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Abstract: The current Internet of Things (IoT) network structure is evolving from small-scale dis-
tributed systems to a large-scale hierarchical collaboration between backbone and access networks.
In this context, the dynamic changes in backbone node connections and the surge in service demands,
coupled with sluggish fault detection speeds, significantly shorten effective service transmission time.
To address this issue, this paper proposes an inverse coupled simulated annealing for enhanced OSPF
route convergence in IoT networks (OSPF-ICSA). Initially, the link state is derived from the statistical
characteristics of Hello packets, while the aggregated characteristics of the link state are employed
to characterize the node state, providing data support for the reverse coupled simulated annealing
algorithm. Subsequently, the Hello packet is refined, and a mechanism is designed to synchronize
OSPF intervals and transmit node states. This ensures that nodes within the same subnet synchronize
their sending intervals and fault detection times while sharing their node states. Finally, building
upon this foundation, the reverse coupled simulated annealing algorithm is introduced to jointly
optimize the Hello packet sending interval and fault detection time. Compared to the traditional
AODV protocol, OSPF-ICSA reduces the average fault detection time by over 37.38%, improves the
average fault detection accuracy by more than 3.1%, decreases the average routing overhead by over
20%, and increases the average packet delivery rate by over 5.1%.

Keywords: OSPF; routing convergence; Hello messages; fault detection

1. Introduction

With the rapid development of the Internet of Things (IoT), the interconnectivity
of smart devices through the internet has experienced explosive growth, resulting in an
unprecedented scale of networks [1–3]. Correspondingly, the IoT network structure has
gradually evolved from small-scale distributed systems to a large-scale hierarchical layout
characterized by tight collaboration between backbone and access networks, showcasing
strong cross-domain communication potential [4–6]. In this context, the dynamic charac-
teristic of backbone node connections and the surge in service demands pose a pressing
challenge: how to achieve rapid fault detection of backbone node links and real-time aware-
ness of topological changes, thereby increasing the effective transmission time of services.

In the process of service transmission, the role of routing protocols becomes increas-
ingly critical, especially in the Internet of Things (IoT), where the on-demand routing
protocol AODV is widely used [7,8]. However, the path selection of AODV is often rela-
tively singular, which can lead to route contention and result in network congestion issues.
Furthermore, the delays associated with AODV’s path discovery process conflict with
the real-time awareness requirements of backbone network nodes regarding topological
changes, thereby limiting the application of AODV within backbone networks. To opti-
mize the issue of routing contention in the Internet of Things, Elappila et al. proposed
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a congestion- and interference-aware energy efficient routing technique for the IoT. This
approach is based on the signal-to-noise ratio and noise ratio of links. By evaluating the
survivability factor of the path from the next-hop node to the destination and its current
congestion level, it effectively meets the data routing demands in high-load network envi-
ronments [9]. Guo et al. introduced a routing algorithm based on reinforcement learning,
which constructs a reward function using remaining energy and hop count, optimizing
routing in wireless sensor networks (WSNs), extending network lifespan, and ensuring a
good data flow transmission rate [10]. Younus et al. utilized reinforcement learning to opti-
mize routing in software-defined networking (SDN) wireless sensor networks, proposing a
reward function based on energy utilization and QoS requirements, significantly improving
data flow transmission efficiency [11]. Although these algorithms have reduced routing
contention and improved data transmission efficiency to some extent, they primarily avoid
routing contention by optimizing paths. When link failures occur between nodes and fault
detection is not timely, even the best routing algorithms struggle to mitigate the impact of
faulty links, leading to packet loss and reduced transmission efficiency.

