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Abstract: The traditional method of calculating junction temperature does not consider the depen-
dence of a material’s thermal conductivity on temperature, in which the thermal conductivity changes
with temperature. However, with an increase in junction temperature, the temperature sensitivity
(TS) will have a more significant impact on the actual temperature of chips. This study established an
improved IGBT equivalent thermal impedance model that considers the nonlinear characteristics
of the TS of chips and ceramic materials. The Fourier series analysis method was used to obtain
the heat flux density curve, and then the heat diffusion angles of each layer were solved. Moreover,
iterations were performed until the thermal conductivity and temperature of the chip and ceramic
layers matched the nonlinear characteristics of the TS. When the power loss was less than 200 W,
the maximum error of the junction temperature calculated by the proposed method considering TS
was 3%, while the maximum error of the method without considering TS was 9.5%. Compared with
the finite element simulation, the proposed method has a faster solving speed and high accuracy.
The proposed method only requires the input material parameters, size parameters, and boundary
conditions to solve the junction temperature, which has strong practicality and high accuracy.

Keywords: Cauer model; Fourier series; insulated-gate bipolar transistor module; temperature
sensitivity; thermal coupling effect

1. Introduction

Insulated-gate bipolar transistor (IGBT) modules play a significant role in modern
power electronics technology. They are widely used in various industrial fields, including
electric vehicles [1,2], aerospace [3], and wind power generation [4,5]. IGBT devices are
widely used in rail transport. However, owing to the high probability of failure, research
related to fault diagnosis is more extensive, which is an important reason for conducting
device reliability studies [6–8]. However, as the power level and power density of IGBT
modules increase, the reliability of IGBT modules is increasingly affected by the device
junction temperature [9,10]. It is important to accurately calculate the junction temperature
of IGBT modules [11].

The equivalent RC circuit of an IGBT module includes a partial fraction circuit and
a continued fraction circuit. The partial fraction circuit, also known as the Foster model,
obtains the dynamic thermal impedance curve through simulations or experiments, and
the RC thermal characteristic parameters of each order are obtained by exponential fitting.
However, the Foster model cannot reflect the temperature distribution inside the device [12],
nor can it consider the actual situation where thermal resistance varies owing to internal
factors [13]. The continued fraction circuit, also known as the Cauer model, reflects the
actual values of thermal resistance and thermal capacitance of the physical layers and
can predict the temperature of each layer. Reference [14] improved the accuracy of the
Cauer model by subdividing it into layers. References [15,16] established an improved
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Cauer model that considered chip solder voids. Reference [17] proposed a method for
estimating the thermal network parameters using IGBT module cooling curves to obtain
the RC parameters of the Cauer model.

The most important step in solving the Cauer RC network is to obtain the heat
diffusion angle. The thermal impedance of each layer can be precisely calculated only
when the obtained heat diffusion angle is accurate. References [14,16,18,19] consider
the heat diffusion angle as a fixed value to calculate the effective heat conduction area.
References [20–22] consider the heat diffusion angle as the arctangent value of the ratio of
the thermal conductivity of this layer to that of the next layer. However, the accuracy of
the heat diffusion angle obtained using these two methods is insufficient. Reference [23]
obtained the heat diffusion angle by obtaining the heat flux density curve using the finite
element method (FEM), but this method is time-consuming.

IGBT modules typically have multiple chips, and when power is applied to two or
more chips, there may be overlapping areas of heat flux diffusion, resulting in thermal
coupling effects. However, the thermal coupling effect is usually not considered in tra-
ditional Cauer thermal network models, which can lead to lower junction temperatures.
Some scholars have studied the thermal coupling effect. Reference [24] mainly analyzed
the thermal coupling effect of the cooling system and believed that the case-to-ambient cou-
pling thermal resistance was the main coupling thermal resistance. However, the coupling
thermal resistance was derived from the junction temperature, and an essential formula
for calculating the coupling thermal resistance was not provided. Reference [25] used
electrical phenomena to obtain a thermal coupling model but had high requirements for
the equipment. References [26,27] used the FEM to observe the thermal coupling effect,
and reference [28] used the FEM to obtain the transient thermal impedance curve before es-
tablishing the thermal coupling effect. They took a long time to obtain the thermal coupling
model using the FEM. Reference [29] obtained a thermal coupling model by establishing
a discrete thermal network model; however, the extraction process of the Cauer model
is complex. Reference [30] established a thermal coupling model that decouples internal
thermal coupling from cooling system thermal coupling but does not determine the thermal
coupling region.

