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Abstract: The normal operation of automated equipment is essential for power grid regulation,
making the accurate identification and diagnosis of defects in this equipment highly significant.
Constructing a knowledge graph for automated equipment defects offers an effective solution to
challenges such as delayed reporting, low efficiency, and data omissions in manually recorded
defects. To address this, we developed a framework for constructing an automated equipment defect
knowledge graph by designing appropriate patterns and data layers. For knowledge extraction, we
introduced two models: RoBERTa-BiLSTM for named entity recognition (NER) and ALBERT-BiGRU
for relation extraction (RE), both of which demonstrated improved performance in their respective
tasks. Additionally, we applied the KBGAT model for knowledge graph completion. Finally, Neo4j
was used for storing, visualizing, and analyzing the knowledge graph, highlighting its significance in
the operation of power grids and the advancement of digital power systems.

Keywords: defects in automated equipment; knowledge graph construction; knowledge processing;
knowledge storage

1. Introduction

Nowadays, automated systems play a crucial role in industrial production [1]. They
not only significantly improve production efficiency but also effectively reduce production
costs, providing strong support for corporate sustainable development [2]. However, as
the scale and complexity of automation systems continue to expand, equipment defect
issues become more prominent [3]. If these issues are not properly managed, they can
severely affect the stable operation and production efficiency of automated systems. The
main characteristics of defects in automated equipment can be summarized as follows:
high failure rates, diverse defect types, and complex maintenance and repair procedures.

Due to the above characteristics of defects in automated equipment, scientific and
efficient defect management is vital for power grid regulation [4]. In general, defect man-
agement for power grid automation equipment is a comprehensive system. Currently, the
defect management methods adopted mainly focus on a closed-loop approach [5], which
can be summarized into four stages: “defect detecting, defect recording, defect rectifying,
and operational verification”. Among these, the “defect recording” stage provides data sup-
port for subsequent defect rectification and is the most critical part of the entire automated
equipment defect management system.

The common method for recording defects in automated equipment is manual han-
dling by personnel. However, this manual management method has several issues. First of
all, manual updating of defect reports can result in delays, making it difficult to update
data in a timely manner. Aside from this, the efficiency of manually recording defect data
is low, affecting the ability to quickly respond to and address defects. Moerover, manually
entered information is often inconsistent, and data omissions or losses may occur.
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Due to these shortcomings, numerous studies have been conducted in the power grid
field to automate the defect recording process. Qing [6] proposed a quick response (QR)
code-based defect management system, capitalizing on its large data capacity, high security,
and robust anti-counterfeiting capabilities to enhance the safety, stability, and economic
efficiency of equipment operations. Gao et al. [7] developed a big data analysis algorithm
to create an automatic identification model for suspected familial defects in automated
equipment, incorporating physical “ID” tracking to monitor the distribution of the same
equipment, thereby improving defect identification accuracy. Zhang et al. [8] employed
modern information platforms to enable equipment status evaluation and batch defect
diagnosis through multidimensional analysis and multi-platform interaction, thus improv-
ing the quality and efficiency of defect analysis. Huang et al. [9] introduced an intelligent
factory framework which integrates deep learning algorithms with IoT technology into
defect detection systems, offering a more comprehensive solution for defect detection.

Knowledge graphs (KGs), as a structured knowledge representation method, organize
complex information in the form of graphs, enabling computers to store, retrieve, and
infer knowledge more effectively [10]. With the rapid development of artificial intelli-
gence technologies, the application of KGs in the power industry has become a research
hotspot [11]. The power system is a highly complex and dynamically changing system,
involving a vast amount of equipment, operational procedures, safety standards, and
real-time data. Traditional data processing methods face many challenges in handling this
information, whereas knowledge graph technology, with its advantages in information
organization, retrieval, and reasoning, provides a new solution to these problems. Meng
et al. [12] developed a novel method to recognize power equipment entities based on
bidirectional encoder representation from transformers (BERT), facilitating the construction
of a power equipment fault knowledge graph. Tang et al. [13] introduced a method for
constructing a power equipment KG by combining heterogeneous and multi-source data,
thus enhancing the dispatching efficiency of power equipment. Cui [14] integrated KGs
with the Internet of Things (IoT) to enable real-time monitoring of a power grid and its
surrounding environment.