Open Shortest Path First (OSPF) is a proactive routing protocol that possesses a
comprehensive network topology view of all nodes within the area [12–14]. In the event
of a link failure, it can swiftly disseminate information to all nodes and update routing,
ensuring rapid route convergence across all nodes simultaneously. This mechanism is
particularly suitable for backbone nodes in the Internet of Things, as it avoids the delays
associated with path discovery in AODV. However, its fault detection process is mechanical
and slow, making it difficult to quickly identify failures, which severely impacts service
transmission in the IoT and hinders its deployment. To accelerate fault detection speed, the
literature [15–17] has introduced the BFD protocol. BFD establishes independent sessions
between OSPF neighbors to send probe messages at millisecond intervals, allowing for
real-time monitoring of link status and rapid detection of link failures. However, this
high-frequency probing also results in increased routing overhead. Particularly in cases
of link congestion or interference, BFD is prone to false alarms, leading to unnecessary
route convergence and further exacerbating routing overhead in the network [18]. To
reduce routing overhead, Manousakis et al. developed a tool based on an enhanced
simulated annealing algorithm, aimed at automatically optimizing OSPF area partitioning
to balance multi-objective performance requirements. This tool effectively reduces routing
overhead, convergence time, and latency while improving bandwidth utilization [19].
However, its applicability is limited, primarily targeting network environments with
minimal topological changes. Considering the dynamic characteristics of network topology
in the IoT, this limitation affects the tool’s feasibility in practical deployment. In response
to time-varying network topologies, the IETF has introduced the OSPF-MPR [20,21], OSPF-
MDR [22], and OSPF-OR [23] protocols to address topological changes in MANETs. These
protocols introduce specific mechanisms to meet the demand for routing convergence in
MANET topologies; however, their effectiveness in improving convergence speed is not
significant. To address this gap, researchers have introduced centrality into the routing
convergence process to enhance convergence speed while optimizing routing overhead to
some extent. References [24,25] discuss the placement problem of Designated Routers (DRs)
and propose optimizing DR layouts using betweenness centrality, closeness centrality,
and degree centrality to shorten routing convergence time. References [26,27] adjust
the sending frequency of Hello packets based on betweenness centrality, increasing the
frequency for nodes with higher intermediary centrality to expedite fault detection and
reduce routing overhead. References [28–30] optimize the sending of Hello packets based
on load centrality, running the load centrality algorithm directly in distributed routers to
reduce computational complexity, significantly improving routing convergence efficiency.
Although centrality-based algorithms have achieved success in accelerating fault detection
and controlling routing overhead, nodes with lower centrality can still become critical
routing nodes. Their failures can delay link fault detection and convergence, leading to
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data loss. Furthermore, nodes with higher centrality may waste network resources due to
the frequent sending of Hello messages.

To address this, this paper proposes an inverse coupled simulated annealing for
enhanced OSPF route convergence (OSPF-ICSA), aimed at resolving the issues of time-
varying topology in IoT backbone nodes, slow fault detection, and inadequate topological
awareness, which result in shorter effective transmission times for services. This method
integrates the OSPF protocol into the Internet of Things and improves upon the traditional
OSPF protocol. This method first utilizes the statistical characteristics of Hello packets to
assess the link state and characterizes the node state through aggregated link state features,
dynamically reflecting the topological changes of nodes in the IoT. This process effectively
captures the dynamic characteristics of connection relationships, providing real-time net-
work state data support for the inverse coupled annealing algorithm. Secondly, based on the
improvement of Hello packets, a mechanism for OSPF interval synchronization and node
state transmission is designed to ensure that the sending intervals and fault detection times
of all nodes within the same subnet are synchronized, facilitating the effective transmission
of node status messages and laying the foundation for the efficient application of the in-
verse coupled annealing algorithm. Finally, based on this foundation, the inverse coupled
annealing algorithm is introduced to collaboratively optimize the sending intervals of Hello
packets and fault detection times through two coupled annealing algorithms, dynamically
adjusting the sending frequency of Hello packets and fault detection times. In poor link
states, this accelerates fault detection so that nodes can more swiftly and flexibly identify
and respond to link failures, thus shortening overall routing convergence time. In good
link states, it reduces the sending frequency of Hello packets to lower routing overhead.

2. Main Contribution
2.1. Design Overview

OSPF routing convergence refers to the process by which nodes in a network reach
a consensus to update routing information following the detection of changes in links or
nodes [12–14]. This process is illustrated in Figure 1.

Figure 1. OSPF routing convergence time distribution diagram.

The process begins with fault detection. Node R periodically sends Hello packets via
the Hello protocol to monitor the status of neighboring nodes. The sending interval for
Hello packets is denoted as Th, which is controlled by the Hello Interval parameter, typically
set to a default value of 10 s. Additionally, the link fault detection time Td is usually set to
four times Th. If no response to the Hello packets from the neighbors is received within
Td (governed by the Dead Interval parameter), the neighbor is considered unreachable,
triggering link fault handling. Assuming that the occurrence of a fault is a random event,
the time difference X from the occurrence of the link fault to when R detects the fault is
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uniformly distributed within the interval (30, 40). The probability density function for this
distribution is given by:

f (x) =
{ 1

40−30 = 0.1 if 30 ≤ x ≤ 40
0 otherwise

(1)

At this point, the expected value E(X) is 35. Therefore, the average fault detection
time TD is 35 s.

