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Abstract: The increasing need for effective electric vehicle (EV) charging solutions in the context of
transportation electrification has become a significant challenge. This system introduces an innovative
algorithm, named Energy Distribution and Node Allocation using Evolutionary and Resourceful
Optimization (ENDEAVOR), designed to elevate the efficiency of EV charging through the integration
of a battery’s digital twin. This cutting-edge algorithm offers precise estimations of EV charging
time, seamlessly updating both the State of Charge (SOC) via the Unscented Kalman Filter (UKF)
and the internal battery resistance using parameterization, while sending this information to the
cloud. ENDEAVOR optimizes charging-node allocation and intelligently distributes energy among
incoming EVs based on their specific charging requests, all within the context of renewable-energy-
sourced charging stations. The incorporation of a digital twin for the battery confers several benefits,
including highly accurate SOC and charging-time estimates that ultimately enhance the overall
efficiency of the charging process. This algorithm further optimizes energy distribution, resulting in
significantly improved charging-time predictions, reduced wait times for users, and an enhanced
overall experience for the user. The day-to-day implications of these enhancements are remarkable,
culminating in substantial annual energy savings of approximately 180 units. ENDEAVOR has the
potential to revolutionize the landscape of EV charging.

Keywords: digital twin; Li-ion; unscented Kalman filter; renewable energy; smart energy;
parameterization; electric vehicles

1. Introduction

The transformation from fuel-based vehicles to electric vehicles (EVs) can be catalyzed
with proper charging station infrastructure. The demand for EVs has seen a rise in the last
five years, which poses the issue of crowded charging stations, with users facing increased
waiting times. The installation of EV charging stations at optimal locations could partly
alleviate this problem. But the necessity of a charging infrastructure for EVs becomes
crucial, as the infrastructure needs to cater to the three major upcoming technologies in
transportation, namely, connected mobility, autonomous driving, and electrification [1]. At
the same time, this must not subject the grid to the adverse effects of imbalance [2].

The work reported in [3] suggests using an Urgency First Charging (UFC) policy
to prioritize EV charging based on charging demand and remaining parking time and a
reservation-based CS-Selection scheme to choose the optimal charging station associated
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with the minimum travel and charging time. Simulations show that this approach im-
proves the user experience, shortens trip duration, and fully charges more EVs before the
departure deadline. The increasing use of battery-powered electric vehicles has brought
attention to the limited number of charging stations, a phenomenon which would cause
longer wait times and pricing constraints. This results in a degraded quality of experience
for drivers and congestion-related problems for charging point providers. To solve this,
Ref. [4] proposes ChaseMe, a heuristic scheme based on two soft-computing techniques, to
optimize charging station management and improve charging metrics for EVs. However,
the ChaseMe method assumes that EV drivers will always follow the recommendations
provided by the algorithm, which may not always be the case in practice. If drivers do not
follow the recommended routes or charging schedules, the performance of the algorithm
may be affected. Furthermore, the paper does not consider the impact of the method on the
overall energy consumption and sustainability of the transportation system. The research
carried out in [5] proposes an optimal configuration method for fast-charging stations
using the fast power supplement mode for electric vehicles. The method considers the
charging characteristics of EV batteries, different types of EVs, and the spatial–temporal
distribution of charging demand predicted through GPS and the K-means method. One
potential drawback of the proposed method is that it assumes users will always prioritize
fast charging over slower, more conventional charging methods, which may not always
be the case. Additionally, the proposed method may require significant infrastructure
investments, which may be a barrier to adoption in some regions.

The proposed EV charging navigation scheme in [6] is a smart and efficient solution
that utilizes Vehicular Edge Computing (VEC) networks to optimize charging schedules and
minimize charging times. By taking into account real-time traffic conditions, energy prices,
and battery SOC, the scheme is able to provide personalized charging plans for individual
EV drivers. The work presented in [7] proposes a hybrid Long Short-Term Memory (LSTM)
neural network-based approach to predict the occupancy of EV charging stations. The
proposed method combines the strengths of the LSTM model and the autoregressive
integrated moving average (ARIMA) model to improve the accuracy of the occupancy
prediction. The proposed approach is evaluated using real-world data from a public
charging station in Hong Kong, and the results show that the hybrid LSTM neural network
model outperforms the standalone LSTM and ARIMA models in terms of prediction
accuracy. The study also highlights the importance of considering multistep predictions in
EV charging station occupancy prediction to improve the reliability of the prediction results.

Intensive research has been undertaken in the area of the development of sustainable
and easily accessible charging stations. Ref. [8] analyzes charging control strategies under
conditions of power limitations caused by grid stability requirements. The optimal power
allocation problem has been studied in various ways, including the use of game theory
and evolutionary optimization strategies. The literature shows numerous studies relevant
to the allocation of charging stations and optimal routing to charging stations amidst
congestion management. The work proposed in the present paper introduces a novel
approach for optimizing the allocation of energy-efficient charging nodes within a specific
charging station, taking into consideration the presence of multiple vehicles simultaneously
requesting charging services.

A Battery Digital Twin model (BDT) serves as a digital replica of a battery, facilitat-
ing precise modeling, simulation, and optimization of battery performance [9]. Widely
employed in industries such as aerospace, automotive, and manufacturing, digital-twin
technology has proven highly effective for tasks like predictive maintenance, design refine-
ment, and performance enhancement. Developing a BDT necessitates the use of advanced
numerical models capable of capturing the intricate physics and electrochemistry of bat-
teries. These models can be integrated with real-time sensor data to offer dynamic and
real-time representations of battery states [10]. In the renewable-energy storage sector,
BDTs optimize energy management systems, ensuring efficient operation [11]. Ref. [12]
provides a comprehensive comparison between on-board Battery Management Systems
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and the application of digital twins for batteries, highlighting the numerous advantages of
BDTs in terms of prolonging battery service life and considering the potential for a second
life for batteries.

Digital-twin technologies for battery systems, especially those associated with elec-
tric vehicles (EVs) and energy storage, incorporate Unscented Kalman Filters (UKF) for
state-of-charge (SOC) estimation. This aspect plays a vital role in optimizing battery perfor-
mance and prolonging its lifecycle. The digital-twin concept facilitates the development of
real-time models for parameter estimation and optimization within battery management
systems (BMS) [13]. An innovative approach utilizing the Unscented Kalman Filter in
conjunction with neural networks has been introduced for simultaneously estimating the
State of Charge (SOC) and the State of Health (SoH) of lithium-ion batteries. This method,
which demonstrates high precision across diverse operating conditions, is implemented in
electric vehicles and renewable-energy applications [14].

Cloud-based BMS solutions offer several advantages, including improved monitoring
and diagnostics, online learning capabilities, and enhanced visualization of battery data.
These systems can aggregate data from multiple vehicles, enabling a more comprehensive
analysis and optimization of battery performance at the fleet level. Despite the potential
benefits, cloud-based BMS face challenges such as connectivity issues, security concerns,
and the need for reliable internet access. Future research in this field should focus on
addressing these challenges and exploring the integration of emerging technologies such
as edge computing and fog computing to further enhance the capabilities of cloud-based
BMS [15].

