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Abstract: Video super-resolution (VSR), which takes advantage of multiple low-resolution (LR)
video frames to reconstruct corresponding high-resolution (HR) frames in a video, has raised in-
creasing interest. To upsample an LR frame (denoted by a reference frame), VSR methods usually
align multiple neighboring frames (denoted by supporting frames) to the reference frame first in
order to provide more relevant information. The existing VSR methods usually employ deformable
convolution to conduct the frame alignment, where the whole supporting frame is aligned to the
reference frame without a specific target and without supervision. Thus, the aligned features are
not explicitly learned to provide the HR frame information and cannot fully explore the supporting
frames. To address this problem, in this work, we propose a novel video super-resolution framework
with Position-Guided Multi-Head Alignment, termed as PGMH-A, to explicitly align the supporting
frames to different spatial positions of the HR frame (denoted by different heads). It injects explicit
position information to obtain multi-head-aligned features of supporting frames to better formulate
the HR frame. PGMH-A can be trained individually or end-to-end with the ground-truth HR frames.
Moreover, a Position-Guided Multi-Head Fusion, termed as PGMH-F, is developed based on the
attention mechanism to further fuse the spatial–temporal information across temporal supporting
frames, across multiple heads corresponding to the different spatial positions of an HR frame, and
across multiple channels. Together, the proposed Position-Guided Multi-Head Alignment and Fusion
(PGMH-AF) can provide VSR with better local details and temporal coherence. The experimental re-
sults demonstrate that the proposed method outperforms the state-of-the-art VSR networks. Ablation
studies have also been conducted to verify the effectiveness of the proposed modules.

Keywords: video super-resolution; multi-head alignment; multi-head fusion

1. Introduction

Super-resolution is one of the fundamental tasks in image/video processing [1–17]
and has several applications in areas such as general media, vision-based autonomous
driving, and hyperspectral images [18–20]. It addresses the problem of how to restore
high-resolution (HR) images with their corresponding low-resolution (LR) ones, either
from a single image or from a video. For single-image super-resolution (SISR), an HR
image is estimated by exploring the self-similarity within the image and the natural image
priors for compensating missing details [21–25]. Meanwhile, for video super-resolution
(VSR), both the spatial information within each image/frame and temporal information
across frames can be used to produce an HR video frame and finally form the whole HR
video [26–34]. Since HR video frames contain more details and can be applied in many
applications, including video surveillance and high-resolution television, VSR has been
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very popular in both the research and industrial communities. Moreover, with the rise of
deep neural networks, deep-learning-based VSR is gaining more interest.

To best generate an HR frame corresponding to an LR reference frame, VSR utilizes
information from both the LR reference frame and supporting frames (temporal neighboring
frames) [10,26,27,30,31]. However, the supporting frames and the reference frame may
not be well aligned due to the motion among temporal frames. Therefore, one key step
in VSR is to align the supporting frames to the reference frame. To be specific, it is to
align the supporting frames to the targeted HR frame corresponding to the reference frame.
However, both the reference frame and the supporting frames are of LR frames and thus
cannot be directly aligned to the HR frame. Aligning the supporting frames to the LR
reference frame and then upsampling to the HR frame certainly results in information loss,
which has not been investigated yet.

For temporal alignment, some methods [26–28,30] use explicit motion information
such as optical flow to perform the alignment. First, the optical flow for motion estimation
is computed and then each supporting frame is warped utilizing the corresponding motion
field. Thus, the performance of VSR depends heavily on the optical flow result. However,
predicting optical flow itself is challenging and time-consuming. Furthermore, inaccurate
flow may introduce extra artifacts around the structures of the generated HR video frames.
To address the above issues, some recent VSR methods [1,6,8,10,31,35,36] have explored the
motion information in an implicit way using techniques such as dynamic filters, recurrent
neural networks, and deformable convolution. The dynamic upsampling filters [6] are
designed to utilize motion information among LR frames and directly construct the HR
frame by filtering the LR reference frame. TDAN [31] was proposed by introducing
deformable convolution into the VSR framework, which aligns the features of the reference
frame and supporting frames using learned deformable offsets. EDVR [10] further proposed
to perform alignment with deformable convolution on different spatial scales, which is
then fused with temporal and spatial attention among the temporal frames and the spatial
frame. Deformable-convolution-based methods [10,31,37] have then been widely applied
in the VSR task, which is used to align the frames in an adaptive way, and they are suitable
for implicit motion compensation.

