phase A of
review sentiment analysis, i.e., text-based pre-processing when the fake review from one
user breached another user’s recommended feed and polluted the filtered recommenda-
tions. We denote this number as S0. This RPIM can be formulated using the spectral radius
of the JZ−1 matrix. We can obtain this by the linearization of the equation (Equation (A1)).
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According to the next-generation matrix principle, RPIM can be deduced as the
spectral radius of the next-generation matrix formed as JZ−1 of the system of equations
(Equation (A1)).

ji − zi =


dI
dt

dU1
dt

dM
dt

dU2
dt
dV
dt

 =


δXM − (γ1 + γ2 + η1)I
γ1 I − (α1 + α2 + η1)U1

α1U1 − (ω1 + ω2 + η1 + η2)M + γ2F
ω1M − (η1 + η3 + ψ)U2

ψU2 + ω2M − η1V

 (A4)

Furthermore,

ji =


δXM

0
0
0
0

, zi =


(γ1 + γ2 + η1)I

(α1 + α2 + η1)U1 − γ1 I
(ω1 + ω2 + η1 + η2)M − (α 1U1 + γ2 I)

(η1 + η3 + ψ)U2 − ω1M
η1V − (ψU2 + ω2M)

 (A5)

Here, in the above equation, ji is the rate of submission of new fake reviews for a given
product, and zi is the rate of other reviews posted on the product page of the same product.

Following is the formation of the matrices J and Z:

J =



∂j1
∂I

∂j1
∂U1

∂j1
∂M

∂j1
∂U2

∂j1
∂V

∂j2
∂I

∂j2
∂U1

∂j2
∂M

∂j2
∂U2

∂j2
∂V

∂j3
∂I

∂j3
∂U1

∂j3
∂M

∂j3
∂U2

∂j3
∂V

∂j4
∂I

∂j4
∂U1

∂j4
∂M

∂j4
∂U2

∂j4
∂V

∂j5
∂I

∂j5
∂U1

∂j5
∂M

∂j5
∂U2

∂j5
∂V


=


0 0 δX0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (A6)

where, X0 = E
η1

, and,

Z =



∂z1
∂I

∂z1
∂U1

∂z1
∂M

∂z1
∂U2

∂z1
∂V

∂z2
∂I

∂z2
∂U1

∂z2
∂M

∂z2
∂U2

∂z2
∂V

∂z3
∂I

∂z3
∂U1

∂z3
∂M

∂z3
∂U2

∂z3
∂V

∂z4
∂I

∂z4
∂U1

∂z4
∂M

∂z4
∂U2

∂z4
∂V

∂z5
∂I

∂z5
∂U1

∂z5
∂M

∂z5
∂U2

∂z5
∂V


(A7)

Hence, Z =


(γ1 + γ2 + η1) 0 0 0 0

−γ1 (α1 + α2 + η1) 0 0 0
−γ2 −γ1 (ω1 + ω2 + η1 + η2) 0 0

0 0 −ω1 (η1 + η3 + ψ) 0
0 0 −ω2 −ψ η1

 (A8)