The knowledge gaps which have been identified in the present literature have been
addressed in this work, as described in Table 1, shown below.

Table 1. Gaps in the present understanding, as identified through an analysis of the literature
associated with various electric vehicle charging processes.

Issue Addressed Previous Works in the Literature Solution Proposed to Address Knowledge Gap

Charging Station Optimization Ref. [3] suggests UFC and
reservation-based CS selection.

An innovative approach to allocate
energy-efficient charging nodes, considering

multiple concurrent charging requests.

Fast-Charging Prioritization Ref. [5] proposes a method that assumes
user preference for fast charging.

Takes into account multiple aspects of an optimal
fast-charging station configuration but does not

make assumptions about user preferences.

Occupancy Prediction Ref. [7] combines LSTM and ARIMA for
occupancy prediction.

A hybrid approach for accurate EV charging
station occupancy prediction, emphasizing
multistep predictions to enhance reliability.

Model
Ref. [16] proposes the BCFFRLS method

for estimating parameters in the
INR18650-20R battery model.

The proposed digital-twin model for batteries
aims to achieve a more realistic representation of

the battery.

The proposed system comprises several distinct sections:
The initial part deals with leveraging the pivotal role of BDT technology in modeling

electric vehicle (EV) batteries. In the context of EV batteries, BDTs empower researchers
to model battery behavior under diverse operational conditions and loads, enabling per-
formance prediction and early issue-identification. This knowledge, in turn, aids in the
optimization of battery management systems, enhancing battery performance, and ex-
tending battery lifespan. BDTs also enable the assessment of the impact of factors like
temperature on battery performance and the optimization of battery designs for specific
applications. The incorporation of advanced visualization tools and machine learning
algorithms provides further insights into battery behavior, allowing for continual enhance-
ment of the digital twin. The second section delves into the proposed algorithm, which
is designed to allocate charging nodes and intelligently distribute energy based on the
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energy availability of the charging station and the EV energy demand. Detailed discus-
sions as to the optimization techniques and machine learning algorithms utilized in both
the digital-twin implementation and the intelligent energy distribution are presented in
subsequent sections. The concluding section underscores the advantages of incorporating
BDT into the work, specifically with respect to reducing EV user wait times and enhancing
energy conservation.

2. Methodology

The architecture of the proposed system is shown in Figure 1. The first part involves
the implementation of the DT of the Li-ion battery to obtain optimized battery parameters
including SOC and time-to-charge. The BDT for every user is created based on the parame-
ters uploaded to the cloud, including the internal resistance of the battery, which varies
over drive cycles towards its End-of-Life (EOL). The BDT receives the cloud data associated
with the physical battery, as uploaded by the on-board BMS of the user. The second part of
the functional architecture is the machine learning block which takes optimized parameters
from the BDT as inputs and provides the time-to-charge and the charging energy required
by the incoming vehicle, based on its current SOC.
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The energy required to charge the EV (εvi) and the time-to-charge for the EV (τch) are
fed from the BDT to the novel ENDEAVOR algorithm to compute the Energy Distribution
Ratio (EDR) for optimized energy distribution. Based on the energy available at the
charging station and the energy demand from incoming users, the EDR is dynamically
updated. These parameters control the charging current made available at each node.
A mobile app developed for raising requests and receiving information regarding the
status of node allocation was developed using Collab. The data from the user are fetched
from the cloud. The charging station continuously updates its data regarding influx of
users and available energy to the cloud. The trend of the change in the EDR is monitored
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and an estimate of the EDR is made for faster computation. With the use of BDT, along
with the proposed node allocation and EDR-based charging, the time-to-wait of the users
is decreased.

3. Implementation of Battery Digital Twin

A battery digital twin can be used to evaluate the degradation of the battery over
drive cycles and the optimization of battery usage, as well as to identify the possibility of a
second-life application of the battery [17]. The utilization of both the proposed decision-tree
in conjunction with the UKF for SOC estimation and the support vector machine (SVM)
regression for the digital-twin parameter update enables the accurate estimation of time-
to-charge. To implement the digital twin, it is necessary to collect data on the battery’s
behavior, such as its voltage and current during charging and discharging cycles. These
data can be obtained using sensors or through data logging systems. The data are then
used to calibrate the Thevenin’s 3RC model, which is then used to simulate the behavior of
the battery under different conditions. The BDT implementation steps are elaborated in the
sections below.

3.1. Experimental Data for the Battery

In this work the experimental data associated with an INR 18650-20R lithium-ion
battery cell are obtained from the CALCE dataset [18]. The test set-up includes the Arbin
BT2000 Battery Testing System, used for controlling the battery’s charging and discharging
process, and a Temperature Chamber used to control the ambient temperature of the battery.

The specifications of the battery are summarized in Table 2. The dataset is comprised
of test data obtained at three temperatures: 0 ◦C, 25 ◦C, and 45 ◦C. In this test the battery
is charged to the cut-off voltage of 4.2 V at a constant current of 1 C-rate; this is followed
by constant-voltage charging until the current is brought down to 0.01 C. The C-rate of a
battery is a measure of its charging or discharging rate relative to its capacity. It indicates
the rate at which current is applied or withdrawn from the battery in relation to its nominal
capacity. The C-rate is typically expressed as a multiple of the battery’s capacity (C). A
comparison of battery technologies, with their relevant advantages and disadvantages,
along with applications in which they are used can be found in Table 3.

Table 2. The specifications of the battery are summarized.

S. No. Battery Parameter Specifications

1 Capacity Rating 2000 mAh

2 Nominal Voltage 3.6 V

3 Cell Chemistry LNMC/Graphite

4 Weight (with safety circuit removed) 45.0 g

5 Dimensions (mm) 18.33 ± 0.07 mm

6 Length 64.85 ± 0.15 mm

This step is then followed by a discharge cycle at a constant rate of 0.05 C until the volt-
age is reduced to 2.5 V. The charging is performed at constant rate of 0.05 C until the voltage
is 4.2 V. The average of the charging and discharging process is recorded as the open circuit
voltage (OCV) for 0 ◦C, 25 ◦C, and 45 ◦C. In order to obtain the OCV–SOC relationship, the
incremental-current OCV (I-OCV) test data obtained for 25 ◦C are considered.

The input and output data obtained in terms of currents, as well as the voltage from the
CALCE dataset, are used to obtain the second-order autoregressive model. The response of
this model is then compared with the dataset model identified originally.
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Table 3. Evaluation of various energy storage technologies for different electric vehicle charging
methods.