When a fault occurs, R generates a new Link State Advertisement (LSA) to reflect
the topological change. Upon receiving the new LSA, neighboring nodes store it in their
Link State Databases (LSDBs) and subsequently flood the LSA to all neighbors, achieving
complete LSA flooding. To optimize LSA flooding, OSPF employs the mechanisms of Des-
ignated node (DR) and Backup Designated node (BDR). The DR is responsible for receiving
and broadcasting LSAs within the network, which reduces redundant transmissions and
minimizes bandwidth consumption. The BDR acts as a backup for the DR, ensuring con-
tinuity in LSA flooding. The cooperative operation of the DR and BDR enables OSPF to
efficiently flood LSAs while alleviating routing overhead and network load. Consequently,
the flooding time of an LSA within a broadcast segment can be expressed as:

Tl =

{
TDR

c + s
β if R = DR

TBDR/Others
c + TDR

m + TDR
c + 2 · s

β if R = BDR/Others
(2)

where TDR
c and TBDR/Others

c represent the time taken by the DR and BDR/Others to generate
the LSA, respectively, s is the size of the LSA packet in bytes, β is the interface transmission
rate, and TDR

m is the time taken by the DR to process the LSA. Therefore, the total time for
LSA dissemination within the entire segment can be expressed as:

Tlsa =
n

∑
i=1

Ti
l (3)

where n represents the maximum number of broadcast segments for flooding the LSA to
all nodes, and Ti

l is the time required for the i-th broadcast segment that is traversed.
Once the LSA flooding is complete, the node recalculates the Shortest Path Tree (SPT)

using Dijkstra’s algorithm based on the updated LSDB and updates the routing table. Let
the time taken for this process be denoted as Tm. Therefore, the total routing convergence
time can be expressed as:

Ttotal = TD + Tlsa + Tm (4)

In Ttotal, the fault detection phase is typically the most time-consuming part. This
is primarily because confirming a link failure depends on not receiving a response to
the Hello packets within the time Td, which is set to 40 s by default. During this period,
the average TD requires 35 s. In contrast, the LSA flooding process, which involves the
generation and flooding of LSAs, generally consumes less time than the fault detection
phase, although the time required may increase with network size. Additionally, the routing
table calculation phase, based on Dijkstra’s algorithm for shortest path computation, also
operates within a limited time frame. Therefore, this paper restructures the protocol based
on the traditional OSPF protocol, dynamically optimizing the Hello packet transmission
frequency and fault detection time, aiming to accelerate fault detection speed, thereby
enhancing routing convergence speed and, to some extent, reducing routing overhead, as
illustrated in Figure 2.
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Figure 2. OSPF-ICSA architecture diagram.

The specific improvements are as follows:
Utilize the statistical characteristics of Hello packets to obtain the link status, and

characterize the node state based on the aggregated features of the link state, thereby
assessing the state of links and nodes in the network and providing data support for the
reverse coupled annealing algorithm.

Design an OSPF interval synchronization and node state propagation mechanism
(OSPF-IS-NSP) to synchronize the sending intervals of Hello packets and fault detection
times of nodes within the same subnet and propagate the node state of the local node.

Propose a reverse coupled annealing algorithm, which consists of two coupled an-
nealing algorithms: the upward optimization annealing algorithm and the downward
optimization annealing algorithm. When one annealing algorithm is executed, the temper-
ature of the other gradually rises, and vice versa. Through this mechanism of alternating
heating and cooling, and based on the link and node status, the two algorithms collabora-
tively optimize the Hello packet transmission interval and fault detection time.

2.2. Link and Node State Monitoring

In the OSPF protocol, the instability of links or nodes can trigger excessive LSA
flooding and frequent routing updates, leading to routing oscillations. This situation not
only results in a significant increase in routing overhead but also places a greater burden
on the node’s CPU. In severe cases, it may even lead to network storms, resulting in
network failures. To address this issue, this section introduces link and node states to
monitor the statuses of links and nodes in real time, thereby providing data support for
subsequent algorithms.