By applying KGs to the recording of automated equipment defects, the graph structure
of KGs can be effectively utilized to analyze and process data, improving the accuracy of
defect diagnosis and addressing the shortcomings of manual recording. However, existing
electric power KGs primarily focus on the construction of KGs themselves, lacking further
processing and refinement of the KGs.

To address these issues, we built upon the construction of automated equipment defect
KGs by incorporating knowledge graph completion to enhance the practical usability of
the constructed KG. To improve the effectiveness of the constructed knowledge graph, we
applied AI-based methods. AI technologies provide several enhancements throughout the
knowledge graph construction process. First, AI can increase the efficiency and accuracy
of information extraction, accelerating the construction process. Secondly, by leveraging
deep learning and graph inference techniques, AI can automatically identify the root
causes of equipment defects, predict potential failure modes, and generate new knowledge
relationships, further enhancing the intelligence of a knowledge graph. Furthermore, AI
can utilize real-time equipment data and maintenance records to autonomously update
and refine the knowledge graph, ensuring that it continuously reflects the equipment’s
current operational status and potential risks and thereby addressing the timeliness issues
associated with static knowledge graphs.

Based on the above discussion, the main contributions of this paper can be summarized
as follows:

• A framework of the construction of automated equipment defect KGs os designed
and implemented, effectively solving the problem of storing defect knowledge for
automated equipment.
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• In the construction process, the RoBERTa-BiLSTM model is used for named entity
recognition (NER), and the ALBERT-BiGRU model is used for relation extraction (RE),
with both achieving performance improvements in their respective tasks.

• We completed the constructed KG using the KBGAT algorithm [15] and stored and vi-
sualized it in the Neo4j graph database, resulting in a complete equipment automated
defect KG.

2. Research Methodology
2.1. Overview of Construction Methods

In this section, we will provide an overall overview of the methods for constructing
an automated equipment defect knowledge graph. Firstly, we need to determine the data
source and preprocess the data, which will be detailed in Section 2.2. Secondly, we will
develop an overall construction framework that includes the schema and construction
steps of the knowledge graph, which will be demonstrated in Section 2.3. Finally, we will
elaborate on each step and conduct specific experiments to validate the effectiveness in
Sections 3 and 4.

2.2. Data Resource

The data used to construct knowledge graphs for automated defect equipment can be
diverse, typically including unstructured and semi-structured data [16]. Unstructured data
refer to information which does not adhere to a fixed format or unified data model, often
presented in text form. Semi-structured data, meanwhile, fall between fully structured and
unstructured formats, possessing some structural characteristics but lacking the rigid data
models of traditional relational databases, typically appearing in formats such as JSON or
tables. The knowledge graph data in this study primarily originate from unstructured text
in selected chapters of e-books analyzing typical cases in automated systems, supplemented
by semi-structured tabular data on defect records from a regional power grid’s outage
management system (OMS). OMS is an information system used in power grids and other
industrial automation systems to monitor, control, and manage system operations [17]. In
the context of defect management for automated equipment, an OMS provides functions
such as defect data entry, intelligent diagnostics, and decision support for handling defects,
improving both the efficiency and accuracy of defect management.

To better leverage the data collected for knowledge graph (KG) construction, we
performed extensive data processing. For unstructured data, we filtered out unclear,
incomplete, and overlapping sentences. After this preprocessing step, we retained a total
of 1675 pieces of data for subsequent tasks. For semi-structured data, we parsed the
information and classified its various elements to enrich the set of entities. This resulted
in the extraction of 3294 entities, which will be used in the next named entity recognition
(NER) task.

2.3. Overall Framework

There are three commonly used frameworks for constructing knowledge graphs: top-
down, bottom-up, and hybrid [18]. In the top-down approach, structured data sources
like encyclopedic websites are used to extract ontologies and schema information from
high-quality data to populate the knowledge base [19]. Conversely, the bottom-up method
involves extracting resource models from available public data using technical methods,
adding higher-confidence information to the knowledge base. The hybrid method com-
bines both approaches, using mutual mapping to update and iterate on the data, thereby
improving the reliability of the knowledge graph.

Given the unstructured nature of defect text in power automation, we adopted a
hybrid approach for KG construction. First, the schema of the KG is built using a top-down
method. A schema is a domain-specific data model defining types of meaningful concepts
and their attributes within that domain [20]. In simple terms, a schema is a “metadata”
representation of knowledge, specifying the attributes of entities, the relationships between
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them, and the constraints on both. The main purpose of a schema is to structure entities
and clearly define their relationships.