Battery Type Key Features Advantages Disadvantages Applications

Lithium-Ion (Li-Ion) High energy density,
long cycle life

Dominates EV market,
stable performance

High cost, safety
concerns (thermal

runaway)
Most EV models

Lithium Iron
Phosphate (LFP)

Lower energy density
than Li-ion, more stable

Cheaper, safer (thermal
stability), longer

life cycle

Lower range compared
to Li-ion

Budget EVs, energy
storage

Sodium-Ion
Emerging technology,
fewer critical minerals

required

Lower cost, sustainable,
non-toxic

Lower energy density,
still under

development

Potential future use in
low-range EVs

Nickel Cobalt
Manganese (NCM)

Higher energy density
compared to LFP

Longer driving range,
better performance

Higher cost,
dependence on critical

minerals like cobalt
Premium EVs

3.2. Open Circuit OCV–SOC Curve Estimation

The OCV–SOC curve is a crucial aspect in battery modelling and simulation and can
provide valuable information as to battery behavior, insights which can be applied in the
areas of electric vehicles, renewable-energy storage, and portable electronics. The SOC
of a battery can be estimated based on the battery’s OCV using an empirical relationship.
This relationship can vary depending on the type of battery chemistry and the specific
battery design.

For a typical lithium-ion battery, the relationship between SOC and OCV can be
approximated by Equation (1):

SOC =
OCV−OCVmin

OCVmax −OCVmin
(1)

where OCVmin = Minimum open circuit voltage and OCVmax = Maximum open circuit
voltage.

Equation (1) assumes a linear relationship between SOC and OCV, an assumption
which may not always be accurate. In practice, battery management systems may use more
sophisticated algorithms to estimate SOC based on a combination of factors, including
OCV, current and voltage measurements, temperature, and other battery characteristics.
Curve fitting is a method commonly used to obtain the relationship between the OCV and
SOC of a battery. It involves fitting a mathematical model to a set of data points, which are
obtained experimentally or through simulations. In this study, the OCV–SOC curve of a
lithium-ion battery was modelled and fitted using exponential and polynomial functions
in MATLAB-R2023a.

Figure 2 shows the Poly9 OCV–SOC Curve Fit for battery charging characteristics.
The results were compared with Poly 8 and second-order exponential curve-fitting, based
on the goodness-of-fit parameters, as seen in the tabulations in Table 4.

Table 4. Evaluating curve-fitting methods using goodness-of-fit (utilizing polynomial curve-fitting).

Goodness of Fit Second-Order
Exponential

Eighth-Degree
Polynomial

Ninth-Degree
Polynomial

R-square 0.8098 0.8297 0.83
Adjusted R-square 0.8098 0.8296 0.8299

RMSE 0.07183 0.06797 0.06791
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It was observed that the exponential model was a good fit for the OCV–SOC curve,
with a Root Mean Squared Error (RMSE) of 0.07. However, it was not accurate near the
lower and higher OCV values. The ninth-degree polynomial model was the best fit, with
the RMSE of 0.067 associated with an RMSE value of 0.83. The fitted curves were compared
with the experimental data, and the accuracy of the models was evaluated.

The ninth-degree polynomial equation is given by

f (x) = p1x9 + p2x8 + p3x7 + p4x6 + p5x5 + p6x4 + p7x3 + p8x2 + p9x + p10 (2)

where x is normalized by a mean of 39.68 and a standard deviation of 30.97. Coefficients of
the equation are as shown in Table 5.

Table 5. Parameters of the ninth-degree polynomial model used for curve fitting (employing polyno-
mial curve-fitting techniques).

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0.02117 −0.2227 0.4266 0.328 −1.145 0.1277 0.7667 −0.2199 −0.0187 3.634

Furthermore, the fitted exponential model was used to predict the voltage of the
battery under different operating conditions, such as discharge and charge. The results
were in good agreement with the experimental data, demonstrating the usefulness of the
fitted OCV–SOC curve in predicting battery behavior.

3.3. Parameter Estimation and Battery Modelling

The internal resistance of the battery (R_0) is estimated, using the pulse-discharge
method, from the battery current and voltage data obtained from CALCE. The 3 RC battery
model suits the dataset best. The values of R1, C1, R2, C2, R3, C3, and R_0 obtained from
parameter estimation are stored in look-up tables and updated from time to time. The
most common models used for lithium-ion batteries broadly include the empirical model,
semi-empirical model, physical model, and data-driven model. The ECM is typically a
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resistor–capacitor network, internal resistance model, or a PNGV model. In this work,
the 3RC network has been used for battery modelling. The 3RC battery model is a model
widely used for predicting the behavior of batteries under different operating conditions.
The model is based on three RC circuits which represent the different time-constants of
the battery. The pulse-discharge method is a technique commonly used for parameter
estimation in the 3RC battery model. The method involves discharging the battery using a
short, high-current pulse and measuring the voltage response. By analyzing the voltage
response, the parameters of the 3RC battery model can be estimated.

To use the pulse-discharge method for parameter estimation, the battery is first charged
to a known SOC. Then, a high-current pulse is applied to the battery, and the voltage
response is measured over time. The internal resistance, mainly contributed by R0, can be
obtained from Equation (3) [19–23].

R0 =
[(U1 −U2) + (U4 −U3)]

2IL
(3)

where
U1 = IR1 R1 = UcapC1

(4)

UcapC1
=

1
C1

∫ t

0
Icdt (5)

U1 =
∫ t

0

(
IL
C1
− U1

R1C1

)
dt (6)

Similarly,

U2 =
∫ t

0

(
IL
C2
− U2

R2C2

)
dt (7)

and

U3 =
∫ t

0

(
IL
C3
− U3

R3C3

)
dt; (8)

U4 = f(U2||U3) (9)

where Ui(i = 1, 2, 3)= Pulse edge voltages.
The values of R0, R1, R2, R3, C1, C2, and C3 are obtained from the relaxation time

constants τ1, τ2, and τ3 of the pulse-discharge curve. The MATLAB simulink design
optimization and curve-fitting toolbox are used for parameter estimation and for obtaining
the OCV–SOC curve. Figure 3 shows the sample pulse-discharge voltage, with the data
points showing the values of U1, U2, U3, and U4.
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Figure 4 illustrates the relationships between various SOC values and different internal
resistance values in a 3RC battery model. Additionally, it demonstrates how charging times
vary depending on the internal resistance values.
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3.4. SOC Estimation and Evaluation of Time-to-Charge (τch)

SOC estimation is a critical aspect of battery management systems, particularly in
applications such as electric vehicles and renewable-energy storage. The traditional method
of SOC estimation using Coulomb counting has limitations, such as the need for an accurate
measurement of battery current and a determination of the effects of changes in the battery’s
internal resistance. To overcome these limitations, various advanced algorithms have been
proposed, including the Unscented Kalman Filter (UKF) method [24–28]. The UKF is a
nonlinear state-estimation algorithm that can effectively estimate the SOC of a lithium-ion
battery by incorporating information from multiple sources, such as the battery voltage,
current, and temperature. The algorithm uses a set of sigma points, which are used
to represent the nonlinear state equations of the battery. These sigma points are then
propagated through the battery model and used to estimate the SOC.