However, the existing methods, including both the explicit- and implicit-alignment-
based approaches, do not explicitly consider the relationship between the aligned features
and the HR frame. The objective is to produce the HR frame, and thus the aligned features
from the supporting frames are better to directly contribute to the reconstruction of the final
HR frame. Accordingly, the existing alignment methods, aligned to the reference frame
instead, lead to an inefficient alignment process with suboptimal aligned features.

In this paper, a novel video super-resolution framework with Position-Guided Multi-
Head Alignment is proposed, where the temporal neighboring frame features are explicitly
aligned to different positions of the HR frame, denoted by different heads. Position-Guided
Multi-Head Fusion is then developed to fuse the aligned features in a position-explicit
way in order to enhance the features to the corresponding position of an HR frame. The
contributions of this paper can be summarized as follows:

• A novel video super-resolution framework with Position-Guided Multi-Head Align-
ment (PGMH-A) is proposed, which explicitly aligns reference frame features to
different heads/positions of an HR frame. PGMH-A can be trained both end-to-end
and individually utilizing the ground-truth HR frames.

• A Position-Guided Multi-Head Temporal–Spatial Fusion (PGMH-F) is developed to
fuse the multi-head temporal features, and then the fused multi-head temporal features
are further aggregated among the heads to construct a spatial feature volume in order
to facilitate the extraction of the spatial correlation among different spatial heads.

A high-frequency enhanced block is also used to improve the feature extraction with
the high-frequency information of the frames. Extensive experiments have been conducted,
and the proposed PGMH-A and PGMH-F framework achieves state-of-the-art performance
on the Vid4 and Vimeo-90K-T benchmark datasets.
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The rest of this paper is organized as follows. The related work including the SISR
and VSR methods is described in Sections 2 and 3, presenting the proposed method with
details regarding all the proposed modules. Section 4 provides the experimental results
on the proposed method and ablation study on the modules. Finally, Section 5 comprises
the conclusion.

2. Related Work

Some deep-learning-based image/video super-resolution methods related to this work
are reviewed in this section. First, single-image super-resolution methods [3,4,18,19,38–46]
are briefly introduced, and then video super-resolution methods [6,8,10,26–31,37,47–52]
are explained.

2.1. Single-Image Super-Resolution

With the rise of deep learning, deep-learning-based SISR methods have been widely
explored and outperform most traditional methods, including interpolation-based and
dictionary-learning-based methods. SRCNN [3] first used a deep CNN for image super-
resolution and achieved good results, showing great potential for deep learning in super-
resolving LR images. Since then, many new network architectures [4,18,19,38–43] have
been developed to take advantage of deep learning for SISR. Kim et al. [18] proposed to
learn the residuals between an HR image and a conventional interpolated HR image with a
deep CNN, which achieves significant improvements in accuracy. DRCN [38] proposed
to use a deeply recursive CNN, which reuses the weight parameters of the convolutional
layers while increasing the receptive field. Shi et al. [39] designed an efficient sub-pixel
convolution layer to obtain an HR image/feature from the low-resolution ones, which
reduces the computational complexity by processing in a small resolution. With the large
dataset DIV2K [53] available, more networks have been developed with better performance,
such as RCAN [19], EDSR [40], and RDN [41].

On the other hand, high-frequency information that represents the edges and textures
of an image is important to the SR task. To estimate the high-frequency information,
frequency decomposition is applied in SISR tasks. Frequency-decomposition-based SISR
methods enable a lightweight model to function while preserving comparable performance.
Based on the lattice filter bank, LatticeNet [44] designed a lattice block to simulate the Fast
Fourier Transformation with the butterfly structure. ESRT [45] designed a high-frequency
filtering module based on transformer to extract the high-frequency information at the
feature level.

2.2. Video Super-Resolution

Due to the rapidly increasing number of videos, video super-resolution is attracting
more and more interest. Although the SISR methods can solve the VSR task by upsam-
pling each video frame independently, they cannot take advantage of the rich temporal
information in a video sequence. Compared to SISR, the key to VSR is to explore the
temporal complementary information from the neighboring supporting frames to assist
the upsampling of the reference frame. To fully explore the useful information in the
supporting frames while avoiding introducing irrelevant noise, a crucial issue is that the
neighboring supporting frames need be aligned to the reference frame (the desired HR
frame, to be specific) accurately. The existing VSR methods can be categorized into two
classes based on the way they perform temporal alignment, with explicit or implicit motion
compensation.