A schema consists of entity types and relationship types. Entity types define a class of
data instances with a common structure, while relationship types describe the associations
between entities. Common schema construction often involves merely listing entity and
relationship types, which may not clearly reflect logical relationships. In this paper, we
constructed the schema by using a logical flowchart, creating a corresponding domain
knowledge system. We predefined eight entity labels: “plants”, “defective equipment”,
“device types”, “defect contents”, “defect phenomena”, “disposal measures”, “defect levels”,
and “defect reasons”. After that, we designed seven relationship types between two entity
labels separately: “contain”, “belong to”, “exist”, “link to”, “evaluate as”, “solved by”, and
“because of”. Then, we used these entity labels and relation types to construct the whole
schema, as shown in Figure 1.

Figure 1. Schema of defect knowledge graph.

Meanwhile, we applied a bottom-up approach for the data layer of the KG, consisting
of named entity recognition (NER), relation extraction (RE), knowledge fusion, knowl-
edge processing, knowledge updating, and knowledge storage. NER and RE, collectively
referred to as knowledge extraction, are foundational to building a knowledge graph.
Knowledge fusion integrates knowledge from various sources to form a unified, consis-
tent representation. Knowledge processing involves refining and enhancing raw data or
existing knowledge to improve its quality, accuracy, and usability. Knowledge updating
is a continuous process in managing and maintaining the knowledge graph to ensure
the data remain current, accurate, and relevant. Knowledge storage involves storing the
constructed knowledge graph in a database for subsequent processing and updates. The
overall framework is illustrated in Figure 2.

In this study, we pay attention to the stages of knowledge extraction, knowledge
processing, and knowledge storage, which are crucial for the construction and application
of automated equipment defect knowledge graphs. Figure 1 illustrates the schema which
guided our knowledge extraction process, defining the entity types and relationship types
which are essential for capturing the domain-specific knowledge. Figure 2 outlines the data
layer, where we performed knowledge extraction using models like RoBERTa-BiLSTM for
NER and ALBERT-BiGRU for RE. The extracted knowledge is then processed to enhance
the graph’s completeness through techniques like knowledge graph completion, as detailed
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in Section 4. Finally, the constructed knowledge graph is stored and visualized using the
Neo4j graph database, as discussed in Section 5.

Figure 2. Data layer of defect knowledge graph.

3. Knowledge Extraction
3.1. Named Entity Recognition

Named entity recognition (NER) [21] is a fundamental task in natural language pro-
cessing (NLP) [22] which focuses on extracting entities with specific meanings such as
names of people, locations, and other important information from unstructured text [23].
The primary objective of NER is to identify and capture key entities within natural language
texts, thereby facilitating a deeper understanding of the text’s content. Before performing
NER, unstructured text must undergo sequence labeling. We employed the BIO labeling
scheme [23], where B (begin) marks the beginning of an entity, I (inside) indicates subse-
quent parts of the same entity, and O (outside) signifies tokens which do not belong to any
entity, as shown in the example provided in Table 1. (B-DEV indiacates the beginning of
the device, while I-DEV indicates the inside of the device. Similarly, B-DEF indiacates the
beginning of a defect, while I-DEF indicates the inside of a defect.)

Table 1. Example of BIO annotation.

Sentence Annotation

发 O
现 O
后 B-DEV
台 I-DEV
机 I-DEV
遥 B-DEF
测 I-DEF
刷 I-DEF
新 I-DEF
不 I-DEF
正 I-DEF
常 I-DEF

The sentence “发现后台机遥测刷新不正常” means “discovered abnormal telemetry refresh in the backend
machine” in English.

Considering the characteristics of automated defect text, we employed the RoBERTa-
BiLSTM model for named entity recognition (NER) on automated equipment defect data.
RoBERTa [24], developed by Facebook AI Research (FAIR), is a pretrained language rep-
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resentation model based on the BERT architecture. Compared with traditional BERT,
RoBERTa more effectively captures contextual information and introduces a dynamic mask-
ing strategy where a random subset of tokens is selected for prediction in each iteration,
improving the fixed masking mechanism of BERT. Bidirectional long short-term memory
(Bi-LSTM) [25], a specialized recurrent neural network (RNN), combines LSTM units with
bidirectional processing, providing robust representation capabilities to capture complex
patterns in sequential data. In this model, RoBERTa is used for text feature extraction in
the NER task, while Bi-LSTM is applied for sequence labeling. The overall architecture of
the model is illustrated in Figure 3. In Figure 3, the sentence “发现后台机” represents the
input sentence, which means “discovered backend machine” in English.

