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Abstract: The thermal impedance characteristics of insulated gate bipolar transistor (IGBT) modules
are critical for the thermal management and design of electronic devices. This paper proposes a
fractional-order equivalent thermal impedance model, which is inspired by the correlation between
multi-time-scale dissipation characteristics of heat conduction processes and fractional calculus. The
fractional-order equivalent thermal impedance model is derived based on the connection between
fractional-order calculus and the Foster thermal network model in mathematical operations, with
only two parameters to be identified: heat capacity C and fractional order α. Moreover, this paper
provides a parameter identification method for the proposed fractional-order equivalent thermal
impedance model based on the multi-objective particle swarm optimization (MOPSO) algorithm.
In order to validate the effectiveness and superiority of this work, experiments and comparative
works are provided in this paper. The results indicate that the fractional-order equivalent thermal
impedance model can accurately describe the frequency domain characteristic curves of the thermal
impedance of the Foster thermal network model for IGBT modules, with the difference between
the amplitude frequency characteristics not exceeding 1 dB and the difference between the phase
frequency characteristics not exceeding 1◦ within the operating frequency range of (1 kHz, 1 MHz).

Keywords: IGBT modules; thermal impedance model; fractional-order; parameter identification

1. Introduction

With the rapid development of power electronics technology, efficient and reliable
power conversion and control have become indispensable in modern power conversion
systems [1–3]. IGBT devices, which combine the metal-oxide semiconductor field-effect
transistor’s advantages of high input impedance and high switching speed with the bipolar
junction transistor’s advantage of high conductivity characteristics, basically play the elec-
tronic switch role in various power conversion systems [4,5]. Their application includes but
is not limited to renewable energy systems, electric vehicles, rail transportation, household
appliances, industrial motor control, aerospace, etc. [6–11]. With recent improvements,
the performance of IGBTs has significantly advanced, specifically in terms of smaller chip
size, lower power losses, and faster switching speed, while the voltage ratings and current
capacities of IGBTs have also been gradually increasing [12–15]. However, with the lifting
of processing voltage and current levels, the devices are subjected to increasingly high
thermal stresses, which pose challenges to their lifespan and reliability [16–19].

Basically, thermal resistance and heat capacity are two fundamental parameters that
describe the thermal characteristics of IGBT modules, and their combination forms the
thermal impedance model of IGBT modules, which is crucial for ensuring the reliability
and performance of IGBT modules. Currently, a vast variety of thermal impedance models
for IGBT modules have been proposed, with the Cauer thermal network model and the
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Foster thermal network model being the more commonly used ones [20–23]. By correlating
each layer within the IGBT device with a pair of parameters in the Cauer thermal network
model, a Cauer thermal network model can be constructed, which can be used to simulate
the internal heat conduction process of IGBT devices [24,25]. However, measuring the
heat transfer in each layer of the device during operation is quite challenging. The Foster
thermal network model can also provide a simple yet effective means of analyzing the
device’s thermal characteristics, but it does not directly correspond to the physical structure
of each layer of the device [26,27]. Therefore, obtaining the parameters of the Foster thermal
network model is relatively straightforward. In practice, both the Cauer and Foster thermal
network models use multiple parameters to describe the thermal impedance characteristics
of IGBT modules. However, an excessive number of parameters can increase the complexity
of the model and make it more difficult to identify the model parameters. Therefore, it is
necessary to find a more concise and intuitive way to characterize the thermal impedance
characteristics of IGBTs.

In theory, the heating and heat conduction process of IGBT devices is a kind of dissi-
pation process with a memory effect. Specifically, during the operation of IGBT devices or
modules, electrical energy is converted into thermal energy, which tends to be transferred
from high-temperature areas to low-temperature areas, that is, from the inside of the device
to the surrounding environment, until reaching a thermal equilibrium state [28–30]. Gen-
erally, the devices have a certain thermal inertia, which means that there is still a certain
amount of heat inside the device after the power is turned off. This heat does not imme-
diately disappear but gradually dissipates through thermal conduction and other means.
Accordingly, the accumulation or disappearance of heat is manifested as a dissipation pro-
cess with typical memory characteristics during the dynamic heat transfer process, i.e., the
current temperature distribution depends on the previous temperature state.