Now, by the definition of inverse of matrices, we know that Z−1 = AdjZ
|Z|

Z−1 =



1(
γ1+γ2+η1

) 0 0 0 0
γ1(

γ1+γ2+η1
)(

α1+α2+η1
) 1(

α1+α2+η1
) 0 0 0

γ1α1+γ2
(
α1+α2+η1

)(
γ1+γ2+η1

)(
α1+α2+η1

)(
ω1+ω2+η1+η2

) α1(
α1+α2+η1

)(
ω1+ω2+η1+η2

) 1(
ω1+ω2+η1+η2

) 0 0

γ2ω1
(
α1+α2+η1

)
+
(
ω1α1γ1

)(
γ1+γ2+η1

)(
α1+α2+η1

)(
ω1+ω2+η1+η2

)(
η1+η3+ψ

) ω1α1(
α1+α2+η1

)(
ω1+ω2+η1+η2

)(
η1+η3+ψ

) −ω1(
ω1+ω2+η1+η2

)(
η1+η3+ψ

) −ω2(
ω1+ω2+η1+η2

)(
η1+η3+ψ

) 0
( (

η1 + η3 + ψ
)
ω2γ2

(
α1 + α2 + η1

)
+ ψω1γ1α1

−γ1ω2α1
(
η1 + η3 + ψ

)
+

(
α1 + α2 + η1

)
ψω1γ2

)
(
γ1+γ2+η1

)(
α1+α2+η1

)(
ω1+ω2+η1+η2

)(
η1+η3+ψ

)
η1

 (
η1+η3+ψ

)
α1ω2+ω1ψα1(

α1+α2+η1
)(

ω1+ω2+η1+η2
)(

η1+η3+ψ
)
η1

ω2
(
η1+η3+ψ

)
+ψω1(

ω1+ω2+η1+η2
)(

η1+η3+ψ
)
η1

ψ
η1

1
η1



(A9)
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Thus, the RPIM can be denoted by V0, given by:

V0 = κ
(

JZ−1
)
=

γX0(γ1α1 + γ2(α1 + α2 + η1))

(γ1 + γ2 + η1)(α1 + α2 + η1)(ω1 + ω2 + η1 + η2)
(A10)

V0 = κ
(

JZ−1
)
=

δE(γ1α1 + γ2(α1 + α2 + η1))

η1(γ1 + γ2 + η1)(α1 + α2 + η1)(ω1 + ω2 + η1 + η2)
(A11)

Furthermore, we can conclude that our system of Equation (A9) becomes the following
for the steady-state condition:

E − δXM − η1X + α2U1 = 0
δXM − (γ1 + γ2 + η1)I = 0
γ1 I − (α1 + α2 + η1)U1 = 0

α1U1 − (ω1 + ω2 + η1 + η2)M + γ2 I = 0
ω1M − (η1 + η3 + ψ)U2 = 0

ψU2 + ω2M − η1V = 0 (A12)

Here, we have discussed the local stability of a risk-free equilibrium and the equi-
librium state of the accurate recommendations for a given recommender system can be
denoted by Equation (A12) after analyzing the characteristics equations.

Theorem A1. If V0 < 1, then the no-risk equilibrium state is asymptotically in the stable state in
the region τ0 for recommending a recommender system, otherwise it is in an unstable state.

Proof. We can establish the Jacobian Matrix as τ0(X = 1, I = U1 = M = U2 = 0), in a
no-risk equilibrium condition.

MRFE(τ0) =


−η1 0 −α2 −δ 0

0 −(γ1 + γ2 + η1) 0 δ 0
0 γ1 −(α1 + α2 + η1) 0 0
0 0 α1 −(ω1 + ω2 + η1 + η2) 0
0 0 0 ω1 −(ψ + η1 + η3)

 (A13)

This corresponding Eigenvalues of MDIE(τ0) are as follows:

λ1 = −η1

λ2 = −(ψ + η1 + η3) (A14)

Similarly, by using the equation of the cubic polynomial that we have found, we can
calculate the other three Eigenvalues:

λ3 + e1λ2 + e2λ + e3 = 0

Here,

e1 = (γ1 + γ2 + 3η1 + α1 + α2 + ω1 + ω2 + η2)
e2 = (γ1 + γ2 + η1)(α1 + α2 + η1) + (γ1 + γ2 + η1)(ω1 + ω2 + η1 + η2) + (ω1 + ω2 + η1 + η2)(α1 + δ2 + η1)
e3 = (γ1 + γ2 + η1)(α1 + α2 + η1)(ω1 + ω2 + η1 + η2)− δ1γ1α1

= (γ1 + γ2 + η1)(α1 + α2 + η1)(ω1 + ω2 + η1 + η2)(1 − V0)

If V0 < 1, then we can deduce that e1 > 0; e2 > 0, e3 > 0 and e1.e2 > e3.
Thus, we can say that e1 > 0; e2 > 0, e > 0 and e1.e2 > e3. □
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Appendix A.3. Balancing the State of User Reviews and Product Reviews Using NLP Algorithms