Explicit-Motion-Compensation-based VSR Methods: Methods with explicit motion
compensation [26–30,47] usually adopt a two-stage process using optical flow. The motion
among the frames is first estimated with optical flow and then spatial warping is performed
with the estimated flow for the alignment. For example, VESPCN [26] applied an efficient
spatial transformer network to encode optical flow. FRVSR [47] proposed a framework that
combined an optical flow estimation network and super-resolution network to tackle VSR
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tasks. TTVSR [54] proposed a trajectory-aware transformer using pre-aligned trajectories.
However, this category of methods views VSR as two separate tasks without joint optimiza-
tion. Moreover, optical flow estimation, as a dense prediction task, is difficult, and using
the inaccurate flow for alignment may damage the image structures, especially texture-rich
regions, in the generated HR frames, leading to poor alignment quality.

Implicit-Motion-Compensation-based VSR Methods: To avoid the explicit motion
compensation process, some methods [6,8,48–51,55] directly explore the spatio-temporal
information for feature extraction. In [6], 3D convolutional layers were used to extract the
features from the reference frame and supporting frames in order to generate dynamic
filters. The dynamic filters were then used to process the frames as implicit motion com-
pensation. TGA [8] proposed to divide the video frames into groups and aggregate them
hierarchically within a group and among groups. With an attention module and 3D dense
blocks, the groups of information were deeply fused. MuCAN [48] proposed a temporal
multi-correspondence aggregation module and a cross-scale non-local correspondence
aggregation module to explore the temporal and spatial information. Non-local attention
was also adopted for aggregating the spatio-temporal information by [56,57]. BasicVSR
and BasicVSR++ [1,35] explored the whole sequence information in a recurrent way with
enhanced propagation and alignment using optical flow and deformable convolution.

Deformable convolution was introduced in [10,31,37,52] to accomplish frame align-
ment. TDAN [31] performed a one-stage temporal-alignment-based deformable convolu-
tion, which can align the supporting frames to the reference frame. Inspired by TDAN,
EDVR [10] extended the deformable alignment by introducing multi-scale information,
which performed the alignment in a spatial pyramid manner in order to better handle
large motions. Due to the effectiveness of the enhanced deformable convolution proposed
in EDVR, plenty of works [10,31,37] have adopted it for implicit motion compensation.
Deformable-convolution-based methods have achieved great performance in VSR and
been widely studied. However, the alignment is performed in the latent feature space
without any supervision and direct connection to the to-be-reconstructed HR frame. This
paper further investigates the deformable-convolution-based methods and solves the above
problem to improve the alignment efficiency.

3. Proposed Method
3.1. Overview

Given a low-resolution video with 2N + 1 consecutive frames ILR
[t−N:t+N], the middle

frame ILR
t is called the reference frame, and the other temporal neighboring frames are

called supporting frames. The goal of VSR is to reconstruct a high-resolution frame ÎHR
t

corresponding to the reference frame. With the proposed VSR network f and corresponding
parameters θ, the VSR problem can be defined as

ÎHR
t = fθ(ILR

[t−N:t+N]) (1)

The input ILR
[t−N:t+N] is of shape T × H ×W ×C, where T = 2N + 1; H and W are the height

and the width of the input LR frames, and C is the number of color channels. The HR
output ÎHR

t is of shape rH × rW × C, corresponding to the LR reference frame ILR
t , where r

is the upscaling factor.
This paper proposes a Position-Guided Multi-Head Alignment and Fusion (PGMH-

AF)-based video super-resolution framework. The overall framework is shown in Figure 1.
It is composed of four sub-networks: an HFER module, a PGMH-A module, a PGMH-F
module, and a feature enhancement module. The HFER module consists of High-Frequency
Enhanced Residual (HFER) blocks [45] to extract high-frequency enhanced features in order
to keep the details and rich-texture information in the image. The Position-Guided Multi-
Head Alignment (PGMH-A) module is developed to align each supporting frame to the
different positions of the HR frame, and the Position-Guided Multi-Head Temporal–Spatial
Fusion (PGMH-F) module is developed to perform feature fusion across temporal frames
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and heads. The final feature enhancement module processes the aligned and fused features
obtained from the above modules to predict the final HR frame. In the following, the
PGMH-A and PGMH-F modules are explained.