Due to the presence of numerous fractional–dimensional phenomena in nature and
engineering, fractional calculus has been widely used in science and engineering, espe-
cially in the description of complex and nonlinear systems [31,32]. Fractional calculus,
which generalizes the concepts of differentiation and integration to non-integer orders, has
been found to be particularly useful in modeling the behavior of systems with memory
effects [33–36]. Therefore, this paper introduces the concept of the fractional-order thermal
impedance model and establishes a specific fractional-order equivalent thermal impedance
model for describing the thermal impedance characteristics of IGBT modules. Further, this
paper introduces a parameter identification method for the fractional-order equivalent
thermal impedance models based on the MOPSO algorithm [37,38].

In order to present the detailed modeling and parameter identification processes,
the remaining parts of this paper are as follows: Section 2 introduces the modeling and
parameter extraction of the Foster thermal network model. Section 3 proposes a fractional-
order equivalent thermal impedance model and a model parameter identification method
based on the MOPSO algorithm. Section 4 provides experimental verification. Section 5
summarizes the paper.

2. Modeling and Parameter Extraction of the Foster Thermal Network Model

As shown in Figure 1, the junction-to-case structure of the IGBT module is composed
of multiple layers. When heat is generated in the IGBT chip, there is a transfer of heat
process among different layers due to the presence of temperature differences.
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value; the term 𝐶ଵ is the heat capacity value; and the term 𝑠 is the complex frequency. 

In thermal analysis, the complex frequency 𝑠 can be used to describe the thermal 
response of the system. The thermal response equation of the thermal model can be con-
verted to an s-domain equation by the Laplace transform. Let 𝑠 = 𝑗𝜔, which is the Fourier 
transform and allows for the thermal impedance model to represent the thermal imped-

Figure 1. Internal heat transfer diagram of IGBT modules.

Assuming a heating power is applied to the IGBT module, according to the thermoelectric
analogy method [39], the heating power can be analogized to the current in an electrical circuit,
the temperature difference can be analogized to the voltage difference, the thermal resistance
can be analogized to the electrical resistance, and the heat capacity can be analogized to
the electrical capacitance. This enables the use of a thermal network model to analyze
thermal behavior. The junction temperature calculation formula of IGBT modules is shown in
Equation (1):

Tj(ti) = Zthjc(ti)P + Tc(ti) (1)

Based on Equation (1), the calculation formula of the junction–case thermal impedance
of IGBT modules can be obtained as follows:

Zthjc(ti) =
Tj(ti)− Tc(ti)

P
(2)

where Tj(ti) is the junction temperature of IGBT modules at moment ti, Tc(ti) is the case
temperature of IGBT modules at moment ti, and P is the heating power of IGBT modules.

The traditional integer-order one-cell Foster thermal network model is shown in Figure 2.
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Figure 2. Foster thermal network model with one R-C cell.

Based on the thermoelectric analogy method, the s-domain transfer function expression
of the traditional integer-order one-cell Foster thermal network model can be obtained:

ZthF1(s) =
R1 · 1

sC1

R1 +
1

sC1

=
R1

1 + sR1C1
=

R1

1 + sτ1
(3)

where τ1 is the time constant, that is, τ1 = R1C1; the term R1 is the thermal resistance value;
the term C1 is the heat capacity value; and the term s is the complex frequency.

In thermal analysis, the complex frequency s can be used to describe the thermal response
of the system. The thermal response equation of the thermal model can be converted to an
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s-domain equation by the Laplace transform. Let s = jω, which is the Fourier transform and
allows for the thermal impedance model to represent the thermal impedance response of
the IGBT module in the frequency domain so that the thermal characteristics of IGBTs in the
frequency domain can be effectively studied by the thermal impedance model.