However, the nonlinear characteristics of the TS of materials are usually ignored in
existing Cauer thermal network models, which can result in the Cauer thermal network
model not being in line with the actual situation of the IGBT modules, and the accuracy of
the thermal network model deviates from the actual situation. As the junction temperature
increases, the TS of the materials has a more significant impact on the actual temperature
of the chip. References [23,31] considered the temperature-dependent characteristics of
the chip and ceramic layers and established a thermal network model. Reference [32]
considered the temperature dependence of packaging materials. However, these studies
have a slow solving process owing to the use of the finite element method. Reference [33]
obtained a transient thermal model using a finite element thermal simulation method
with physical parameters varying with temperature; however, this study did not consider
the temperature-dependent characteristics of the ceramic layer. Table 1 summarizes the
characteristics of existing research.

Considering the existing research strategies and existing problems mentioned above,
this article proposes a thermal impedance model for IGBT modules considering the non-
linear characteristics of the TS of materials using the Fourier series analysis method. First,
Fourier Transform was used to analyze the heat flux density curve, and the heat diffusion
angles were obtained from the heat flux density curve, which can be used to calculate
the effective heat conduction area and obtain the thermal impedance of each layer. Then,
considering the TS of the ceramic and chip layer materials, the thermal conductivities of
the chip and ceramic layers were corrected to obtain the corrected thermal resistance and
thermal capacitance of each layer. In addition, the thermal coupling effect was considered.
Finally, the accuracy of the thermal impedance model established in this study is verified
through a comparative analysis with the results of the FEM.
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Table 1. Summary of characteristics of existing research.

Method Accuracy Speed

Heat diffusion angle

Fixed value [14,16,18,19] low fast
The inverse tangent value of the

ratio of thermal conductivity
[20–22]

low fast

Heat flux density curve by the
FEM [23] high slow

Proposed method high fast

Reference Shortcoming

Thermal coupling
effects

[24,30] thermal coupling region resistance
is not provided

[25,29] difficult to implement
[26–28] slow calculation

Reference Accuracy Speed

Temperature
sensitivity

[23,31,32] high slow
[33] low slow

proposed method high fast

2. Single-Chip Thermal Impedance Model
2.1. Equivalent Circuit Model of the IGBT Module

The IGBT module consisted of a seven-layer structure [34,35]. The cross-section of a
typical IGBT module is shown in Figure 1.
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Figure 1. Cross-section of IGBT module. 
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Figure 1. Cross-section of IGBT module.

Assuming that the heat flux generated by the IGBT chip diffuses at a fixed angle in
different layers, the area of the heat flux diffusion and the corresponding circuit structure are
shown in Figure 2. In this system, kchip,ki (i = 1,2,3,4,5,6) represents the thermal conductivity
of each layer, cchip,ci (i = 1,2,3,4,5,6) represents the specific heat capacity of each layer, tchip,ti
(i = 1,2,3,4,5,6) represents the thickness of each layer, φi represents the heat diffusion
angle of each layer, Tchip, Ti represents the temperature of the upper surface of each layer
vertically from the center of the chip downwards, Rchip, Ri represents the thermal resistance
of each layer, Cchip, Ci represents the thermal capacitance of each layer, Ta represents
the temperature of the environment, and Q represents the heat flux, that is, the power
loss generated by the IGBT chip. Consider a thin layer with a thickness ∆z in the heat
flux diffusion area. The length of the j-1th thin layer is represented by lj−1, the width is
represented by wj−1, and the effective heat conduction area is represented by Aj−1. The
length of the jth thin layer is represented by lj, the width is represented by wj, and the
effective heat conduction area is represented by Aj.
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The effective heat conduction area Aj of the jth thin layer is given by
lj = lj−1 + 2∆z tan φi, wj = wj−1 + 2∆z tan φi
Aj = ljwj
l0 = c, w0 = d

, (1)

where c is the length of the IGBT chip, d is the width of the IGBT chip, j is the order of
the thin layer with a thickness ∆z from top to bottom, and i (i = 1,2,3,4,5,6) is the order of
different material layers from the chip solder layer to the baseplate.
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The thermal resistance ∆Rj of the jth thin layer is calculated by [36]

∆Rj =
∆z

ki Aj
. (2)

The thermal capacitance ∆Cj of the jth thin layer is calculated by [36]

∆Cj = ciρi Aj∆z, (3)

where ρi is the material density of each layer.
The convective heat transfer resistance is

Rconv =
1

hAs
, (4)

where h is the convective heat transfer coefficient and As is the effective convective heat
transfer area; h can first be calculated theoretically using empirical formulas, then verified
through simulation, and finally calibrated through steady-state experiments.