𝐼𝑡−1
𝑎𝑙𝑖𝑔𝑛

𝑡𝑡-1 𝑡+1

HFER Blocks PGMH-A PGMH-F
Feature Enhancement 

& Sub-Pixel Conv

Ft-1 Ft Ft+1

Multi-Head 

Position masks

Sub-Pixel Conv

𝐼𝑡
𝑎𝑙𝑖𝑔𝑛

𝐼𝑡+1
𝑎𝑙𝑖𝑔𝑛

መ𝐼𝑡
𝐻𝑅

Temporal Fusion Head Fusion

Figure 1. Framework of the proposed PGMH-AF method. Three input frames are used as an
illustrative example.

3.2. Position-Guided Multi-Head Alignment

With features extracted for each frame, temporal alignment is then required to align
the features of the temporal supporting frames to the current frame or corresponding
timestep to explore the temporal information to reconstruct the current HR frame. While
the objective is to reconstruct the HR frame, the existing methods only align the temporal
features to the reference LR frame or as complete latent features, leading to suboptimal
alignment results and thus lowering the overall super-resolution quality. Considering
the HR frame is usually generated with a pixel shuffling layer, the HR frame is actually
composed of LR frames from different positions of the HR frame, noted as heads in this
paper, as shown in Figure 2. Therefore, to address the above problem of ambiguous
alignment, in this paper, we propose to explicitly align the temporal features to LR frames
corresponding to different heads/positions of the HR frame. The decomposition of the HR
frames into LR frames can be obtained by colorredpixel-unshuffling operation, which is
the inverse of the pixel-shuffling. It performs downscaling by rearranging an HR tensor
THR of shape rH × rW × C into H ×W × C · r2 tensor TLR. The operation can be expressed
as follows:

TLR
( x

r , y
r ,c·r· mod (y,r)+c· mod (x,r)) = THR

(x,y,c) (2)

where x, y, c are the output coordinates in HR space. mod here means the modular
arithmetic to calculate the remainder.

It is obvious that, for different heads of the HR frame, the temporal supporting LR
frames contribute different information. For example, in a video with a slowly moving
car from left to right, frame ILR

t−1 would contribute more to the left head of the HR frame
reconstruction and frame ILR

t+1 for the right head. As shown in Figure 2, simply aligning all
the supporting frames to the reference LR frame and then upsampling them to the HR frame
(which can also be regarded as an alignment operation, but spatially to the different heads
of the HR frame) is inefficient and introduces extra noise. Therefore, a Position-Guided
Multi-Head Alignment is developed for each head of the HR frame. Specifically, multi-
head features are obtained by aligning the features of supporting frames to different heads
separately, shown in the upper part of Figure 2. In this paper, deformable convolution is
adopted as a basic module to perform the temporal alignment. One naïve way to conduct
the multi-head alignment is to use different networks (one architecture with different
learned parameters) to extract different features, generate different deformable offsets, and
thus produce different aligned features to different heads. However, for a large upscaling
factor, the number of heads corresponding to the LR images is also very large, leading
to a large network. On the other hand, the operations and functionality of the different
networks are the same, only with different targeted positions in the HR frame. Therefore,
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to reduce the complexity and improve the generality of the network, one Position-Guided
Multi-Head Alignment (PGMH-A) network is developed. Considering that the offsets of
the multi-head features relative to each position of the HR frame are different, explicit
position encoding is injected into the generation of the offsets. The proposed PGMH-A is
illustrated in Figure 3.

HR Frame

1 2

3 4

Position of Reference Frame

Supporting Frame

Different Heads

1
3 4

2

Pixel Shuffle (Lossless)

Temporal alignment

Spatial alignment
Temporal alignment

1
2

3
4

Pixel Shuffle (Lossless)

1
3 4

2

Correspondence between the 

Reference Frame and the HR Frame

Figure 2. Illustration of the different procedures between the proposed Position-Guided Multi-Head
Alignment and the conventional temporal-alignment-based methods.

Offset Generation

DConv

Ft-1

Ft

Multi-Head 

Position masks

Multi-Head 

Aligned Features

HR Space

Multi-Head 

offsets

Figure 3. The Position-Guided Multi-Head Alignment (PGMH-A) module. Take ×2 VSR task as an
example: four multi-head features are first generated to perform alignment via a shared network
with different position masks.