The inverse Laplace transform of Equation (3) can obtain the time domain expres-
sion of the thermal impedance response of the integer-order one-cell Foster thermal
network model:

ZthF1(t) = R1(1 − e
−t
τ1 ) (4)

where the term t is time.
As shown in Figure 3, the integer-order n-cell Foster thermal network model is com-

posed of n-cell heat capacity and thermal resistance parallel structures in series. The
corresponding thermal impedance response equation of the integer-order n-cell Foster
thermal network model can be expressed as:

ZthFn(t) =
n

∑
i=1

Ri(1 − e
−t
τi ) (5)

where τi is the time constant of order i, τi = RiCi, Ri is the thermal resistance value of order
i, and Ci is the heat capacity value of order i. n is the order of the thermal network model
and i is a positive integer.
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The thermal resistance and heat capacity parameters in the Foster thermal network
model can be obtained by fitting the thermal impedance curve. From Equation (5), it can be
seen that the thermal impedance response is a sum of n-order expressions. The higher the
order, the more accurate the fitting result, but the fitting process and subsequent handling
become more complex. Therefore, considering all factors, an integer-order four-cell Foster
thermal network model can be established to fit the thermal impedance curve and obtain
the model parameters, with its thermal impedance response equation expressed as:

ZthF4(t) =
4

∑
i=1

Ri(1 − e
−t
τi ) (6)

The parameter extraction flowchart for the Foster thermal network model is shown
in Figure 4.
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3. Modeling and Parameter Identification of Fractional-Order Equivalent Thermal
Impedance Model
3.1. Modeling Principle and Framework

Based on the analysis of heat transfer within IGBT modules and considering that the
Foster thermal network model consists of multiple self-similar structures, a fractional-order
equivalent thermal impedance model, as shown in Figure 5, has been established in this
paper.
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The fractional-order equivalent thermal impedance model in Figure 5 represents the
nominal value of heat capacity in terms of C. The fractional order α is introduced to correct
the heat capacity value C, and 0 < α < 2. The relationship between the current i(t) and the
voltage u(t) of an order-α heat capacity can be governed by:

i(t) = C·RL
0 Dα

t u(t) (7)

Here, α is the order of the capacity. According to Riemann–Liouville definition of
fractional calculus, the fractional-order derivative of the heat capacity α is given by:

RL
0 Dα

t f (t) =
1

Γ(n − α)

dn

dtn

∫ t

0

f (τ)
(t − τ)1+α−n dτ (8)
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Here, n < α < n + 1, where n is any integer, τ is the variable of integration, and Γ(z)
is the Gamma function, defined as:

Γ(z) =
∫ ∞

0
e−ttz−1dt (9)

Under the Riemann–Liouville definition, the Laplace transform for the fractional heat
capacity can be obtained by:

i(s) = L[i(t)] = C·L
[

RL
0 D

α

t
u(t)

]
= C·sαU(s) (10)

Then one can deduce the s-domain impedance expression for the fractional-order heat
capacity:

ZC(s) =
1

Csα (11)

The impedance expression is obtained by performing the Fourier transform based
on the s-domain transfer function expression of the fractional-order equivalent thermal
impedance model:

ZC(jω) =
1

C(jω)α =
cos απ

2
ωαC

− j
sin απ

2
ωαC

(12)

where j is the complex unit and ω is the frequency.
From Equation (12), it can be seen that the fractional-order equivalent thermal impedance

model consists of an equivalent series thermal resistance (ESR) and an equivalent series
heat capacity (Ceq), with the expressions given by:{

ESR =
cos απ

2
ωαC

Ceq =
sin απ

2
ωαC

(13)

According to Equations (12) and (13), it can be seen that by taking different values for
the heat capacity C and fractional order α, the different frequency domain characteristic
curves of the fractional order equivalent thermal impedance model in the Bode plot can
be obtained. Thus, the fractional-order equivalent thermal impedance model can be
established based on the frequency domain characteristics of the Foster thermal network
model for the IGBT module.