A network topology can be represented as G(N, E), where N is the set of network
node nodes and E is the set of communication links. Assume there exists a link l(l ∈ E)
between nodes u ∈ N and v ∈ N, which can be denoted as: l = uv. In this case, the link
state is evaluated based on the absence of Hello packets in link l during the assessment
period, as expressed in the following formula:

η(uv) =
T − td

T
(5)

where η(uv) is the link state evaluation function, T is the assessment period, and td rep-
resents the time segment formed by the absence of Hello packets during the assessment
period. This is defined as the difference between the expected time of receiving the next
Hello packet and the actual last received time, as illustrated in Figure 3.
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Figure 3. Link state diagram.

Additionally, based on the aggregated average link state of all interfaces on node v,
the node state is assessed using the following formula:

γ(v) = ∑uv∈E η(uv)
|E| (6)

where γ(v) is the node state assessment function, and |E| represents the cardinality of E,
which is the number of links associated with node v.

Building on this, this paper introduces weight parameters α and β for a comprehensive
assessment of link and node states. The specific evaluation formula is:

φ(u) = α ∗ η(vu) + β ∗ γ(u) (7)

where φ(u) is the comprehensive assessment function used to evaluate the overall state of
the link between node v and its neighboring node u. The link state is denoted by η(vu),
indicating the condition of the link between nodes v and u, while γ(u) represents the
state of node u. The parameters α and β are weight coefficients for link and node states,
respectively, which adjust their influence on φ(u).

2.3. OSPF Interval Synchronization and Node State Propagation Mechanism

In the OSPF protocol, unifying the configuration of the Hello Interval (Th) and Dead
Interval (Td) parameters for all nodes within the same segment is essential for ensuring the
stable establishment and continuous maintenance of neighbor relationships. Hello pack-
ets primarily facilitate neighbor discovery and fault monitoring. Inconsistent parameter
configurations can lead to asymmetries in neighbor state perception, adversely affecting
the correct establishment of adjacency relations and timely fault detection. Additionally,
parameter consistency synchronizes the time window for fault detection, preventing delays
or misjudgments due to variations in Td. This unification also enables the synchronous
propagation of topological state information within the segment, minimizing delays in
topology updates. Consequently, this section introduces the OSPF interval synchronization
mechanism to ensure parameter consistency among all nodes, providing foundational
support for the deployment of the reverse coupled annealing algorithm, as illustrated
in Figure 4.

The specific steps of the OSPF interval synchronization mechanism are as follows:

• When the Designated Router (DR) calculates the new parameters for Th and Td (as-
sumed to be 10 s and 40 s, respectively), the DR appends its Th and Td parameters to
the Hello message and broadcasts it to all neighbors in the subnet.

• The Backup Designated Router (BDR) and other non-DR routers have their previous
Th and Td values assumed to be 7 s and 28 s, respectively.

• Once the BDR or other routers receive the Hello message from the DR containing Th
and Td, they will immediately update their Th and Td to 10 s and 40 s, respectively. At
the same time, the nodes will adjust their Hello message sending timers and failure
detection timers accordingly. As shown in Figure 4, due to the timer adjustments,
the sending of Hello messages is delayed by 3 s compared to before. When the next
Hello message sending cycle begins, the node will send a Hello message containing
the new parameters.
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• When the DR receives the Hello messages sent by the BDR or other routers, it can detect
that these nodes’ Th and Td have been updated to 10 s and 40 s, thereby achieving
global synchronization of Th and Td across the entire subnet.

Figure 4. OSPF interval synchronization mechanism operating process diagram.

Additionally, this section designs a node state propagation mechanism, which trans-
mits the node state by mapping it to the Priority field in the Hello message. This approach
not only optimizes the DR election process based on the Priority field—allowing nodes
with higher node state to be prioritized as DR or BDR—but also ensures that nodes with
superior states take on critical roles within the network, enhancing stability and routing
efficiency. Furthermore, since the OSPF protocol lacks a native mechanism for propagating
node state, this mechanism enables nodes to share node state information in real-time
among neighbors.