For each head corresponding to a spatial position of an HR frame, a position en-
coding M(j) is generated first. The M(j) consists of two masks. Take r×VSR task as an
example: r × r groups of masks are obtained and each mask is of same element. For the
r × r multi-head features, the corresponding masks are filled with elements (− r−1

2 ,− r−1
2 ),

(− r−1
2 + 1,− r−1

2 ), (− r−1
2 ,− r−1

2 + 1), . . . , and ( r−1
2 , r−1

2 ), respectively, corresponding to the
horizontal and vertical relative positions of each head to the reference frame. Elements of
mask are then normalized to the range of [− r−1

2×r , r−1
2×r ], which corresponds to the position

change in terms of the LR frame pixel distance.
With guidance of the position encoding M(j), the offsets of multi-head features are

generated together with features of the supporting frame and reference frame as follows:

∆P(j)
t+i = fo(Ft+i, Ft, M(j)) (3)
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where three convolutional layers are used as fo to generate the offsets. Using the offsets, the
aligned multi-head features F′(j)

t+i are then obtained by deformable convolution:

F′(j)
t+i = DConv(Ft+i, ∆P(j)

t+i) (4)

Collecting all the multi-head-aligned features, the features Falign
t+i = [F′(1)

t+i , F′(2)
t+i , . . . , F′(r×r)

t+i ]

for the supporting frame ILR
t+i can be obtained. In this way, the information from the sup-

porting frame can be fully explored for the whole HR frame.
With the features explicitly aligned to different positions of the HR frame, the PGMH-

A can be trained with direct supervision, in addition to being trained by the overall VSR
objective. To supervise the alignment of each head feature, the sub-pixel convolution is
used on the aligned features, which projects the multi-head features into the HR space.

Îalign
t+i = fsub−pixel(Falign

t+i ) (5)

Accordingly, the alignment can be supervised by the ground-truth HR frame. By
processing the 2N supporting frames separately, the corresponding aligned features of
frames {Falign

t+i |t ∈ [−N, N], i ̸= 0} can be obtained for the following processing, and the

corresponding generated HR frames { Îalign
t+i |t ∈ [−N, N], i ̸= 0} can be obtained for the

supervision of the multi-head alignment.

3.3. Position-Guided Multi-Head Fusion

The multi-head-aligned temporal features, which correspond to the different positions
in the HR space from different supporting frames, are further processed to reconstruct
the final HR frame. In order to explore the spatio-temporal information across temporal
supporting frames, across multiple heads corresponding to the spatial positions of an HR
frame, and across the multiple channels, a Position-Guided Multi-Head Fusion (PGMH-F)
module is developed based on the attention mechanism. PGMH-F consists of two sequential
processing modules: head-wise temporal fusion and head fusion, as shown in Figure 4.

Head-wise

Temporal Fusion
Head Fusion

Dot Product

Fusion 

Conv

*

* Elementwise 

Product

Attention map

Embed

Pixelwise attention based temporal fusion

cat

Spatial 

GAP

Nonlinear 

Processing
Channel Attention

Channel attention based head fusion

Fusion 

Conv

Figure 4. Illustration of the Position-Guided Multi-Head Fusion containing the pixel-wise-attention-
based temporal fusion and the channel-attention-based head fusion.

First, features from different supporting frames are fused for each head to combine
the temporal information. To reduce the network complexity, the multiple branches for
processing the multi-head temporal feature fusion are also shared. However, while the
multi-head features are aligned with the deformable offset obtained with the explicit
position encoding, the resulting multi-head features are from the features of the supporting
frames without position information. Using one shared network cannot obtain the multi-
head features appropriate for the different positions of the final HR frame. Thus, to make
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the network be informed of the position differences of the multi-head features, the position
encoding is further injected into the multi-head feature processing module as well.

For simplification and without loss of generality, taking the processing of one supporting
frame as an example, the aligned multi-head features are denoted by F′(1), F′(2), . . . , F′(r×r).
Each head feature with the position mask is first processed with a shared convolutional
layer, so the position information can be integrated into multi-head features:

Fp(j) = fP− f us(F′(j), M(j)) (6)

By combining the position masks, the network is equipped with the ability to know
the position of each head feature and adaptively process the feature close to the divided
ground-truth of the HR frame.