3.2. Parameter Identification Based on the MOPSO Algorithm

One can find that the fractional-order thermal impedance model involves a pair of
parameters to be identified [C, α]. To identify the parameter set [C, α] of the fractional-
order equivalent thermal impedance model for IGBTs, this paper transforms the problem of
identifying parameters into a nonlinear global optimization problem with physical property
constraints. Based on the definition of fractional-order heat capacity, the value of order
α is restricted to the range 0 < α < 2. Furthermore, to enhance the accuracy of parameter
identification, and considering the range of order α as well as the frequency domain
characteristics of the thermal impedance model, the value of heat capacity C is restricted to
0 < C < 100. Meanwhile, this work utilizes the mean square error (MSE) function as the
objective function, where the errors between the frequency domain variation curves of the
fractional-order thermal impedance model and the frequency domain characteristic curves
of the integer-order n-cell Foster thermal network model are used.

On the one hand, the MSE function F1(X) of the two models in terms of frequency
domain magnitude is:

F1(X) = minMSE = min
N

∑
i=1

1
N
(
∣∣ZthFn(jωi)

∣∣− |ZC(jωi)|)
2 (14)
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where
∣∣ZthFn(jωi)

∣∣ represents the magnitude of the Foster thermal network model at
frequency ω = ωi, |ZC(jωi)| represents the magnitude of the fractional-order equivalent
thermal impedance model at frequency ω = ωi, ωi is a positive integer, and N is the total
number of data points.

On the other hand, the MSE function F2(X) of the two models in terms of frequency
domain phase is:

F2(X) = minMSE = min
N

∑
i=1

1
N
(∠ ZthFn(jωi)−∠ ZC(jωi))

2 (15)

where ∠ ZthFn(jωi) represents the phase of the Foster thermal network model at frequency
ω = ωi, and ∠ ZC(jωi) represents the phase of the fractional-order equivalent thermal
impedance model at frequency ω = ωi.

Accordingly, it is essential to minimize the above two MSE functions simultaneously
within the operating frequency band of IGBTs. This is a multi-objective optimization prob-
lem. Typically, the sub-objectives of an optimization problem are conflicting—improving
one sub-objective may lead to a decrease in the performance of another or several other
sub-objectives. That is to say, it is impossible to make several sub-objectives reach the opti-
mal value together at the same time but can only coordinate and compromise among them
so that each sub-objective is as much as possible to achieve the best possible optimization.
The essential difference with the single-objective optimization problem is that its solution
is not unique, but there exists a set of optimal solutions consisting of many Pareto-optimal
solutions, and each element in the set is called a Pareto-optimal or a non-dominated optimal
solution. Therefore, in this work, the multi-objective particle swarm optimization (MOPSO)
is introduced to identify these model parameters [37,38].

The MOPSO algorithm introduces the construction and maintenance of an external
archive, which stores non-dominated solutions from each iteration based on dominance
relations and eliminates dominated solutions. The specific update process can be expressed
as follows:

Vi(t + 1) = ωVi(t) + c1r1(pBesti(t)− Xi(t)) + c2r2(gBesti(t)− Xi(t)) (16)

Xi(t + 1) = Xi(t) + Vi(t + 1) (17)

where Xi(t) is the current position of the particle; Vi(t) is the current velocity of the particle;
Xi(t + 1) is the updated position; Vi(t + 1) is the updated velocity; pBesti(t) represents
the local best fitness position, which is the particle’s individual historical best position;
gBesti(t) is the global best fitness position, which is the best position in the current particle
swarm; ω is the inertia weight factor; c1 and c2 are acceleration factors greater than zero;
and r1 and r2 are random numbers between 0 and 1.