2.4. Reverse Coupled Annealing Algorithm Design

To address the dynamic characteristic of link relationships and the frequent link
failures in IoT networks, it is essential to dynamically adjust the sending frequency of Hello
messages and the fault detection time based on the characteristics of link and node states in
real time. The annealing algorithm can explore and approximate the optimal Hello interval
and fault detection time through multiple iterations based on the network environment,
allowing for a broader search space in the initial stages to prevent the algorithm from getting
trapped in local optima [31–34]. As the algorithm’s temperature gradually decreases, the
search range converges, accelerating convergence while maintaining solution diversity. The
algorithm begins by randomly generating an initial solution x0 and searches for solutions
within its neighborhood. In each iteration, based on the Metropolis criterion, the algorithm
decides whether to accept a worse solution according to the acceptance probability formula:

P(∆E) =

{
1 if ∆E < 0

e−
∆E
Tk if ∆E ≥ 0

(8)

where ∆E = f (xnew)− f (xcurrent) is the difference in objective function values between the
current and new solutions.

As the internal “temperature” of the algorithm gradually decreases, the temperature
change can be expressed by the formula:

Tk = T0 · αk (9)

where T0 is the initial temperature and α is a decay factor less than 1. As the temperature
decreases, the probability of accepting inferior solutions also diminishes. After each
iteration, the algorithm updates the current solution:
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xk+1 =

{
xnew if new solution accepted

xk if new solution rejected
(10)

The optimization process gradually stabilizes, ultimately converging to the global
optimum x∗, thereby minimizing f (x∗).

However, traditional annealing algorithms primarily focus on unidirectional optimiza-
tion, gradually reducing the temperature to minimize perturbation and slowly approaching
the optimal solution. Once the temperature reaches its lowest point, the algorithm loses its
effectiveness. This unidirectional cooling strategy gradually diminishes the algorithm’s per-
ception of the network environment during execution, leading to a decrease in adaptability
to dynamic changes. Particularly when faced with failures, the algorithm may not respond
promptly, thereby affecting the overall fault detection and recovery speed. Therefore, this
paper proposes the reverse coupled annealing algorithm, which consists of two coupled
annealing algorithms: Algorithms 1 and 2. These algorithms collaborate to optimize link
and node states based on φ(u) and implement dynamic fault detection through the OSPF
interval synchronization mechanism. When a node assesses the overall state of node v,
neighboring node u, and the link between them through the comprehensive evaluation
function φ(u), it triggers DOSA if φ(u) falls below the preset threshold ε, executing down-
ward optimization to reduce the values of Th and Td; otherwise, it triggers UOSA. Through
this alternating operation of heating and cooling, the two annealing algorithms dynamically
couple and interact, thereby adjusting the parameters Th and Td based on the network
environment. The details are as follows.

Algorithm 1: Upward optimization simulated annealing algorithm (UOSA)
Input: UOSA current temperature: Tu

0 ; UOSA termination temperature: Tu
k ; UOSA

annealing weight: δu; DOSA current temperature: Td
0 ; UOSA heating weight: βu; DOSA

maximum temperature: Td
m; UOSA inner loop iterations: Mu

1 ; UOSA current optimal
sending interval: su

cb Current Hello packet sending interval: Th ; Current fault detection
time: Td;
Output: next Hello packet sending interval: snh; next fault detection time: snd; UOSA
optimal sending interval: su

b ; DOSA next temperature: Td
n

1: Initialize: snh = Tu
0 , su

b = su
cb, snd = Td

2: if Tu
0 > Tu

k then
3: Initialize: k = 0
4: while k < Mu

1 do
5: snh = fu(snh)
6: difference value: ∆s = snh − Th
7: if ∆s ≥ 0 then
8: snh = min{30, snh}
9: else if e(∆s/Tu

0 ) > random(0, 1) then
10: snh = min{30, snh}
11: end if
12: if snh > su

b then
13: su

b = snh
14: end if
15: k = k + 1
16: end while
17: Tu

n = δu ∗ Tu
0

18: snd = min{40, snh ∗ 40}
19: end if
20: Td

0 = min(βu ∗ Td
0 , Td

m)
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Algorithm 2: Downward optimization simulated annealing algorithm (DOSA)

Input: DOSA current temperature: Td
0 ; DOSA termination temperature: Td

k ; DOSA
annealing weight: δd; UOSA current temperature: Tu

0 ; DOSA heating weight: βd; UOSA
maximum temperature: Tu

m; DOSA inner loop count: Md
1 ; DOSA current optimal sending

interval: sd
cb; Current hello Packet transmission interval: Th; Current fault detection

time: Td
Output: next Hello packet transmission interval: snh; next fault detection time: snd;
DOSA optimal sending interval: sd

b ; UOSA next temperature: Tu
n

1: Initialize: snh = Td
0 , sd

b = sd
cb

2: if Td
0 > Td

k then
3: Initialize: k = 0
4: while k < Md

1 do
5: snh = fd(snh)
6: difference value: ∆s = snh − Th
7: if ∆s ≤ 0 then
8: snh = max{1, snh}
9: else if e(−∆s/Tu