A temporal fusion module is then developed to fuse the multi-head-aligned temporal
features from the supporting frames together with the features of the reference frame. The
temporal fusion layer aims at adaptively aggregating the features in temporal neighboring
frames at the pixel level. Thus, a pixel-wise-attention-based temporal fusion scheme is
used, as shown in the lower left part of Figure 4. First, a temporal attention mask, which
corresponds to the similarity between the aligned features from the supporting frame and
the reference frame in an embedding space, is generated. This similarity indicates the
feature distance between the supporting frame (temporal neighbors) and the reference
frame (at the temporal location of the HR frame) and thus can be used to enhance the
features of different supporting frames. The attention mask is then multiplied to the original
aligned features of each head in a pixel-wise manner. It can be expressed as

F̃p(j)
t+i = Fp(j)

t+i ⊙ ht(Fp(j)
t+i , Fp(j)

t ) (7)

where h(Fp(j)
t+i , Fp(j)

t ) denotes the pixel-wise similarity distance between Fp(j)
t+i and Fp(j)

t ,
i.e., the aligned features of the supporting frame and reference frame, respectively. The size
of ht(Fp(j)

t+i , Fp(j)
t ) is the same as that of Fp(j)

t+i . Two convolutional layers are used to calculate
the attention, and Sigmoid is applied as the nonlinear activation function for the last layer.
It is worth noting that the temporal fusion is used for each head feature separately since
the similarity of each head to the corresponding position in the HR frame can be different.
Since the attention is calculated in a manner of self-attention without parameters, this does
not increase the number of network parameters.

With the temporal features of each head properly enhanced using the attention, a
convolutional layer is further used to perform the fusion operation over the different
supporting frames, which is shared over all the heads.

Fp(j)
t− f us = Conv([F̃p(j)

t−N , . . . , F̃p(j)
t−1 , Fp(j)

t , F̃p(j)
t+1 , . . . , F̃p(j)

t+N ]) (8)

After the temporal fusion, r × r temporal fused features are obtained from the different
heads. While such features can be used to directly construct an HR frame using pixel shuffle,
the information among the heads cannot be fully explored. Therefore, multi-head fusion
is developed to further fuse the features over the heads, corresponding to the different
positions of the HR frame. Different from the temporal fusion that fuses the features from
the supporting frame to the reference frame, the multiple heads are fused to construct
a spatial volume rather equally corresponding to the final HR frame. Thus, the above
temporal attention cannot be simply applied for the head fusion. Moreover, each head
consists of different channels of features, and the importance of each channel among the
heads to the final reconstruction can also be different. Therefore, we enhance the head
features through channels and then perform the final fusion. Particularly, the channel
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attention using the squeeze and excitation model [58] is adopted as shown in the lower
right part of Figure 4. It can be represented by

Fs− f us = fs− f us

(
fgap(Ft− f us)⊙ Ft− f us

)
(9)

where Ft− f us = ( Fp(1)
t− f us, Fp(2)

t− f us, . . . , Fp(r×r)
t− f us ) represents the head features, fgap represents the

squeeze and excitation operation to obtain the global information embedding and perform
adaptive recalibration. It contains a global average pooling operation and a nonlinear
processing operation. fs− f us is the final convolution to fuse the multiple channels.

Via the proposed PGMH-F with the above two fusion modules, multi-head spatio-
temporal features are fused, which can be used to produce the final HR frame. In this paper,
the fused features are further processed via cascaded Resblocks as in [10] to enhance the
features spatially. Finally, a sub-pixel convolution layer is added to produce the residual
information of the HR video frame, which then produces the final HR frame together with
a bilinearly interpolated HR base frame ( ĪHR

t ).

ÎHR
t = frecon

(
Fs− f us

)
+ ĪHR

t (10)

3.4. Loss Functions

The proposed PGMH-AF method can be trained in an end-to-end manner. Two loss
functions, i.e., Lmulti and Lsr, based on the Charbonnier penalty function [59] explained in
the following, are used for supervision. Specifically, Lmulti is used to optimize the PGMH-A
module and Lsr is used for the whole network. For PGMH-A, the ground-truth HR frame
can be used as the label to supervise each aligned supporting frame:

Lmulti =
1

2N + 1

N

∑
i=−N

√
|| Îalign

t+i − IHR
t ||2 + ϵ2 (11)

The Charbonnier penalty of the final reconstructed frame is used as the objective
function of the whole network:

Lsr =
√
|| ÎHR

t − IHR
t ||2 + ϵ2 (12)

Combining two loss functions, overall loss function for our VSR network training is
finally expressed as

L = Lsr + λ Lmulti (13)

where λ is used to balance the two losses and set to 0.01 in the experiments.