The specific parameter identification process is as follows:

Step 1: Initialize the population and external archive.
Step 2: Calculate the fitness of particles (objective function).
Step 3: Calculate local optimal particles: for local optimal particles, when multiple non-

dominated particles are present, one is randomly selected as the local optimum.
Step 4: Select the globally optimal particle: For globally optimal particles, the MOPSO

algorithm uses a grid method to determine multiple non-dominated particle global
leaders that guide the flight direction of the particle swarm. The grid method
divides the range of values of the objective function into grids and determines the
leader based on the sparseness of the particles in a single grid; the more particles
there are in the grid, the lower the probability of the particles being selected, and
therefore, the probability of the particles being selected is higher in a sparser grid.

Step 5: Update the position and velocity of the particle and update the external archive.
Step 6: Determine whether the iteration stop condition is met or not.
Step 7: Output the model parameters when the iteration stop condition is fulfilled.
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Figure 6 gives the parameter identification flowchart for the fractional-order equivalent
thermal impedance model based on the MOPSO algorithm.
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4. Experimental Verification

In order to validate the effectiveness of the proposed fractional-order equivalent
impedance model, thermal test scenarios are built up. In this work, this paper used Infineon
type-FF75R12RT4 IGBT modules for tests, and in experiments, a programmable DC current
source is used to provide a constant heating current of 50 A to the device under test (DUT).
Under stable working conditions, the equivalent heating power is approximately 158.5 W.
Two K-type thermocouples are used to measure the junction temperature Tj and case
temperature Tc of the DUT. The data obtained are collected by a multi-channel temperature
tester. The experimental scene is shown in Figure 7.
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The measured junction temperature Tj and case temperature Tc of the DUT are shown
in Figure 8a. Then, the junction–case thermal impedance Zthjc curve of the DUT can be
calculated according to Equation (2), as shown in Figure 8b.
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case temperature of the IGBT module; (b) junction–case thermal impedance curve graph of the
IGBT module.

According to the parameter extraction method of the Foster thermal network model
described in Section 2, the thermal impedance curve of the IGBT module in Figure 8b is
fitted using Equation (6) to extract the parameters of each order in the integer-order four-cell
Foster thermal network model. Table 1 shows the results of the extracted parameters for
each order of the integer-order four-cell Foster thermal network model. The parameters
of the Foster thermal network model for each order are obtained by directly fitting the
thermal impedance curve of the DUT using Equation (6). Thus, the parameters in Table 1
are only calculated values.

Table 1. Parameters of integer-order four-cell Foster thermal network model.

i 1 2 3 4

Ri 0.12257 0.12263 0.04616 0.05319
τi 2.27168 2.22447 115.99978 14.57902
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According to Section 2, the s-domain transfer function expression for an integer-order
n-cell Foster thermal network model can be derived as follows:

ZthFn(s) =
n

∑
i=1

Ri · 1
sCi

Ri +
1

sCi

=
n

∑
i=1

Ri
1 + sRiCi

=
n

∑
i=1

Ri
1 + sτi

(18)

According to Equation (18), performing the Fourier transform yields the frequency
domain expression for the thermal impedance of the integer-order n-cell Foster thermal
network model:

ZthFn(jω) =
n

∑
i=1

Ri · 1
jωCi

Ri +
1

jωCi

=
n

∑
i=1

Ri
1 + jωRiCi

=
n

∑
i=1

Ri
1 + jωτi

(19)

The frequency domain characteristic curve of the thermal impedance of the Foster
thermal network model can be obtained through Equation (19). Figure 9 presents the
frequency domain characteristic curve of the integer-order four-cell Foster thermal network
model thermal impedance, obtained from Table 1 and Equation (19).
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Figure 9. Frequency domain characteristic curves of the thermal impedance of the Foster thermal
network model.