Figure 3. Structure diagram of RoBERTa-BiLSTM.

Figure 3 illustrates the architecture of the RoBERTa-BiLSTM model employed for
NER in the context of automated equipment defect data. The model consists of two main
components: the RoBERTa encoder and the BiLSTM layer with a conditional random field
(CRF) layer on top. The RoBERTa encoder, pretrained on a large corpus, provides a deep
contextualized representation of the input text. After feature fusion in the fusion layer, the
representation is then fed into the BiLSTM layer, which captures sequential dependencies
within the text. The BiLSTM’s forward and backward passes allow it to consider the context
from both directions, enhancing the model’s ability to understand the surrounding text
for each token. Finally, the CRF layer is used to predict the most likely sequence of labels,
taking into account the transitions between different entities. This model architecture
leverages the strengths of both deep contextualized word representations and sequential
modeling, which is crucial for accurately identifying entities in unstructured text.

3.2. Relation Extraction

Relation extraction (RE) is a key task in natural language processing (NLP) and one of
the fundamental components of information extraction [26]. Its goal is to identify relation-
ships between entities (usually noun phrases or pronouns) within textual data. Building on
named entity recognition (NER), RE forms the foundation for enabling intelligent systems
to understand natural language and construct knowledge bases, playing a crucial role
in enhancing a machine’s semantic understanding. Similar to the pre-labeling required
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for NER, RE also necessitates predefined relationships between entities. We list all the
predefined relationship types in Table 2.

Table 2. Entity relation categories.

Head Entity Tail Entity Relationship

Device types Defect types exist
Defect types Defect contents link to
Defect types Defect levels belong to
Defect types Disposal measures decide

Defect contents Defect phenomena link to
Defect phenomena Defect reasons cause

We employed ALBERT-BiGRU to address the relation extraction task. A Lite BERT
(ALBERT) [27], developed by Google, was designed to reduce the number of parameters
while maintaining or even enhancing performance. ALBERT reduces parameters through
cross-layer sharing and proposes sentence order prediction (SOP), a new training method
which replaces BERT’s next sentence prediction (NSP) and helps the model capture richer
semantic information. Furthermore, with fewer parameters, ALBERT loads and runs
faster, making it particularly suited for the computational environment in this study.
The bidirectional gated recurrent unit (Bi-GRU) is a type of RNN which combines GRU
mechanisms with bidirectional processing [28]. Compared with Bi-LSTM, Bi-GRU offers
faster training speeds and fewer parameters, making it more appropriate for resource-
constrained relation extraction tasks. We integrated ALBERT with Bi-GRU, following a
similar approach to that used for NER. ALBERT serves as the feature extractor, while
Bi-GRU handles sequence modeling, enhancing the features extracted by ALBERT to better
capture the complex patterns between entities and their relationships. The model’s overall
architecture is illustrated in Figure 4.

Figure 4. Structure diagram of AlBERT-BiGRU.

Figure 4 depicts the ALBERT-BiGRU model structure used for RE tasks within the
automated equipment defect dataset. The model is composed of two primary sections—the
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ALBERT module and the BiGRU layer—followed by a fully connected layer for classifi-
cation. ALBERT, a lightweight variant of BERT, was utilized here for its efficiency and
performance, providing a compact yet rich representation of the input text through its
parameter-sharing mechanism. This representation is then processed by the BiGRU layer
which, similar to the BiLSTM, processes the sequence in both directions to capture com-
prehensive contextual information. The key difference between BiGRU and BiLSTM is
the use of the gated recurrent unit (GRU), which simplifies the model architecture while
maintaining effectiveness in sequence modeling. The output from the BiGRU layer is then
fed into a series of fully connected layers designed to classify the relationship between the
entities. This architecture is pivotal in accurately extracting and classifying relationships
within the text, which is essential for constructing a comprehensive knowledge graph.