4. Experiments
4.1. Datasets and Evaluation Metrics

The most commonly used VSR datasets are Vimeo-90K and Vid4.
Vimeo-90K [30] is a large-scale video dataset used for various video-related tasks,

which covers diverse scenes and motions. The VSR subset has 72,436 sequences of 7 frames
with 448 × 256 resolution. Training and testing datasets contain 64,612 and 7824 sequences,
respectively.

Vid4 [60] contains long sequences of frames with diverse scenes. It consists of 4 video
sequences: City, Walk, Calendar, and Foliage, and the lengths of the sequences are all over
30 frames in the resolution of 720 × 480.

Vimeo-90K dataset is used for training along with Vimeo-90K-T and Vid4 for evaluat-
ing the performance of the network, similar to [10]. Peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) are adopted as evaluation metrics in our experiments.
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4.2. Implementation Details

The VSR on an upsampling scale of ×4 is used for training and evaluation, and same
process applies for other scales. Similar to [8,10,30], RGB patches of 256 × 256 cropped
from high-resolution video clips are used as ground-truth frames. Patches of 64 × 64 are
produced with 4× downsampling from the groudtruth patch as the low-resolution input
for the network training. A Gaussian blur with a standard deviation of σ = 1.6 is used,
similar to [8,30]. The training data are augmented with horizontal flips, 90◦ rotations, and
frame reversing.

The network is optimized with the Adam optimizer in which β1 = 0.9 and β2 = 0.999
during training. The initial learning rate is set to 2 × 10−4 and reduced by a factor of 0.1
when validation accuracy no longer improved. The network is supervised by Lmulti and
Lsr, and the balance factor λ is set to 1. Batch size is set to 16. Seven consecutive frames
(i.e., N = 3) are used as inputs. Five HFEblocks are used for feature extraction. The basic
channel numbers are set to 128, while the number of multi-head feature channels is set to 48.
All experiments are conducted on the PyTorch 1.2.0 platform and Nvidia Tesla V100 GPU.

4.3. State-Of-The-Art VSR Methods Comparison

Our method is compared with one of the state-of-the-art SISR methods, RCAN [19],
and several VSR methods using the same sliding-window framework including ToFlow [30],
DUF [6], EDVR [10] RBPN [36], PFNL [61], and TGA [10]. Other methods such as Ba-
sicVSR [1,35] using a recurrent framework are not compared since different lengths of
information are explored with different application scenarios. The quantitative results are
shown in Table 1 and 2 for Vid4 and Vimeo-90K-T, respectively.

Table 1. Result comparison of different methods on Vid4 under upscale factor 4 in terms of both
PSNR (dB) and SSIM. The best results are highlighted in bold.

Method Frames Calendar City Foliage Walk Average

Bicubic 1 20.39/0.572 25.16/0.602 23.47/0.566 26.10/0.797 23.78/0.634
RCAN [19] 1 22.33/0.725 26.10/0.696 24.74/0.664 28.65/0.871 25.46/0.739
ToFlow [30] 7 22.47/0.731 26.78/0.740 25.27/0.709 29.05/0.879 25.89/0.765
DUF [6] 7 24.04/0.811 28.27/0.831 26.41/0.770 30.60/0.914 27.33/0.831
EDVR [10] 7 24.05/0.814 28.00/0.812 26.34/0.763 31.02/0.915 27.35/0.826
EDVR * [10] 7 24.56/0.833 28.49/0.843 26.48/0.775 30.91/0.918 27.61/0.842
RBPN [36] 7 24.02/0.808 27.83/0.804 26.21/0.757 30.62/0.911 27.17/0.820
PFNL [61] 7 24.37/0.824 28.09/0.838 26.51/0.776 30.65/0.913 27.40/0.838
TGA [8] 7 24.47/0.828 28.37/0.841 26.59/0.779 30.96/0.918 27.59/0.841
Ours 7 24.64/0.837 28.77/0.853 26.66/0.784 31.09/0.921 27.79/0.848

EDVR [10] reported the results in [10], tested with a different setting from ours. EDVR * [10] shows the results
with the same setting as ours.