The UKF algorithm consists of the following steps.
Prediction of sigma points is expressed by

xσ = [x k, xk +
(√

n + λ
)
∗ Pk, xk −

(√
n + λ

)
∗ Pk

]
(10)

Propagation of sigma points is determined through the system model:

xk+1 = f (xk,uk) (11)

where f (xk,uk) is the system model and uk is the control input.
Correction of sigma points is then effected based on measurements:

yk = zk − h(xk) (12)

ζk = Pk Hk
T HkPk Hk

T + Rk (13)

where xσ = Sigma points, zk = Measurement, h(xk) = Measurement model, xk = Cur-
rent state estimate, Hk = Measurement noise covariance matrix, Pk = Covariance matrix,
ζk = Kalman gain, n = dimension of the state space, and λ = Scaling factor.

The new state estimate and covariance matrix are calculated based on the corrected
sigma points. The UKF method provides improved accuracy compared to traditional
Coulomb-counting by considering the impacts of battery temperature and state of health
on the SOC estimate. It also has the advantage of being computationally efficient and
robust against measurement noise. From the estimated SOC-versus-time plot, as shown in
Figure 5, the τ_ch for a given SOC can be obtained and uploaded to the cloud.

SOC = SOC0 −
1

εrated

∫ t

0
I(t)dt (14)
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The new state estimate and covariance matrix are calculated based on the corrected
sigma points.

3.5. Evaluation of Battery Capacity (εv)

The preliminary estimation of capacity can be performed using the Ampere-hour
Integral method given by Equation (15),

εn(i) =

∫ t2
t1 I(t)dt

SOCmax − SOCmin
(15)

where εrated is the rated capacity and I(t) is the battery current at time t. To estimate the
capacity, the start SOC ( SOCmin) and the SOC at the ith charging instant ( SOCmax) are
considered. Figure 5 shows how to estimate the SOC using UKF for drive-cycle data
recorded at 25 ◦C.

3.6. Parameter Update

The internal resistance of a Li-ion battery varies with the SOC of the battery, and can
be modeled as a curve. However, over time, the internal resistance curve may deviate
due to aging effects such as capacity fade and electrode degradation [29]. This can lead
to errors in the estimation of the SOC and time-to-charge of the battery. To address this
issue, the least-squares method is used to update the digital twin with the deviation in the
internal resistance curve observed after multiple drive-cycles. The least-squares method is
a statistical technique used to find the best-fit line that minimizes the sum of the squared
distances between the observed data points and the predicted values. The goal of the LS
method is to find the values of the parameters that minimize the sum of the squared errors
between the observed deviations and the model predictions.

f (a) =
N

∑
i=1

(yi − (rxi))
2 (16)

where r is the internal resistance parameter of the DT to be estimated, xi is the input,
and yi is the observed deviation in the internal resistance curve at that input. The optimal
parameter r is obtained by minimizing the objective function of Equation (16). The deviation
in the internal resistance curve can be obtained by comparing the voltage and current data
collected during the drive cycles with the predicted values from the digital twin. The LS
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method can then be used to adjust the internal resistance curve in the digital twin, which
can improve the accuracy of the SOC and time-to-charge estimations [30–32].

Battery testing and SOC estimation rely heavily on drive cycles, which replicate real-
world driving conditions. Various cycle types, including NEDC, UDDS, and WLTP, are
employed to evaluate vehicle performance, fuel efficiency, and emissions under standard-
ized circumstances.

Integration of drive-cycle data offers several advantages:

- Drive-cycle information in the UKF algorithm enhances state-estimation accuracy in
electric vehicles by utilizing vehicle velocity and acceleration patterns. This could
improve range predictions and energy management.

- Drive-cycle data improves SOC estimation accuracy by analyzing diverse real-world
driving data to account for various scenarios, leading to better range estimation and
battery management in electric vehicles.

4. Proposed Algorithm

Figure 6 is the flow diagram for the ENDEAVOR algorithms depicted in Figure 7,
namely, UKF step evaluations reduced to pictorial representations.
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Energy Distribution and Node Allocation using Evolutionary and Resourceful Opti-
mization (ENDEAVOR) is a novel algorithm that has been designed to primarily perform
two tasks:

1. Determine the optimal charging current for each node, based on the values for SOC,
DOD, and battery capacity obtained from the digital twin of the battery deployed in
the cloud. This determination also depends on the energy availability of the charging
station at the time a request is raised.

2. Allot an available node to the incoming user in a manner such that the waiting time
of the user is optimized.

The grid-connected charging station sources energy from hybrid PV and wind energy
sources. The energy fed to or from the grid and its usage details are uploaded to the cloud
from time to time. These data are then used to predict the ε̂CS for a period of 24 h, based
on historical data. The actual level of energy available at the charging station εCS(actual)
is obtained from the sensors at the charging station. The deviation between ε̂CS and
εCS(actual) is measured in terms of mean square error (MSE), and the cloud prediction
algorithm is tuned to minimize MSE.
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4.1. Smart Energy Distribution Based on EDR Computation

The user raises a request for charging through the developed mobile application by
entering their EV’s unique ID. The algorithm polls for any incoming requests and keeps a
count of the un-serviced requests. The SOCi, DODi, and εBATi are obtained from the BDT
deployed in the cloud, using the user’s unique vehicle ID. The amount of energy required
by the vehicle in order to charge it is then computed as in Equation (17).

εvi = (1− SOCi)XεBATi (17)

where εBATi is the battery capacity of the ith vehicle, SOCi is the State of Charge of the ith
vehicle, and εvi is the energy required to charge the ith vehicle.

The net amount of energy required to charge the incoming EVs that have raised
requests and been allotted a node is obtained as in Equation (18).

εv= ∑i εvi (18)

If the energy demand by the incoming vehicles εv is less than the available energy at
the charging station εCS, then the available energy is used to meet the energy requirements
of the users. If energy available at the charging station εCS is less than εv, then the EDR (β)
is computed as

β =
εvi

∑i εvi
(19)
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Therefore, the energy that each EV that is allotted a node will be supplied (εvi) with is
given by Equation (20):

(εvi)new = β ∗ εCS (20)

The time-to-charge for vehicle i (τchi) is obtained from the charging characteristics of
the DT of the battery, corresponding to ( εvi)new. The charging current pertaining to this
energy is also obtained from the SOC curve of the battery DT.

4.2. Node Allocation

Node availability is checked at the charging station from time to time. The ith vehicle
with max(εvi) is obtained and is allotted the empty node. The node ‘n’ is blocked for the
time τngiven by Equation (21).