The parameter identification of the fractional-order equivalent thermal impedance
model is performed according to the parameter identification process based on the MOPSO
algorithm proposed in Section 3. According to the number of parameters to be identified in
the fractional-order equivalent thermal impedance model, the initial population, 200; the
number of iterations, 300; and the number of parameters to be optimized, two, are selected.
Data fitting for objective functions (14) and (15) yielded the optimal model parameters
[C, α] = [8.97670, 0.99851].

As shown in Figure 10, the variation curves of the amplitude and phase of the thermal
impedance of the fractional-order equivalent thermal impedance model are compared
with the amplitude frequency and phase frequency characteristic curves of the thermal
impedance of the Foster thermal network model of the IGBT module of model Infineon
FF75R12RT4. The blue solid line represents the amplitude frequency characteristic and
phase frequency characteristic curves of the thermal impedance of the Foster thermal
network model of the IGBT module with model number Infineon FF75R12RT4, and the
red dotted line represents the variation curves of the amplitude and phase of the thermal
impedance of the fractional-order equivalent thermal impedance model. In order to high-
light the difference between two different results, Figure 10 is partially enlarged, as shown
in Figure 11.
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Figure 10. Comparison of frequency domain characteristic curves of thermal impedance between
fractional equivalent thermal impedance model and Foster thermal network model.
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It can be observed that in the frequency range of (1 kHz, 1 MHz), the difference
between the amplitude frequency characteristic curves does not exceed 1 dB, and the
difference between the phase frequency characteristic curves does not exceed 1◦, indicating
a high level of precision. This confirms the effectiveness of the fractional-order equivalent
thermal impedance model proposed in this paper. In order to highlight the fractional-order
equivalent thermal impedance model proposed in this paper, a comparison of the Cauer
thermal network model, the Foster thermal network model, and the proposed fractional-
order equivalent thermal impedance model is presented in Table 2, focusing on three
aspects: modeling accuracy, complexity, and applicable conditions.

Table 2. Model comparison.

Comparative Aspect Cauer Thermal Network Model Foster Thermal Network Model Fractional-Order Equivalent
Thermal Impedance Model

Modeling accuracy High precision at higher orders High precision at higher orders Higher accuracy under the same
complexity

Complexity The higher the order, the more complex
the model

The higher the order, the more
complex the model Relatively simple

Applicable
conditions Limited application Widely applied First proposed but not yet applied

5. Conclusions

This paper studies the Foster thermal network model and its parameter extraction
methods. Based on the frequency domain characteristics between the Foster thermal net-
work model and fractional-order elements, a fractional-order equivalent thermal impedance
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model is proposed, along with a model parameter identification method based on the
MOPSO algorithm. Then, this paper extracted the parameters of each order of the integer-
order four-cell Foster thermal network model from the thermal impedance characteristic
curves of the IGBT module obtained through testing on the experimental platform and
plotted the frequency domain characteristic curves of the integer-order four-cell Foster
thermal network model. Finally, based on the MOPSO algorithm, the fractional-order
equivalent thermal impedance model proposed in this paper was used to perform data
fitting of the frequency domain characteristic curves of the Foster thermal network model,
thereby validating the proposed fractional-order equivalent thermal impedance model.
The results indicate that the fractional-order equivalent thermal impedance model form
provided in this paper is more concise compared with the traditional Foster thermal net-
work model and can accurately describe the frequency domain characteristic curves of the
thermal impedance of the Foster thermal network model for IGBT modules. It can provide
a reference basis for the design and reliability analysis of the circuit system containing these
types of elements. Currently, the proposed fractional-order equivalent thermal impedance
model is applied in the frequency domain in this paper. In order to further apply the
fractional-order equivalent thermal impedance model to the thermal analysis of IGBT
devices, it is necessary to transfer the modeling research of fractional-order equivalent
thermal impedance to the time domain in the future.
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