0 ) > random(0, 1) then
10: snh = max{1, snh}
11: end if
12: if snh < sd

b then
13: su

b = snh
14: end if
15: k = k + 1
16: end while
17: Td

n = δd ∗ Td
0

18: snd = min{40, snh ∗ 40}
19: end if
20: Tu

0 = min(βd ∗ Tu
0 , Tu

m)

The objective of the upward optimization simulated annealing (UOSA) algorithm
is to optimize the Hello packet transmission interval Th and the fault detection time Td,
gradually increasing both parameters to their maximum values. In line 2 of the pseudocode,
it first checks whether the initial temperature Tu

0 has reached the termination temperature
Tu

k ; if not, it enters the inner loop. Lines 4 to 16 describe the inner loop process of the
simulated annealing algorithm. The algorithm generates a random number in the range
of −2 to 4 using the random seed generation function fu(snh) and adds it to snh to ob-
tain a new snh. Subsequently, it assesses whether the generated difference ∆s meets the
Metropolis criterion, ultimately updating snh and the current optimal state su

b . Line 17
implements the cooling operation of the annealing process, and line 18 calculates the new
fault detection time snd based on the updated snh. Line 20 executes the heating operation for
the downward optimization simulated annealing (DOSA); each time UOSA is completed,
the initial temperature Td

0 for DOSA is increased. In summary, the code structure of this
algorithm consists of only one outer loop, with the number of iterations being Mu

1 . The
algorithm’s complexity is O(Mu

1 ).
The downward optimization simulated annealing algorithm (DOSA) also targets the

Hello message transmission interval Th and the fault detection time Td, but its optimization
direction is opposite to that of UOSA, aiming to gradually reduce these two parameters to
their minimum values. The process is similar to UOSA, so it will not be elaborated here.

3. Simulation and Evaluation
3.1. Evaluation Metrics

The experiment primarily evaluates routing convergence performance through four
metrics: fault detection time (FDT), fault detection accuracy (FDA), routing overhead
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(RO), and packet delivery rate (PDR). The definitions and formulas for these metrics are
as follows:

(1) Fault detection rime (FDT): The fault detection time is defined as the average
difference between the time τ when all OSPF nodes detect a fault during network simulation
and the actual time t when the link fails [35,36]. A shorter time indicates faster routing
convergence under the same conditions, reflecting the efficiency of the fault detection
mechanism’s impact on overall routing convergence speed.

FDT =
1
n

n

∑
i=1

(τi − ti) (11)

(2) Fault detection accuracy (FDA): The fault detection accuracy is defined as the ratio
of the number of successful link fault detections Fn by all OSPF nodes during network
simulation to the total number of actual link failures Fl . A higher accuracy indicates better
detection precision in the face of link failures, reflecting the responsiveness of the detection
mechanism to actual fault events.

FDA =
Fn

Fl
× 100% (12)

(3) Routing overhead (RO): Routing overhead is expressed as the ratio of the total
number of bytes in control packets Br to the total number of bytes in successfully transmit-
ted packets Bs [37,38]. A smaller routing overhead indicates lower costs associated with
protocol routing convergence.

RO =
Br

Bs
× 100% (13)

(4) Packet delivery rate (PDR): The packet delivery rate is defined as the proportion of
successfully transmitted packets Pr to the total packets sent Ps by a node [39,40]. A higher
packet delivery rate indicates greater reliability of the routing convergence method.

PDR =
Pr

Ps
× 100% (14)

3.2. Results, Analysis, and Discussion

The simulation platform for this experiment is based on the Ubuntu 16.04 operating
system, running on hardware equipped with a 12th Gen Intel(R) Core(TM) i7-12700H
processor and 16 GB of RAM. The experiment utilizes the NS3.33 network simulation
software to conduct the simulations. Through these simulations, performance evalua-
tions were carried out on four key metrics: fault detection time (FDT), fault detection
accuracy (FDA), routing overhead (RO), and packet delivery rate (PDR). The experiment
compared the performance of the OSPF-ICSA algorithm, the AODV protocol [7,8], the
OSPF protocol, the BFD protocol [15,16], and the routing convergence algorithm based on
load centrality (LC) [28,30]. The experiments set up two network topologies based on the
literature [1,2,4,5,12]. The algorithm and topology parameters are shown in Table 1.