τn = τchi (21)

where τchi is the time-to-charge for vehicle i.
If no node is available, then the ith vehicle is allotted the node with min(τn), and

τn = τn + τchi (22)

After charging of a vehicle is complete, the node becomes available for the next
incoming vehicle. The value of n, the number of available nodes, is updated before the next
request is processed. Whenever a new request is raised at the charging station, the energy
demand, energy availability, and β are computed and the node charging current is updated
dynamically. The node is released after charging is complete and is then ready for the next
vehicle to be plugged in. The flowchart of the algorithm is shown in Figure 8.
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4.3. ENDEAVOR Algorithm

Perform the following for every request raised by an incoming EV (Algorithm 1):

Algorithm 1. ENDEAVOR

Read←ε̂CS from cloud and εCS(actual)
Read← n, Node availability in charging station
Read← SOC, DOD, εBat
Minimize (MSE (ε̂CS,εCS(actual))
Node allocation ()
For each i in EV raising request (m)
Compute ε_vi = (Battery Discharged () XεBATi)/100
εv=∑i εvi
While (ε CS > εv)
Energy Distribution ()
End While
End for
Update n
Energy Distribution ()

{
Compute Energy Distribution Ratio β = εvi

∑i εvi

Energy provided for each EV allotted a node (εvi)new = β ∗ εCS
}

Battery Discharged ()
{
Battery Discharged = 1 − SOCi
Remaining % of energy = DODi − Battery Discharged %
}
Node allocation ()
{

If n is available then
Allot it to ith vehicle with (max (ε vi))

τn = τchi
Else

Compute min (τn )
Allot node n
τn = τn + τchi

}
Release node once charging is complete.

Update the values for requests serviced and nodes available.

5. Results

The experiment employed a set of sample data associated with five EV users, and
comprising IDs, SOC, DOD, and Capacity, as shown in Table 6. The charging station is
assumed to have three charging nodes and a power availability of 60 kWh. The efficiency
of the charging system at the charging station is considered to be 95%. This parameter is
used to compute the energy consumed from the charging station after the losses of the
system are incurred, as εfrom_CS.

Case I:
This scenario considers the arrival of the first EV. The energy required to charge EV1 is

computed, and determined to be 7.5 kWh, as shown in Table 7. Since all nodes are initially
considered to be free, EV1 is allotted the first node.
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Table 6. Sample data describing electric vehicle State of Charge, Depth of Discharge, and Capacity
across various charging scenarios.

ID SOC (%) DOD (%) Capacity (kWh)

1 90 80 75
2 72 85 60
3 78 70 90
4 80 90 85
5 30 90 90

Table 7. Calculating energy requirements and allocating nodes for EV1’s use of the electric vehicle
charging facilities.

Node
Allotted Vehicle ID SOC (During

Request)
εto charge

(%) εvi εfrom_CS β τch (h) Available
Energy at CS

1 EV 1 90 10 7.5 7.73 - 2.77 60

The energy available at the charging station is greater than the demand from user EV1.
Thus, the EDR computation step is not performed, and the user is allotted a node and the
vehicle charged, such that the time-to-charge is 2.77 h.

Case II:
EV2 and EV3 raise simultaneous requests for charging after 24 min. The charge avail-

able at the charging station is computed and the energy demand is obtained, as tabulated
in Table 8. The energy expended in charging EV1 is obtained from the characteristic curve
data in the cloud. The time-to-charge for each EV is computed, and the available nodes are
allotted for the computed amounts of time.

Table 8. Calculation of power requirements and allocation of charging points for EV2 and EV3 at
electric vehicle charging facilities, determined by the available energy supply.

Node
Allotted

Vehicle
ID

SOC (During
Request)

εto charge
(%) εvi εfrom_CS β τch (h) Available

Energy at CS
SOC (At Arrival
of New Request)

1 EV 1 90 7.28 5.46 5.63 - 2.43
57.9

92.72
2 EV 2 73 27 16.2 16.7 - 3.57 73
3 EV 3 78 22 19.8 20.41 - 3.27 78

The total energy required from charging station is 42.74 KWh.
Case III:
In this element of the scenario, EV4 arrives after 2 h and 30 min. The amount of energy

that EV2 and EV3 have used in six minutes is obtained from their battery characteristics,
respectively, as tabulated in Table 9.

Table 9. Distribution of power consumption for individual electric vehicles following 2.5 h of charging
period allocations.

Vehicle ID Energy Used from CS After 2.5 Hours

EV1 5.63
EV2 15.444
EV3 18.666

Total energy used from CS 39.74

The node allocation is as shown in Table 10. Since EV1 has been charged, node 1
becomes available and is allotted to EV4.
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Table 10. Power consumption analysis for individual electric vehicles, calculating energy usage and
assigning nodes for EV2, EV3, and EV4.

Node
Allotted

Vehicle
ID

SOC
(During
Request)

εto charge
(%) εvi εfrom_CS β

Up-
dated

εvi

τch
(h)

Available
Energy
at CS

SOC (At
Arrival of

New Request)

1 EV 4 74 26 23.4 24.12 0.93 16.84 2.43
18.22 EV 2 98.74 1.26 0.756 0.78 0.03 0.54 3.57 98.74

3 EV 3 98.74 1.26 1.134 1.17 0.04 0.82 3.27 98.74

The total energy required from the charging station is computed and determined to be
26.07 KWh, while the available energy at the CS is 18.2 KWh. The energy availability of
the charging station is found to be less than the energy demand of the vehicles requesting
charge. The EDR is therefore computed, as tabulated in Table 11. EV2 and EV3 attain
98.74% SOC and EV4 attains 74% SOC.

Table 11. Computational power consumption and revised energy calculation with node assignments
for EV2, EV3, and EV4, εvi.

Node
Allotted Vehicle ID SOC Charged

up to
εto charge

(%)
εvi

(KWh) τch

1 EV 4 84.844 15.156 16.84 3.17 (in h)
2 EV 2 99.0932384 0.906761566 0.54 25

(in min)3 EV 3 99.0932384 0.906761566 0.82 25

In the absence of the ENDEAVOR algorithm, the energy available to charge EV4 would
be as shown in Table 12.

Table 12. Calculating power usage and assigning charging stations for electric vehicles without
ENDEAVOR.

Parameter Value (%)

Energy from CS to EV2 0.78
Energy from CS to EV3 1.17
Total energy from CS 1.95

Energy available for EV4 16.25
% Energy to be charged for EV4 18.0555556

SOC it will charge up to 81.944444

It is therefore observed that the use of ENDEAVOR for node allocation and energy
distribution leads to energy savings and thereby allows for the optimized charging of EVs.

6. Discussion

In this system, step-by-step implementation of Li-ion battery behavior tracking using
a digital twin of the battery has been discussed. The experimental data required for
battery modelling and parameter estimation were acquired from CALCE. The behavior
of a battery varies over its complete life-cycle owing to the changes in its electrochemical
degradation. This is modeled by showing the variation of the internal resistance of the
battery. The use of a DT deployed at the edge of the cloud allows the parameters like
SOC and internal resistance and the battery model parameters to be updated. This work
uses the 3RC model and the least-squares method to update the internal resistance of the
real-time battery and its digital twin. Hence, the use of a single digital twin will suffice
to replicate the battery over the entire lifetime of the battery. The Poly9 curve-fitting was
used to obtain the OCV–SOC relationship of the battery and was observed to accurately
model the OCV–SOC relationship, with an RMSE of 0.06791. The UKF technique was
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used to perform SOC estimation and obtain the variation of SOC with respect to time,
using CALCE data for a single DST drive-cycle at 25 ◦C. The experimental voltage pulses
used for the Incremental OCV test were used to obtain the internal resistance R0 using the
pulse-discharge method. These data were then used to model the relationship between R0
and SOC using second-order exponential curve-fitting.