Table 2. Result comparison of different methods on Vimeo-90K-T under upscale factor 4 in terms of
both PSNR (dB) and SSIM. The best results are highlighted in bold.

Method Frames PSNR/SSIM

Bicubic 1 31.32/0.8684
ToFlow [30] 7 34.83/0.9220
DUF [6] 7 36.37/0.9387
EDVR [10] 7 37.61/0.9489
EDVR * [10] 7 37.41/0.9488
RBPN [36] 7 37.20/0.9458
TGA [8] 7 37.61/0.9489
Ours 7 37.75/0.9517

EDVR [10] and EDVR * [10] are the same as noted in Table 1.
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It can be seen that the proposed method achieves the best performance in terms of
both PSNR and SSIM compared to the existing methods in the same category. It is also
worth noting that our method outperforms EDVR, which is most related to our work and
uses the same framework. Some visual results are presented in Figure 5. Compared with
EDVR, it can be seen that our method restores more details of video frames than others,
demonstrating the effectiveness of the proposed method.

(a) GT (b) Bicubic (c) EDVR (Wang et al., 2019) (d) Ours

Figure 5. Qualitative comparison for VSR with upscale factor 4 on the Vid4 dataset in comparison
with the results of Bicubic and EDVR [10]. Zoom in for best view.

4.4. Ablation Studies

In this section, several ablation studies are conducted to investigate the effectiveness
and necessity of the proposed modules in our method. All the studies are conducted on the
Vid4 dataset. The baseline is the EDVR network without the temporal–spatial attention
(TSA) module using deformable convolution to align the supporting frames for video
super-resolution.

Influence of HFER. HFER blocks are used in our network for feature extraction to
enhance the high-frequency information by replacing the same number of Resblocks. HFER
blocks have shown to be effective for image super-resolution but are not verified for video
super-resolution yet, with the changes including moving objects among frames. The results
of using HFER blocks are shown in Table 3, noted as Model 1. Compared with the baseline,
it can be seen that HFER blocks are also effective for video super-resolution, proving the
effectiveness of the high-frequency information for image/video super-resolution.

Table 3. Ablation results of different modules in terms of both PSNR (dB) and SSIM. The best results
are highlighted in bold.

Method HFER PGMH-A PGMH-F PSNR/SSIM

Baseline 27.42/0.8366
Model 1

√
27.64/0.8446

Model 2
√ √

27.71/0.8469
Full

√ √ √
27.79/0.8486

Influence of PGMH-A. The proposed PGMH-A module is used to align the supporting
frames to the different positions of the HR frame. To verify its effectiveness, it is further
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added on top of the baseline and the HFER for experiments. To isolate its effect, after
the Position-Guided Multi-Head Alignment, the temporal aligned features from different
supporting frames are simply fused together with a convolution layer, and the features
from different heads are also concatenated and processed with a convolution layer. The
result is shown in Table 3, noted as Model 2. It can be seen that, with our PGMH-A module,
the result is further improved with 0.07 dB, verifying its effectiveness.

Influence of PGMH-F. The proposed PGMH-F module is used to fuse the spatial–
temporal features across frames and heads. It can be evaluated by comparing the full
model with the above Model 2 using PGMH-A without the attention-enhanced fusion. The
comparison is illustrated in Table 3. It can be seen that our PGMH-F also improves the
overall performance of the model, validating its effectiveness.

5. Conclusions

This paper proposes a Position-Guided Multi-Head Alignment and Fusion framework
for VSR, which effectively explores the information from the temporal supporting frames.
PGMH-A reduces the ambiguity in aligning the temporal supporting frames to the target
HR frame by explicitly using multiple heads corresponding to the different positions of the
HR frame. PGMH-F then fuses the spatio-temporal information in the three dimensions,
i.e., temporal, the heads corresponding to the positions of the LR frame, and the channels.
In addition, the feature extraction takes advantage of cascaded high-frequency enhanced
blocks to enhance the high-frequency information for alignment. Our method is compared
with the state-of-the-art VSR methods, and the experiments on two popular benchmark
datasets have shown that our PGMH-AF can achieve better performance. Ablation studies
have further validated the effectiveness of each module.

6. Limitation and Future Research

While this paper provides an interesting PGMH-AF method, its complexity still needs
to be further reduced in order to realize real-time implementation. In the future, more
diverse datasets and real-time scenarios will be investigated, especially in terms of reducing
and parallelizing the proposed PGMG-AF.
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