Testing was conducted under two fault scenarios, randomly introducing between 1
and 20 link failures, and 1 and 5 node failures. The experimental results are as follows.

Figures 5 and 6 present a comparative experimental analysis of fault detection times
under link failure and node failure scenarios for two different scales of topologies. As
shown in the figures, the BFD algorithm demonstrates the best performance in terms of
fault detection time, with the shortest detection time. However, the detection speed of
OSPF-ICSA is also impressive, with an average fault detection time of approximately 4 s.
Compared to the AODV protocol, OSPF-ICSA reduces fault detection time by an average
of 74% and 37.38% in the two scenarios, respectively. In comparison to the traditional
OSPF protocol, OSPF-ICSA achieves reductions of 86.24% and 87.37%, respectively. Ad-
ditionally, compared to the load centrality (LC) algorithm, fault detection time is reduced
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by an average of 34.73% and 40.14%, respectively. These results indicate that OSFP-ICSA
significantly enhances fault detection efficiency, second only to the BFD algorithm. Its lower
fault detection time is attributed to the OSFP-ICSA algorithm’s ability to respond flexibly
and rapidly in the network environment. When network conditions deteriorate, OSFP-
ICSA minimizes fault detection time through the reverse coupled annealing algorithm,
significantly reducing the detection duration. Topology 1 in Figure 5 shows that, with
one link failure, the detection time is 12 s. This occurs because both annealing algorithms
reach a dynamic equilibrium at the 12 s mark. Subsequently, as the number of link failures
increases, the fault detection time continues to decrease until it reaches its minimum value.

Table 1. Algorithm and topology parameter configuration table.

Parameter Name Topology 1 Topology 2

UOSA Maximum Temperature Tu
m 100 100

UOSA Termination Temperature Tu
k 0 0

UOSA Heating Weight βu 1.2 1.2
UOSA Annealing Weight δu 0.8 0.8

UOSA Inner Loop Iterations Mu
1 1 1

DOSA Maximum Temperature Td
m 100 100

DOSA Termination Temperature Td
k 0 0

DOSA Heating Weight βd 1.2 1.2
DOSA Annealing Weight δd 0.8 0.8

DOSA Inner Loop Iterations Md
1 1 1

Threshold ε 0.8 0.8
Number of Backbone Nodes 40 80
Number of Access Networks 13 19

Number of Flows 16 26

Figure 5. Comparison of link failure count vs. fault detection time.

Figure 6. Comparison of node failure count vs. fault detection time.
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Figures 7 and 8 display the fault detection accuracy of five algorithms under link failure
and node failure scenarios for two different scales of topologies. It can be observed that the
accuracy of the OSPF-ICSA algorithm is nearly identical to that of the BFD algorithm in
both scenarios, with both approaching 100%. Compared to the AODV protocol, OSPF-ICSA
improves the fault detection accuracy by an average of over 20.19% and 3.1% in the link
failure and node failure scenarios, respectively. When compared to the traditional OSPF
protocol, the accuracy is increased by an average of over 10.54% and 27.68% in the two
scenarios. Additionally, compared to the load centrality (LC) algorithm, OSPF-ICSA’s
detection accuracy is improved by an average of over 3.56% and 1.14% in the respective
scenarios. These results indicate that OSPF-ICSA significantly enhances fault detection
accuracy, performing comparably to the BFD algorithm, which achieves faster detection by
increasing routing overhead. The advantage of OSPF-ICSA lies in its ability to dynamically
adjust the frequency of Hello message transmissions and fault detection times based on
real-time feedback from link and node states, thus enabling efficient and flexible fault
detection that achieves the same level of precision as the BFD algorithm.

Figure 7. Comparison of link failure count vs. fault detection accuracy.

Figure 8. Comparison of node failure count vs. fault detection accuracy.