The steady-state junction temperature Tchip of the chip is calculated by [37]

Tchip = (Rchip + R1 + R2 + R3 + R4 + R5 + R6 + Rconv)Q + Ta. (5)
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The transient junction temperature Tchip(t) of the chip is calculated by

Tchip(t) = L−1(
1
s

Zth(s)Q) + Ta, (6)

where L−1 is the Inverse Laplace Transform of L, and Zth(s) is the total thermal impedance
of the Cauer model.

2.2. Solving the Heat Diffusion Angle of Each Layer in the IGBT Module

The heat generated by the IGBT chips does not transfer vertically downwards but
undergoes lateral diffusion [38]. The lateral diffusion of heat leads to a smaller vertical heat
flux density component qz. Because the heat remains constant, the increased effective heat
conduction area generates a heat diffusion angle. Therefore, the change in the heat flux
density generates the heat diffusion angle, and there is a relationship between the heat flux
density and heat diffusion angle. Heat diffusion angles can be obtained from the heat flux
density curve.

The effective heat conduction area Aj of the jth thin layer is calculated by [31]

Aj =
Q

qz(z)
, (7)

where qz(z) is the magnitude of the component of the heat flux vector in the z-axis. The
effective heat conduction area can be approximately circular [23], and a schematic diagram
of a thin layer with a thickness ∆z is shown in Figure 3; rj,1 represents the radius of the
upper surface of the thin layer, and rj,2 represents the radius of the lower surface of the thin
layer. The tangent value of the heat diffusion angle of the jth thin layer can be calculated by

tan φj =
rj,2 − rj,1

∆z
. (8)
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Let r(z) be the curve of the effective heat conduction radius. According to Equation (8),
the tangent of the heat diffusion angle is the slope of r(z), which is given by

r(z) =
√

A(z)/π. (9)

The heat flux density component qz(z) and effective heat conduction radius r(z) from
the center of the upper surface of the chip solder layer vertically downwards to the bottom
surface of the baseplate are shown in Figure 4. By linearly fitting the r(z) curves correspond-
ing to each layer separately, that is, r = a1z + a0, the tangent value of the heat diffusion
angle of each layer is a1.
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2.3. Temperature-Sensitive Properties of Materials

The TS of each layer of material is shown in Figure 5. The thermal conductivity
of Cu changes very little with temperature, indicating the low sensitivity of the thermal
conductivity of copper to temperature. The thermal conductivities of Si and Al2O3 vary
greatly with temperature, and the rate of change in thermal conductivity at 300 ◦C relative
to that at 25 ◦C can even exceed 50%. The thermal conductivities of Si and Al2O3 are highly
sensitive to temperature. As the junction temperature increased, the difference between
the temperature of each layer material and the set temperature increased. The difference
between the thermal conductivity and initial set thermal conductivity increased. The TS of
the material has a more significant impact on the actual junction temperature. Therefore, it
is necessary to consider the TS of materials with a high TS to make the calculated junction
temperature more accurate. This study considered the TS of the ceramic and chip layers.
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Although the datasheet of the devices does not provide material-related parameters, it
does provide information about what the material of each layer is. After knowing what
the material of each layer is, we can obtain the material-related parameters by searching
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the books and literature. The fitting formula for the relationship between the thermal
conductivity and temperature of Si and Al2O3 is described as [23]{

k = 438056(T + 273.15)−1.4 , Si
k = 40250(T + 273.15)−1.264 , Al2O3

. (10)

The fitting formula for the relationship between the specific heat capacity and the
temperature of Si and Al2O3 is described as [23]{

c = 6 ∗ 10−6 ∗ T3 − 0.0044 ∗ T2 + 1.3946 ∗ T + 673.43, Si
c = 4 ∗ 10−6 ∗ T3 − 0.0049 ∗ T2 + 2.4163 ∗ T + 693.29, Al2O3

. (11)

When considering the TS of chips and ceramic materials, it is necessary to adjust
the thermal conductivity and the thermal resistance of the ceramic and chip layers. The
center-point temperature of the chip layer can be selected to represent the temperature
of the chip layer, and the center-point temperature of the ceramic layer can be selected to
represent the temperature of the ceramic material. When kchip and k3 satisfy Equation (10)
with the temperature at the center points of the chip and ceramic layers, respectively, kchip
and k3 are the corrected thermal conductivities that consider the TS of the chip and ceramic.