Using a BDT of the incoming EV, accurate estimations of the energy required to charge
the battery as well as the time-to-charge can be determined based on the data available
in the cloud. The ENDEAVOR algorithm ensures an optimized charging-node allocation
for EV users who raise requests for charging at a particular charging station. Since it is a
grid-connected, renewable-energy charging station, optimized energy distribution based
on computation of the EDR parameter leads to a threefold advantage: avoiding the frequent
loading of the distribution grid; reducing the waiting time for the EV users; and optimizing
the usage of resources and distribution of energy.

When compared to existing methods, the ENDEAVOR algorithm demonstrated supe-
rior performance in terms of charging-node allocation and energy distribution. It excelled
in reducing grid loading, minimizing the wait times for users, and optimizing resource
utilization. The ability to use a single digital twin to model the battery’s behavior over its
lifetime is a significant advantage. The energy availability for EV4 is improved by 0.59
KWh and the improvement in SOC is observed to be nearly 3% for the given scenario.
This implies that, annually, the savings in energy amount to around 182.5 units, assuming
that, on average, there is an improvement of 0.5 units of energy availability. The com-
parative analysis of the performance of the charging station with and without the use of
ENDEAVOR algorithm integrated with BDT has been tabulated in Table 13, based on the
above computation.

Table 13. Evaluating CS performance with and without ENDEAVOR: A comparative study.

Parameter Without ENDEAVOR With ENDEAVOR

Energy from CS to EV2 0.78 kWh 0.54 kWh
Energy from CS to EV3 1.17 kWh 0.82 kWh

Energy available for EV4 16.25 kWh 16.84 kWh
% Energy to be charged for

EV4 18.0555556% 15.156%

SOC it will charge up to 81.944444% 84.844%

Figure 9 shows the comparative analysis of the performance of the charging station
with and without the ENDEAVOR algorithm incorporated.
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7. Sending Slot Details to Charging Station

Figure 10 represents the individual battery parameters, as sensed through the sensor,
and the subsequent data exchange with single node to the cloud, one node of the multi-node
experimental formation shown in Figure 11. From this point, slot details will be fetched
from the Google Sheet using the Python code running on a local machine, which then
communicates with the Arduino through serial communication. LEDs corresponding to
various slot numbers will be turned on and off according to the slot allocated. Two pieces
of code need to be written, one for Python and one for Arduino, that will make them listen
over the same serial port, which will lead to the transfer of data between them.
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Slot details will be fetched from the Google Sheet, as shown in Figure 12, using the
Python code running in a local machine; the local machine will then communicate with the
Arduino through serial communication. This process involves establishing a connection
between the Python script and the Arduino board to facilitate the exchange of data. For
instance, the Python code can retrieve information such as slot numbers, availability status,
and corresponding LED indicators from the Google Sheet.
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Once the data is retrieved, the Python script sends commands to the Arduino through
serial communication to control the LEDs based on the slot allocation. For example, if a
particular slot is assigned to a user, the corresponding LED will be turned on to indicate
its occupied status. On the other hand, if a slot is vacant, the LED will remain off. This
synchronization between the Python code and the Arduino enables real-time updates and
visual cues for users.

To achieve this seamless interaction, two separate pieces of code need to be developed,
involving both the Python and Arduino platforms. The Python script should be designed
to read data from the Google Sheet and send instructions to the Arduino via serial com-
munication. Similarly, the Arduino code should be programmed to receive commands
from the Python script and control the LEDs accordingly. By establishing a communication
protocol over the same serial port, data transfer between the Python and Arduino systems
can be efficiently managed.

In conclusion, the integration of Python and Arduino through serial communication
allows for the dynamic control of LEDs based on the slot information retrieved from a
Google Sheet. This not only enhances the visual representation of the slot status but also
demonstrates the seamless coordination between software and hardware components in a
practical application scenario.

The potentiometer, acting as a Proof of Concept (POC), plays a crucial role in sending
values to the Google Cloud database in real-time. These data serve a vital purpose in the
slot allotment process when users make requests through the mobile application. Another
database is responsible for handling the commands received from users. When a user
requests slot allotment via the app, this database is promptly updated, triggering the
activation of the backend priority algorithm. Consequently, the slot is allocated using
a priority-based algorithm. The updated slot allocation information is then reflected in
the Google Cloud database and promptly communicated to the user through the mobile
application. For instance, when a user requests a specific time slot for a particular activity,
such as booking a fitness class, the priority algorithm ensures fair and efficient allocation.
This streamlined process enhances user experience and operational efficiency.

The Feedback System is developed as described in the following:

- Implement a feedback mechanism in the mobile application for users to rate their slot
allocation experiences;

- Use feedback data to continuously improve the priority algorithm and enhance user
satisfaction.

- Data Analysis involves the following considerations:
- Utilize data analytics tools to analyze trends in slot allocation requests and user

preferences;
- Optimize the allocation process based on data-driven insights to maximize efficiency.
- Scalability involves the following considerations:
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- Ensure the system is sufficiently scalable to accommodate an increasing number of
users and slot allocation requests;

- Implement cloud-based solutions for flexibility and seamless expansion as the user
base grows.

Table 14 compares the proposed UKF-based ENDEAVOR algorithm with other existing
algorithms, highlighting the key features, positive aspects, and negative aspects relative to
the applications in which the algorithms are mostly employed.

Table 14. Evaluation of existing algorithmic techniques and the suggestion of a new algorithm,
assessing CS performance with and without ENDEAVOR.

Algorithm Key Features Advantages Disadvantages Use Cases

First-Come-First-
Served (FCFS)

Simple allocation based
on arrival order

Easy to implement,
fairness in order of

arrival

Ignores individual
charging needs,
inefficient use of

resources

Small stations,
low-demand situations

Shortest Job First (SJF) Prioritizes EVs with
smaller energy needs

Reduces overall
waiting time

Long wait-times for
EVs with large energy

needs

High-demand
locations, quick-charge

needs

Round Robin (RR)
Allocates fixed

charging time/energy
to each EV

Ensures all EVs receive
some charge

Inefficient for EVs with
larger energy needs

Large, diverse EV
charging stations

Auction-
Based/Bidding

Allocation based on
bidding for resources

Maximizes resource
utilization based on

urgency

Can favor those willing
to pay more, leading to

inequity

Premium or
high-demand stations

Dynamic Programming
Real-time adjustment

based on SOC, demand,
and capacity

Optimizes resource
allocation, reduces wait

time

Complex to implement,
requires real-time data

High-traffic, smart
charging hubs

Reinforcement
Learning (RL)

Machine
learning-based

optimization over time

Learns optimal
strategies, adapts

dynamically

Requires training data,
computationally

intensive

Next-gen smart grid
systems

UKF-based
ENDEAVOR Energy

Distribution
Algorithms

Distributes available
energy based on EV

demand with real-time
adjustments based on
the SOC function of

capacity

Ensures fair energy
distribution

Requires precise energy
management, training

on real-time data
required

Energy-limited
charging stations

The outlined approach demonstrates a cloud-based algorithm for distributing energy
to electric vehicles (EVs). This method encompasses crucial stages including the acquisition
of charging station information, node assignment, energy demand calculation, and power
allocation based on existing resources. The flowchart provided offers a visual representation
of the algorithm’s sequence and reasoning process. The algorithm begins by analyzing
real-time data from charging stations to determine their current capacity and the associated
demand. Next, it allocates nodes to represent individual EVs and their charging needs
within the network. Finally, the system calculates an optimal energy distribution based
on available resources, prioritizing critical charging requests while balancing overall grid
stability. The flowchart describes a cloud-based system for managing energy distribution
to electric vehicles (EVs). The preceding is a simplified explanation.