Figures 9 and 10 present a comparative analysis of routing overhead for five algorithms
under link failure and node failure scenarios across two different network scales. It is
evident that the routing overhead of OSPF-ICSA is generally lower than that of other
algorithms. In both link failure and node failure scenarios, OSPF-ICSA achieves lower
overhead than the AODV protocol under most conditions, with the exception of the larger
topology in the node failure scenario, where it is slightly higher than AODV. Compared
to the traditional OSPF protocol, OSPF-ICSA reduces overhead by an average of 21.66%
and 44.44%, respectively. When compared to the BFD algorithm, OSPF-ICSA decreases
overhead by an average of 63.77%. Additionally, it reduces overhead compared to the
load centrality (LC) algorithm by an average of 28.14% and 20.47% in the respective
scenarios. This can be attributed to two main factors: first, OSPF-ICSA significantly
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shortens fault detection time, enabling nodes in the network topology to quickly sense
changes, thus increasing the total amount of successfully transmitted packets compared
to traditional OSPF and LC algorithms. Second, OSPF-ICSA dynamically adjusts the
frequency of Hello message transmissions, reducing the frequency of Hello messages on
normal links and, consequently, lowering the overhead of control messages. In contrast, the
BFD algorithm incurs higher routing overhead, partly due to its high frequency of probe
message transmissions and partly due to false alarms caused by link jitter and congestion,
which further increases routing overhead.

Figure 9. Comparison of link failure count vs. routing overhead.

Figure 10. Comparison of node failure count vs. routing overhead.

Figures 11 and 12 illustrate the comparison of packet delivery rates for five algorithms
under link failure and node failure scenarios across two different network scales. It is
evident that OSPF-ICSA improves packet delivery rates by an average of 14.04% and 5.1%
compared to the AODV protocol in these two scenarios, respectively. When compared
to the traditional OSPF protocol, packet delivery rates increase by an average of 34.03%
and 153.93%. Furthermore, it is noticeable that the traditional OSPF protocol exhibits poor
packet delivery rates during multiple node failures. Additionally, OSPF-ICSA outperforms
the load centrality (LC) algorithm, with average increases in packet delivery rates of 15.78%
and 28.09% under link failure and node failure scenarios, respectively. However, compared
to the BFD algorithm, OSPF-ICSA shows a slight decrease, with reductions of 3.46% and
7.72%. The advantage of OSPF-ICSA in packet delivery rates primarily stems from its
ability to perceive changes in network topology and dynamically adjust fault detection
times, leading to faster fault diagnosis and LSA flooding. This enables the entire network to
detect link failures more swiftly. Although the LC algorithm has optimized fault detection,
its response speed remains inferior to that of OSPF-ICSA. The slight disadvantage of OSPF-
ICSA compared to BFD is due to BFD’s ability to adjust fault detection times to extremely
low frequencies, significantly lower than the detection frequency of OSPF-ICSA, placing
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them in different magnitudes. However, under non-extreme conditions, these slightly
reduced packet delivery rates remain acceptable.

Figure 11. Comparison of link failure count vs. packet delivery rate.

Figure 12. Comparison of node failure count vs. packet delivery rate.

4. Conclusions

In the context of the current evolution of IoT network structures from small-scale
distributed systems to large-scale hierarchical collaboration between backbone and access
networks, the dynamic changes in backbone node connections and the surge in service
demands pose significant challenges. The sluggish fault detection speed leads to a sub-
stantial reduction in the effective service transmission time. This paper proposes an OSPF
dynamic routing convergence method based on reverse coupled simulated annealing
(OSPF-ICSA). This method utilizes the statistical characteristics of Hello packets to acquire
the link status and characterizes the node state based on the aggregated features of the
link status, providing data support for the reverse coupled simulated annealing algorithm
regarding the network conditions. Furthermore, the Hello packet is improved and an
OSPF interval synchronization and node state transmission mechanism is designed to
synchronize the sending intervals and fault detection times of nodes within the same
subnet, while sharing the node state of nodes. Building on this foundation, the reverse
coupled simulated annealing algorithm is introduced to collaboratively optimize the Hello
packet sending interval and fault detection time. Experimental results demonstrate that
OSPF-ICSA exhibits outstanding performance across various fault scenarios, particularly
in four key indicators: fault detection time, detection accuracy, routing overhead, and
packet delivery rate. This algorithm effectively addresses the trade-off between routing
convergence time and routing overhead, achieving an optimized convergence speed while
significantly reducing resource consumption. The aim is for OSPF-ICSA to provide a new
perspective on routing convergence in large-scale hierarchical IoT network topologies. In
future research, we plan to integrate machine learning, large models, and other cutting-
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edge algorithms to achieve more efficient and rapid routing convergence, ushering in a
new era of network optimization.
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