2.4. Solving Heat Flux Density Using Fourier Series Analysis Method

Figure 6 shows the structure of the multilayer IGBT modules. The heat flux generated
by the chip layer, which is not shown in the figure, is used as the boundary condition. In
the figure, c is the length of the chip on the x-axis, d is the length of the chip on the y-axis,
and a and b are the lengths of the chip solder layer to the baseplate along the x- and y-axes,
respectively. (Xc, Yc, 0) is the coordinate of the center of the lower surface of the chip, and
Tf is the temperature of the cooling fluid.
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The three-dimensional steady-state heat conduction differential equation is the La-
place Equation [39]: 
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Figure 6. The structure of the multi-layer IGBT module.

The three-dimensional steady-state heat conduction differential equation is the Laplace
Equation [39]:

∂2θi
∂x2 +

∂2θi
∂y2 +

∂2θi
∂z2 = 0, (12)
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where θi is the temperature rise of the i-th layer relative to the cooling fluid and θi = Ti − Tf .
The method of separating variables can be used to solve Equation (12) [40–42], and the
general solution is

θi(x, y, z) = Ai0 + Bi0z

+
∞
∑

m=1
cos(λmx)[Aim cosh(λmz) + Bimsinh(λmz)]

+
∞
∑

n=1
cos(δny)[Ain cosh(δnz) + Binsinh(δnz)]

+
∞
∑

m=1

∞
∑

n=1
cos(λmx) cos(δny)[Aimn cosh(βmnz) + Bimnsinh(βmnz)],

(13)

where λm and δn are the eigenvalues of the Fourier expansion in the x and y directions,
respectively, βmn is the eigenvalue of the cross-coupled Fourier expansion; λm = mπ/a,
δn = nπ/b; and βmn =

√
λ2

m + δ2
n. Ai0 and Bi0 are the zero-order Fourier coefficients;

Aim and Bim are the mth Fourier coefficients that represent the temperature change in the
x-direction under constant z; Ain and Bin are the nth Fourier coefficients that represent
the temperature change in the y-direction under constant z; and Aimn, Bimn is the Fourier
cross-coupling coefficient. The heat flux density of each layer can be obtained by

qzi(x, y, z) = −ki
dθi(x,y,z)

dz = −ki(Bi0 +
∞
∑

m=1
λm cos(λmx)[Aimsinh(λmz) + Bim cosh(λmz)]

+
∞
∑

n=1
δn cos(δny)[Ainsinh(δnz) + Bin cosh(δnz)]

+
∞
∑

m=1

∞
∑

n=1
βmn cos(λmx) cos(δny)[Aimnsinh(βmnz) + Bimn cosh(βmnz)]).

(14)

Assuming that the heat generated by the chip is uniformly applied to the lower surface
of the chip and that the heat flux density is applied as a boundary condition to the upper
surface of the chip solder, the four sides of the entire module and the upper surface of
the chip solder layer that is not in contact with the chip are insulated, and the bottom
surface of the baseplate is subjected to convective boundary conditions. When the contact
between the layers is perfect, the heat flux density and temperature between the layers
are continuous. Therefore, the boundary conditions for the IGBT modules can be written
as [40] 

∂θ1
∂z

∣∣∣
z=0,contact area

= − Q
k1cd , ∂θ1

∂z

∣∣∣
z=0,not contact area

= 0

ki
∂θi
∂z

∣∣∣
z=zi

= ki+1
∂θi+1

∂z

∣∣∣
z=zi

, θi(x, y, zi) = θi+1(x, y, zi)

k6
∂θ6
∂z

∣∣∣
z=z6

= −hθ6|z=z6

(15)

where zi = ∑i
g=1 tg.