3.3. Experiments and Results
3.3.1. Datasets

To ensure that the experimental set-up aligned with the primary focus of our study—
automated equipment defect knowledge graph construction—we carefully curated a dataset
which captured the complexity and diversity of real-world scenarios. This dataset was
derived from a comprehensive subset of previously mentioned data sources, which in-
cluded unstructured text from e-books analyzing typical cases in automated systems and
semi-structured tabular data from a regional power grid’s outage management system
(OMS). This combination offered a balanced representation of both the theoretical and
practical aspects of defect management.

After segmenting lengthy sentences to improve model training efficiency, we obtained
a total of 6785 text entries. These entries were manually annotated using the BIO method
to ensure accurate, high-quality labels for model training. The detailed experimental
dataset of entities can be found in Appendix A Table A1. The dataset was split into
training, validation, and test sets, with careful consideration to ensure the model’s ability
to generalize effectively to unseen data, which is critical for real-world applications.

A training-validation-test split of 8:1:1 is a widely adopted practice in machine learning.
It strikes a balance between providing a large enough training set for the model to learn
complex patterns and maintaining sufficient data for validation and testing. The training
set, comprising 80% of the data, enables the model to learn from a diverse range of examples.
The validation set, constituting 10% of the data, is used to fine-tune the model parameters
and prevent overfitting. The test set, which is also 10% of the data, serves as an unbiased
evaluation of the model’s performance on unseen data, offering a realistic measure of its
effectiveness in practical scenarios.

3.3.2. Model Parameter Settings

The experiments related to NER and RE were conducted on an Ubuntu 18.04 operating
system utilizing four NVIDIA 3090 24 G GPUs with CUDA version 11.7 and employing
PyTorch framework version 1.12.1. The training hyperparameters for both tasks are detailed
in Table 3. For the evaluation metrics, precision, recall, and F1 score were used for both
tasks [29].

Table 3. Hyperparameters configuration of NER and RE.

Hyperparameters NER RE

Number of epochs 10 20
Batch size 64 64

Learning rate 1 × 10−5 1 × 10−5

Max length of sequence 512 512
Optimizer Adam Adam
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3.3.3. Comparison Experiment of NER

To assess the effectiveness of the RoBERT-BiLSTM model adopted for the NER task in
automated defect equipment text, experiments were conducted to compare several widely
used deep learning models. The experimental results, obtained under consistent conditions,
are presented in Table 4.

Table 4. Comparison of different NER models.

Model Precision Recall F1 Score

GCN [30] 78.5 77.6 78.0
LSTM-CRF [31] 80.2 79.7 79.9

BiLSTM-CNN-CRF [32] 83.4 82.1 82.7
BERT [33] 86.8 84.9 85.8

Ours 88.2 87.3 87.7

The comparative analysis revealed that the RoBERTa-BiLSTM architecture achieved
outstanding performance on the automated equipment defect dataset, attaining optimal
results in precision, recall, and F1 score. Compared with traditional BERT-CRF methods,
the proposed model improved the precision, recall, and F1 score by 1.61%, 2.83%, and
2.21%, respectively, providing substantial evidence for its effectiveness.

To further validate the effectiveness of our proposed model, we conducted ablation
experiments. The results of the ablation experiments are presented in Table 5.

Table 5. Ablation experiments for the NER task.

Index RoBERTa BERT BiLSTM F1 Score

1 ✓ ✓ 87.7
2 ✓ 86.9
3 ✓ ✓ 86.5
4 ✓ 85.8

The symbol ‘✓’ indicates that the model is adopted.

As is shown in Table 5, model 2 removed BiLSTM, which led to a 0.91% decrease in
the F1 score. Model 3 used BERT-BiLSTM, and the F1 score was reduced by 1.37%. Model 4
used BERT separately, which reduced the F1 score by 2.17%.

3.3.4. Comparison Experiment of RE

To validate the effectiveness of the ALBERT-BiGRU model selected for the RE task
in automated defect equipment text, comparisons were made with several traditional
deep network models. The experimental results are shown in Table 6. Table 6 presents
a comparison of different relation extraction (RE) models using three primary metrics:
precision, recall, and F1 score. These metrics were selected as they are standard in evaluating
the performance of classification models, particularly in natural language processing tasks
such as RE. Precision measures the accuracy of the positive predictions, recall indicates the
model’s ability to find all relevant instances, and the F1 score provides a harmonic mean of
precision and recall, offering a balance between the two.

Table 6. Comparison of different RE models.