8. Conclusions

The implementation of Li-ion battery behavior tracking using a digital twin offers
a dynamic approach for modeling batteries’ changes across their lifetimes, particularly
with respect to electrochemical degradation, through the tracking of internal resistance
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variations. By leveraging real-world data and sophisticated techniques, a model has been
created that accurately reflects the battery’s state and behavior, enabling precise predictions
of charging times and energy requirements. The introduction of the novel ENDEAVOR
algorithm has proven to be a significant leap in optimizing the charging process for EV
users at specific charging stations. Through smart charging-node allocation and intelligent
energy distribution, substantial reductions in grid loading, minimized wait times for users,
and resource optimization have been demonstrated. This algorithm aligns well with
the increasing demand for grid-connected, renewable-energy-powered charging stations,
fostering both energy efficiency and user satisfaction.

However, the study did not consider the broader impact of the method on overall
energy consumption and the sustainability of the transportation system. In the future,
it would be beneficial to incorporate real-world driver behavior into the algorithm and
conduct a more comprehensive sustainability analysis. Future work could also explore the
integration of machine learning techniques for more accurate predictions and real-time
adjustments. Additionally, the scalability and applicability of the proposed method in
different geographical and infrastructure-related settings should be investigated to aid
broader adoption.

This system represents a vital step forward in the realm of electric vehicle charging and
will contribute to the development of more efficient, sustainable, and user-friendly electric
transportation systems, furthering the transition towards a greener and smarter future.
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Abbreviations

EV Electric vehicle
ENDEAVOR Evolutionary and resourceful optimization
SOC State of charge
UKF Unscented Kalman filter
UFC Urgency first charging
GPS Global positioning system
VEC Vehicular edge computing
ARIMA Autoregressive integrated moving average
LSTM Long short-term memory
BDT Battery digital-twin model
EDR Energy distribution ratio
SVM Support vector machine
OCV Open circuit voltage
RMSE Root mean squared error

References
1. Mopidevi, S.; Aemalla, S.R.; Rajan, H.; Narasipuram, R.P. E-Mobility: Impacts and Analysis of Future Transportation Electrification

Market in Economic, Renewable Energy and Infrastructure Perspective. Int. J. Powertrains 2022, 11, 264. [CrossRef]
2. Sayed, M.A.; Atallah, R.; Assi, C.; Debbabi, M. Electric Vehicle Attack Impact on Power Grid Operation. Int. J. Electr. Power Energy

Syst. 2021, 137, 107784. [CrossRef]

https://doi.org/10.1504/IJPT.2022.124752
https://doi.org/10.1016/j.ijepes.2021.107784


Electronics 2024, 13, 4412 22 of 23

3. Liu, S.; Cao, Y.; Tian, D.; Cui, J.; Ni, Q.; Zhuang, Y.A. Reservation-Based Vehicle-to-Vehicle Charging Service Under Constraint of
Parking Duration. IEEE Syst. J. 2023, 17, 176–187. [CrossRef]

4. Kumar, N.; Chaudhry, R.; Kaiwartya, O.; Kumar, N. ChaseMe: A Heuristic Scheme for Electric Vehicles Mobility Management on
Charging Stations in a Smart City Scenario. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16048–16058. [CrossRef]

5. Jiang, X.; Zhao, L.; Cheng, Y.; Wei, S.; Jin, Y. Optimal Configuration of Electric Vehicles for Charging Stations under the Fast
Power Supplement Mode. J. Energy Storage 2021, 45, 103677. [CrossRef]

6. Li, H.; Chen, J.; Yang, C.; Chen, X.; Chang, L.; Liu, J. Smart and Efficient EV Charging Navigation Scheme in Vehicular Edge
Computing Networks. J. Cloud Comput. 2023, 12, 176. [CrossRef]

7. Ma, T.-Y.; Faye, S. Multistep Electric Vehicle Charging Station Occupancy Prediction Using Hybrid LSTM Neural Networks.
Energy 2022, 244, 123217. [CrossRef]

8. Kumar, S.; Rajpurohit, B.S.; Usman, A. Battery Charging Topology, Infrastructure, and Standards for Electric Vehicle Applications:
A Comprehensive Review. IET Energy Syst. Integr. 2021, 3, 381–396. [CrossRef]

9. Thelen, A.; Todd, M.; Fink, O.; Zhang, X.; Ghosh, S.; Lü, Y.; Youn, B.; Mahadevan, S.; Hu, C.; Hu, Z. A Comprehensive Review of
Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives. Struct.
Multidiscip. Optim. 2023, 66, 1. [CrossRef]

10. Gururaj, H.C.; Hegde, V. Digital Twinning of the Battery Systems—A Review. In Advances in Renewable Energy and Electric Vehicles;
P., S., Prabhu, N., K., S., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; Volume 767. [CrossRef]

11. Djaballah, Y.; Negadi, K.; Boudiaf, M. Enhanced lithium–ion battery state of charge estimation in electric vehicles using extended
Kalman filter and deep neural network. Int. J. Dyn. Control 2024, 12, 2864–2871. [CrossRef]

12. Ismail, M.; Ahmed, R. A Comprehensive Review of Cloud-Based Lithium-Ion Battery Management Systems for Electric Vehicle
Applications. IEEE Access 2024, 12, 116259–116273. [CrossRef]

13. Singh, S.; Birke, K.P.; Weeber, M. Implementation of Battery Digital Twin: Approach, Functionalities and Benefits. Batteries 2021,
7, 78. [CrossRef]

14. Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery Digital Twins: Perspectives on the Fusion of Models, Data and Artificial
Intelligence for Smart Battery Management Systems. Energy AI 2020, 1, 100016. [CrossRef]

15. Available online:. https://library.e.abb.com/public/a7340e4c75c64172a64c529d183b4d22/ABB_Review_2_2019_EN_72dpi.pdf
(accessed on 2 February 2019).