Based on the boundary conditions on the upper surface of the first layer, it can be
concluded that [40]

B1m = −4Q cos(λmXc) sin(λmc/2)
abck1λm

2

B1n = −4Q cos(δnYc) sin(δnd/2)
abdk1δn

2

B1mn = −16Q cos(λmXc) sin(λmc/2) cos(δnYc) sin(δnd/2)
abcdk1λmδn βmn

B10 = −Q
k1ab

(16)

Based on the bottom boundary conditions of the module, it can be concluded that [40]

B6p(ξ) = −σ6(ξ)A6p (17)
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where ξ can be replaced by λm, δn, βmn, respectively, and the subscripts p of the correspond-
ing variables are m, n, and mn, respectively. Then, σ6 is given by [40]

σ6 =
ξsinh(ξz6) + h/k6 cosh(ξz6)

ξ cosh(ξz6) + h/k6sinh(ξz6)
. (18)

Based on the boundary conditions between each layer, it can be concluded that [40]

σi =
−Bip

Aip
=

σi+1ϕi − ψi
σi+1ψi − ρi

, (19)

where 

ϕi = cosh2(ξ
i

∑
j=1

tj)− ki/ki+1sinh2(ξ
i

∑
j=1

tj)

ψi = sinh(ξ
i

∑
j=1

tj) cosh(ξ
i

∑
j=1

tj)(1 − ki/ki+1)

ρi = sinh2(ξ
i

∑
j=1

tj)− ki/ki+1 cosh2(ξ
i

∑
j=1

tj)

.

Once σ6(ξ) is calculated, further calculations can be performed to obtain σ5(ξ), σ4(ξ),
σ3(ξ), σ2(ξ), and σ1(ξ). By combining Equations (16) and (19), A1m, A1n, and A1mn can be
obtained. And Aip, Bip(i = 2, 3, 4, 5, 6) can be sequentially calculated from [40]{

A(i+1)p = Aipϕi + Bipψi
B(i+1)p = −(Aipψi + Bipρi)

. (20)

The zero-order Fourier coefficients can be calculated by [40]

Bi0 = − Q
kiab

A60 =
Q
ab

(
1
h
+

z6

k6
)

Ai0 =
Q
ab

(
1
h
+

6−i
∑

j=i+1

tj

k j
+

zi
ki
), i = 1, 2, 3, 4, 5

. (21)

3. Thermal Resistance Model Considering Multi-Chip Thermal Coupling
3.1. Improved Calculation Method of Coupling Thermal Resistance

Thermal coupling effects must be considered in IGBT modules with multiple chips.
When heat is generated by multiple chips, there may be overlapping areas of heat diffusion
among the chips, resulting in thermal coupling effects (TCEs). The effective heat conduction
area is equivalent to a circle to facilitate the calculation. Figure 7 shows the thermal coupling
region. The overlapping region is the thermal coupling region, and the corresponding
thermal resistance is the thermal coupling resistance. The thermal coupling resistance
increases the total thermal resistance, thereby increasing the junction temperature. Dpq is
the distance between the center of chip p and the center of chip q.

Figure 8 shows the thermal coupling x-y plane cross-section of the jth thin layer:
rp represents the effective heat conduction radius of chip p in the jth thin layer, and rq
represents the effective heat conduction radius of chip q in the jth thin layer.

The cosine theorem can be used to obtain the angles, and αp and αq are given by
αp = cos−1(

r2
p(z)+D2

pq−r2
q(z)

2rp(z)Dpq
)

αq = cos−1(
r2

q(z)+D2
pq−r2

p(z)
2rq(z)Dpq

)
. (22)
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The thermal coupling area can be calculated by

Apq,j = (
⌢
AOp AB − AOp AB) + (

⌢
AOq AB − AOq AB)

= [
2αp
2π πrp

2(z)− 1
2 rp

2(z) sin(2αp)]

+[
2αq
2π πrq

2(z)− 1
2 rq

2(z) sin(2αq)].

(23)

The effective heat conduction area of the jth thin layer can be obtained using
Equation (7), and the effective heat conduction radius curve can be obtained using
Equation (9). When the distance between two chips is too large and satisfies (r p(z6) +

rq(z6)) ≤ Dpq, there is no heat diffusion overlap, and no TCE occurs. When the distance
between the two chips is relatively close and satisfies (r p(z6) + rq(z6)) > Dpq, a heat flux
diffusion overlap area will occur, resulting in TCEs.
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As shown in Figure 8, the starting layer of the thermal coupling region is the layer
where the sum of the effective heat conduction radius of chip p and the effective heat
conduction radius of chip q is equal to the distance between the center points of the
two chips, that is, when rp,j−1 + rq,j−1 ≤ Dpq, rp,j + rq,j > Dpq is satisfied, and the jth thin
layer is the starting layer of the thermal coupling region.