Model Precision Recall F1 Score

BiLSTM [25] 61.1 59.8 60.4
C-GCN [34] 63.2 60.6 61.9
BERT [33] 67.5 66.4 66.9

SpERT [35] 72.7 71.2 71.9

Ours 75.2 72.0 73.6
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The comparative analysis indicates that the ALBERT-BiGRU architecture achieved
excellent performance on the automated equipment defect dataset, obtaining optimal
results for precision and F1 score. Compared with the SpERT model proposed by Markus
Eberts, the adopted model improved the precision and F1 score by 3.44% and 2.36%,
respectively, providing substantial evidence for its effectiveness.

Similarly, we conducted ablation experiments for RE tasks as well. The results of the
ablation experiments are presented in Table 7.

Table 7. Ablation experiments for RE task.

Index AlBERT SpERT BiGRU F1 Score

1 ✓ ✓ 73.6
2 ✓ 72.5
3 ✓ ✓ 72.7
4 ✓ 71.9

The symbol ‘✓’ indicates that the model is adopted.

As is shown in Table 7, model 2 removed BiGRU, which led to a 1.49% decrease in the
F1 score. Model 3 used SpERT-BiGRU, and the F1 score was reduced by 1.22%. Model 4
used SpERT separately, which reduced the F1 score by 2.31%.

4. Knowledge Processing
4.1. Knowledge Graph Completion

Knowledge processing refers to the process of collecting, organizing, analyzing, trans-
forming, and applying knowledge, aimed at enhancing its value and usability. Knowledge
graph completion (KGC) is a technique in knowledge processing which fills in missing
triples in a knowledge graph, thereby making it more complete. In constructing knowledge
graphs for automated equipment defects, many rules are predefined manually, which can
lead to gaps and omissions. Therefore, incorporating a knowledge completion step during
the graph construction process is highly significant.

There are various methods for knowledge graph completion, including rule-based meth-
ods, tensor decomposition-based methods, and translation model-based methods (such as the
Trans series). We adopted deep learning-based methods, planning to experiment with a series
of deep learning models to identify the most effective one through comparison.

4.2. Model Parameter Settings

The experimental environment in this section is consistent with that described in
Section 3, with some of the training hyperparameters provided in Table 8.

Table 8. Hyperparameter configuration of KGC.

Hyperparameters KGC

Number of epochs 200
Batch size 32

Learning rate 1 × 10−4

Dropout 0.3

We used HITS@3, HITS@10, and MRR as evaluation metrics for the KGC task. HITS@n
represents the average proportion of triples ranked at or below n in link prediction, where
higher values are preferable. The mean reciprocal rank (MRR) measures the average
reciprocal rank of correctly predicted triples in the overall prediction results. A higher MRR
indicates better model performance. MRR can be expressed as follows:

MRR =
1
|S|

|S|

∑
i=1

1
ranki

(1)
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The parameter |S| denotes the number of triples, while ranki refers to the predicted
ranking of the ith triplet link.

4.3. Experiments and Results

To evaluate the effectiveness of KGC models for the equipment defect knowledge
graph discussed in this paper, several mainstream deep learning models were compared,
yielding the experimental results displayed in Table 9.

Table 9. Comparison of different KGC models.

Model H ITS@3 H ITS@10 MRR

ConvE [36] 32.7 48.6 0.325
ConvKB [37] 31.2 45.9 0.314
R-GCN [38] 15.6 27.7 0.159
HAKE [39] 46.4 58.9 0.478

KBGAT [15] 44.2 61.1 0.493

The comparative analysis revealed that the HAKE and KBGAT models each excelled
in different performance metrics. After careful consideration, the HITS@10 and MRR
metrics were deemed more influential for the KGC task, leading to the selection of the
KBGAT model for completing the equipment defect knowledge graph.

The KBGAT model leverages graph neural networks to effectively model entities and
relationships while utilizing an attention mechanism to emphasize crucial information
within the graph. By adjusting the weights based on the importance of different relation-
ships, the attention mechanism enhances the model’s completion performance, particularly
in complex knowledge graphs. Additionally, the use of graph neural networks allows
KBGAT to efficiently propagate information throughout the knowledge graph, capturing
intricate dependencies between entities and relationships. In KGC tasks, KBGAT can
predict missing triples, fill in gaps, and uncover new relationships hidden within a graph.