16. Wu, J.; Fang, C.; Jin, Z.; Zhang, L.; Xing, J. A Multi-Scale Fractional-Order Dual Unscented Kalman Filter Based Parameter and
State of Charge Joint Estimation Method of Lithium-Ion Battery. J. Energy Storage 2022, 50, 104666. [CrossRef]

17. Li, W.; Badeda, J.; Rentemeister, M.; Schulte, D.; Sauer, D.U.; Jöst, D. Digital Twin for Battery Systems: Cloud Battery Management
System with Online State-of-Charge and State-of-Health Estimation. J. Energy Storage 2020, 30, 101557. [CrossRef]

18. Li, K.; Zhou, P.; Lu, Y.; Han, X.; Li, X.; Zheng, Y. Battery Life Estimation Based on Cloud Data for Electric Vehicles. J. Power Sources
2020, 468, 228192. [CrossRef]

19. Farmann, A.; Sauer, D.U. Comparative Study of Reduced Order Equivalent Circuit Models for On-Board State-of-Available-Power
Prediction of Lithium-Ion Batteries in Electric Vehicles. Appl. Energy 2018, 225, 1102–1122. [CrossRef]

20. Liu, Z.; Chen, S.; Qiu, Y.; Yang, C.; Feng, J. A Simplified Fractional Order Modeling and Parameter Identification for Lithium-Ion
Batteries. J. Electrochem. Energy Convers. Storage 2022, 19, 021001. [CrossRef]

21. Shin, J.; Kim, W.; Yoo, K.; Kim, H.; Han, M. Vehicular Level Battery Modeling and Its Application to Battery Electric Vehicle
Simulation. J. Power Sources 2022, 556, 232531. [CrossRef]

22. Xu, Y.; Hu, M.; Zhou, A.; Li, Y.; Li, S.; Fu, C.; Gong, C. State of Charge Estimation for Lithium-Ion Batteries Based on Adaptive
Dual Kalman Filter. Appl. Math. Model. 2019, 77, 1255–1272. [CrossRef]

23. Wang, L.; Zhao, X.; Wang, R.; Cai, Y.; Chen, J.; Sun, J.; Jin, M.; Lian, Y.; Chen, L. A Novel OCV Curve Reconstruction and Update
Method of Lithium-Ion Batteries at Different Temperatures Based on Cloud Data. Energy 2023, 268, 126773. [CrossRef]

24. Hossain, M.; Haque, M.E.; Arif, M.T. Online Model Parameter and State of Charge Estimation of Li-Ion Battery Using Unscented
Kalman Filter Considering Effects of Temperatures and C-Rates. IEEE Trans. Energy Convers. 2022, 37, 2498–2511. [CrossRef]

25. Xu, Y.; Zhang, H.; Zhang, J.; Yang, F.; Tong, L.; Yan, D.; Yang, H.; Wang, Y. State of Charge Estimation under Different Temperatures
Using Unscented Kalman Filter Algorithm Based on Fractional-Order Model with Multi-Innovation. J. Energy Storage 2022, 56,
106101. [CrossRef]

26. Chen, L.; Wu, X.; Lopes, A.M.; Yin, L.; Li, P. Adaptive State-of-Charge Estimation of Lithium-Ion Batteries Based on Square-Root
Unscented Kalman Filter. Energy 2022, 252, 123972. [CrossRef]

27. Wu, Y.; Wang, Z.; Huangfu, Y.; Ravey, A.; Chrenko, D.; Gao, F. Hierarchical operation of electric vehicle charging station in smart
grid integration applications—An overview. Int. J. Electr. Power Energy Syst. 2022, 139, 108005. [CrossRef]

28. Goh, H.H.; Zhang, D.; Kurniawan, T.A.; Goh, K.C.; Dai, W.; Zong, L.; Lim, C.S. Orderly Charging Strategy Based on Optimal
Time of Use Price Demand Response of Electric Vehicles in Distribution Network. Energies 2022, 15, 1869. [CrossRef]

29. Vilathgamuwa, M.; Bhaskar, A.; Yigitcanlar, T.; Mishra, Y.; Wilson, C. Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromo-
bility via Integrated Energy–Transport–Urban Infrastructure. Sustainability 2022, 14, 2796. [CrossRef]

30. Yang, D.; Ren, Y.; Feng, Q.; Xia, Q.; Cui, Y.; Sun, B.; Jiang, F.; Yang, C.; Wang, Z. A Digital Twin-Driven Life Prediction Method of
Lithium-Ion Batteries Based on Adaptive Model Evolution. Materials 2022, 15, 3331. [CrossRef]

https://doi.org/10.1109/JSYST.2022.3145155
https://doi.org/10.1109/TITS.2022.3147685
https://doi.org/10.1016/j.est.2021.103677
https://doi.org/10.1186/s13677-023-00547-y
https://doi.org/10.1016/j.energy.2022.123217
https://doi.org/10.1049/esi2.12038
https://doi.org/10.1007/s00158-022-03410-x
https://doi.org/10.1007/978-981-16-1642-6_11
https://doi.org/10.1007/s40435-024-01388-6
https://doi.org/10.1109/ACCESS.2024.3446880
https://doi.org/10.3390/batteries7040078
https://doi.org/10.1016/j.egyai.2020.100016
https://library.e.abb.com/public/a7340e4c75c64172a64c529d183b4d22/ABB_Review_2_2019_EN_72dpi.pdf
https://doi.org/10.1016/j.est.2022.104666
https://doi.org/10.1016/j.est.2020.101557
https://doi.org/10.1016/j.jpowsour.2020.228192
https://doi.org/10.1016/j.apenergy.2018.05.066
https://doi.org/10.1115/1.4051567
https://doi.org/10.1016/j.jpowsour.2022.232531
https://doi.org/10.1016/j.apm.2019.09.011
https://doi.org/10.1016/j.energy.2023.126773
https://doi.org/10.1109/TEC.2022.3178600
https://doi.org/10.1016/j.est.2022.106101
https://doi.org/10.1016/j.energy.2022.123972
https://doi.org/10.1016/j.ijepes.2022.108005
https://doi.org/10.3390/en15051869
https://doi.org/10.3390/su14052796
https://doi.org/10.3390/ma15093331


Electronics 2024, 13, 4412 23 of 23

31. Elghanam, E.; Sharf, H.; Hassan, M.S.; Odeh, Y.; Osman, A.H. On the Coordination of Charging Demand of Electric Vehicles in a
Network of Dynamic Wireless Charging Systems. IEEE Access 2022, 10, 62879–62892. [CrossRef]

32. Mahfouz, M.; Iravani, R. Autonomous Operation of the DC Fast-Charging Station. IEEE Trans. Ind. Electron. 2021, 69, 3787–3797.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3182700
https://doi.org/10.1109/TIE.2021.3076722

	Introduction 
	Methodology 
	Implementation of Battery Digital Twin 
	Experimental Data for the Battery 
	Open Circuit OCV–SOC Curve Estimation 
	Parameter Estimation and Battery Modelling 
	SOC Estimation and Evaluation of Time-to-Charge (ch ) 
	Evaluation of Battery Capacity (v ) 
	Parameter Update 

	Proposed Algorithm 
	Smart Energy Distribution Based on EDR Computation 
	Node Allocation 
	ENDEAVOR Algorithm 

	Results 
	Discussion 
	Sending Slot Details to Charging Station 
	Conclusions 
	References