We can obtain a balance in user reviews in collaborative filtering-based recommender
systems using NLP algorithms with τ∗(X∗, I∗, U∗

1 , M∗, U∗
2 , V∗), by finding a solution to

Equation (A12). Finally, we obtain the following equations:

V∗ = EV0α1−(δα1+V(ω1+ω2+η1+η2))M∗

V0η1α1

I∗ = δM∗
V0(γ1+γ2+η1)

U∗
1 = (η1+η2+ω1+ω2)M∗

α1

M∗ =
α1U∗

1
(ω1+ω2+η1+η2)

U∗
2 = ω1 M∗

(ψ+η1+η3)

V∗ =
(ψω1 + ω2(ψ + η1 + η3))M∗

η1(ψ + η1 + η3)
(A15)

Local stability of balanced state for improving accuracy in recommender systems
using a combined approach of user review processing and NLP-based algorithms.

Theorem A2. The equilibrium for positive and negative recommendations in a collaborative recom-
mender system, the natural language process approach, and algorithms with τ∗(X∗, I∗, U∗

1 , M∗, U∗
2 ,

V∗), is in an asymptotically stable state when V0 > 1; otherwise, it is in an unstable state.

Proof. At the equilibrium for positive and negative user devices using collaborative
filtering and natural language processing algorithms with τ∗(X∗, I∗, U∗

1 , M∗, U∗
2 , V∗), the

matrix of Variations Equation (A12) becomes

τ∗
EVP(X∗, I∗, U, M∗, U∗

2 , V)

=



−(δM∗ + η1) 0 α2 −δX∗ 0 0
δM∗ −(γ1 + γ2 + η1) 0 δX∗ 0 0

0 γ1 −(α1 + α2 + η1) 0 0 0
0 0 α1 −(ω1 + ω2 + η1 + η2) 0 0
0 0 0 ω1 −(ψ + η1 + η2) 0
0 0 0 ω2 ψ −η1


(A16)

The equivalent Eigenvalues are

λ1 = −η1

λ2 = −(ψ + η1 + η2)

After finding the solutions to the fourth-degree polynomial, the other Eigenvalues are
yielded as λ4 + E1λ3 + E2λ2 + E3λ + E4 = 0, in which

E1 = (δM∗ + η1 + η2 + α1 + α2 + ω1 + ω2 + 4η1 + η2)
E2 = ((δM∗ + η1)(γ1 + γ2 + η1) + (δM∗ + η1)(η1 + η2 + ω1 + ω2) + (α1 + α2 + η1)(δM∗ + η1)

+(γ1 + γ2 + η1)(ω1 + ω2 + η1 + η2) + (γ1 + γ2 + η1)(α1 + α2 + η1)
+(α1 + α2 + η1)(ω1 + ω2 + η1 + η2))

E3 = ((δM∗ + η1)(γ1 + γ2 + η1)(ω1 + ω2 + η1 + η2) + (δM∗ + η1)(γ1 + γ2 + η1)(α1 + α2 + η1)
+(δM∗ + η1)(ω1 + ω2 + η1 + η2)(α1 + α2 + η1)
+(ω1 + ω2 + η1 + η2)(γ1 + γ2 + η1)(α1 + α2 + η1)− δM∗γ1α2 − δX∗α1γ1)

E4 = ((δM + η1)(γ1 + γ2 + η1)(ω1 + ω2 + η1 + η2)(α1 + α2 + η1)− (δM∗ + η1)δX∗α1γ1+
δ2X∗M∗γ1α1 − δM∗α2γ1(ω1 + ω2 + η1 + η2)

)
(A17)
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Through this, we find out

E1 > 0, E3 > 0, E4 > 0
E1E2E3 > E2

3 + EE4
=⇒ E1E2E3 −

(
E2

3 + E2
1E4

)
> 0

(A18)

Thus, by applying the Routh–Hurwitz criterion for the above equations, if V0 > 1,
then the equation for the positive and negative recommendations in a collaborative recom-
mender system, the NLP approach, and the proposed algorithm of Figure 3 are asymptoti-
cally stable. □
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