5. Knowledge Storage and Application
5.1. Knowledge Graph Storage and Visualization

This study employed the Neo4j graph database to store and visualize the constructed
knowledge graph. Neo4j, a high-performance and network-oriented NoSQL graph database,
excels at processing highly connected data. Using the proposed method for constructing
the knowledge graph of automated equipment defects, a total of 11,351 entity nodes and
19,164 entity relationship edges were created and stored in the Neo4j database through the
Py2neo module in Python 3.8 [40].

The data stored in Neo4j could be visualized, with Figure 5 providing a partial visual-
ization of the equipment defect knowledge graph.

5.2. Application of Knowledge Graph

The proposed automated equipment defect knowledge graph has broad application
prospects across multiple fields and scenarios. Three typical application scenarios include
the following:

• Intelligent fault diagnosis of substation equipment: By integrating deep learning
technology with the knowledge graph, a semantic graph which fuses multimodal
information from substation equipment can be developed, enabling autonomous fault
warnings and diagnosis and thereby enhancing the efficiency of power grid operation,
maintenance, and management.

• Intelligent transformer operation and inspection: In the domain of power equipment
operation and inspection, the knowledge graph facilitates machine comprehension
of expert knowledge, covering multiple fields and ultimately improving equipment
management efficiency.
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• Industrial equipment maintenance KG: KGs can be utilized in maintenance personnel
evaluation systems, intelligent Q&A systems, intelligent recommendation systems,
and anomaly warning systems, thereby advancing the intelligence level of industrial
equipment maintenance.

Figure 5. Part of display of defect knowledge graph.

6. Discussion

The results of our study offer valuable insights into the construction and application
of automated equipment defect knowledge graphs for power grid regulation. In this
discussion, we examine the implications of our findings, their alignment with existing
research, and the broader impact of our work.

The effectiveness of our knowledge graph construction framework, which integrates a
top-down schema design with a bottom-up data layer approach, provides a novel solution
for managing complex and unstructured defect data. This hybrid methodology bridges the
gap between theoretical knowledge representation and practical data management needs.
Furthermore, the application scenarios we explored, including intelligent fault diagnosis
and industrial equipment maintenance, underscore the practical value of our knowledge
graph in improving operational efficiency and safety in power grid systems.

We also acknowledge the limitations of our study. While the dataset used was compre-
hensive for our purposes, it may not encompass the full diversity of defect scenarios across
all types of automated equipment. Future work could focus on expanding the dataset to
include a broader range of equipment and defect types. Additionally, while our knowledge
graph completion using KBGAT yielded promising results, further optimization and testing
with different algorithms could improve the graph’s accuracy and completeness.

7. Conclusions

In response to the various shortcomings of manually recording and handling auto-
mated equipment defects, we proposed a method which uses knowledge graph technology
to manage these defects, constructing a corresponding automated equipment defect knowl-
edge graph. The main conclusions are as follows:
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• We proposed a construction framework for the automated equipment defect knowl-
edge graph, primarily employing a top-down approach for building the schema and a
bottom-up approach for constructing the data layer.

• To address the unstructured nature of defect texts for automated equipment, the
RoBERTa-BiLSTM and ALBERT-BiGRU models were constructed for named entity
recognition and relationship extraction, achieving improvements in their respective
task metrics.

• Based on knowledge extraction, the extracted data underwent knowledge processing,
mainly realized through knowledge graph completion techniques. Through compar-
ative analysis, the KBGAT model demonstrated better performance for knowledge
graph completion.

• Finally, the KG constructed in this study was stored and visualized using the Neo4j
graph database, and the application prospects and value of the automated equipment
defect knowledge graph were analyzed.
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Appendix A

Table A1. Detailed experimental dataset of entities.

Entity Label Entity Example Total Number of Entities

Plants 35 kV茨竹变电站 (35 kV
Cizhu Substation) 683

Defective equipment 后台机 (backend machine) 2187

Device types 计算机设备 (computer
equipment) 40

Defect contents

子站测控装置及二次回路故障
(fault of substation

measurement and control
device and secondary circuit)

2913

Defect phenomena 遥测刷新不正常 (abnormal
telemetry refresh) 3538

Defect levels 一般 (normal) 4

Disposal measures

修改电能量采集终端时间配置
(modify the time

configuration of the electric
energy collection terminal)

1550

Defect reasons 监控系统故障 (monitoring
system malfunction) 436
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