Compared with the methods in [43], the proposed method can directly obtain the
effective heat conduction radius of the two chips from the heat flux density curve. The
starting position of the thermal coupling region can be determined based on the rela-
tionship between the effective heat conduction radius of the two chips and the distance
between them. Compared to reference [43], the proposed method has a simpler and clearer
calculation process.
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The coupling thermal resistance of chip q to chip p includes the coupling heat con-
duction resistance and coupling convective heat transfer resistance. The coupling heat
conduction resistance of chip q to chip p in the jth thin layer can be calculated by [43]

∆Rpq,j =
Apq,j

Aq,j
∆Rq, (24)

where Apq,j represents the thermal coupling area of the jth thin layer, Aq,j represents the
effective heat conduction area of the jth thin layer of chip q, and ∆Rq represents the thermal
resistance of the jth thin layer of chip q.

The coupling convective heat transfer resistance of chip q to chip p is given by

Rpq_conv =
Apq(z6)

Aq(z6)
Rq_conv, (25)

where Apq(z6) represents the coupled convective heat transfer area of chip q to chip
p, Aq(z6) represents the effective convective heat transfer area of chip q, and ∆Rq_conv
represents the convective heat transfer resistance of chip q.

3.2. Program Implementation Steps for Calculating Multi-Chip Junction Temperature

The improved calculation process for the junction temperature considering the thermal
characteristics of the chips and ceramic materials is described as follows:

Step 1: The boundary conditions, material parameters, and size parameters of the
IGBT module are entered.

Step 2: The Fourier coefficients are solved using Equations (16)–(21), and the path
perpendicular to the center of the chip downwards is taken. The heat flux density curve
qz(z) from the upper surface of the chip solder layer to the bottom of the baseplate is
obtained using Equation (14).

Step 3: The effective heat conduction area curve A(z) from the upper surface of the
chip solder layer to the bottom of the baseplate is calculated using Equation (7), and the
effective heat conduction radius curve r(z) is calculated using Equation (9). Linear fitting is
used to obtain the tangent values of the heat diffusion angle from the chip solder layer to
the baseplate.

Step 4: The thermal resistance Ri(i = 1, 2, 3, 4, 5, 6) and thermal capacitance
Ci(i = 1, 2, 3, 4, 5, 6) of each layer are derived using Equations (1)-(3). Assuming that
the effective heat conduction area of the chip layer is the size area of the chip, the ther-
mal resistance Rchip and thermal capacitance Cchip of the chip layer are obtained from
Equations (2) and (3), respectively, and the convective heat transfer resistance Rconv is ob-
tained from Equation (4).

Step 5: Given the initial thermal conductivities of the chip and ceramic, the temper-
atures Tchip_con and T3_con corresponding to kchip and k3 are calculated with Equation (10).
Tchip_ct and T3_ct are the temperatures at the center of the chip and ceramic layers, respec-

tively.
∣∣∣Tchip_con − Tchip_ct

∣∣∣, |T3_con − T3_ct| are calculated, and when the error does not meet
the requirements, new values are assigned to kchip and k3.

Step 6: Steps 2, 3, 4, and 5 are repeated until
∣∣∣Tchip_con − Tchip_ct

∣∣∣ < ε1&|T3_con − T3_ct| <
ε2, and then the iteration stops. At this point, the obtained kchip and k3 are matched with
the corresponding material temperature, and a thermal impedance model considering the
TS of the material is obtained.

Step 7: The starting layer of the thermal coupling region is determined, the thermal
coupling area is obtained from Equation (23), the thermal coupling resistance is obtained
from Equations (24) and (25), and the junction temperature is obtained considering TCEs.

A program flowchart for calculating the multichip junction temperature is shown in
Figure 9.
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actual IGBT module model, the upper copper layer in Figure 10 does not have a pattern, 
and the area of the solder layer is larger than that of the chip. Although the simulation 
model of the IGBT module has been simplified, it is known from reference [40] that the 
simplified structure matches the junction temperature obtained from the actual structure 
very well. The parameters of each layer of the IGBT module, including the size of the IGBT 
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4. Simulation Verification

To validate the proposed method, the SKM50GB12T4 IGBT module was selected,
and its ANSYS16.0 simulation model was built for steady-state and transient thermal
simulations. Figure 10 shows the simulation model of the constructed single chip. Unlike
the actual IGBT module model, the upper copper layer in Figure 10 does not have a pattern,
and the area of the solder layer is larger than that of the chip. Although the simulation
model of the IGBT module has been simplified, it is known from reference [40] that the
simplified structure matches the junction temperature obtained from the actual structure
very well. The parameters of each layer of the IGBT module, including the size of the IGBT
module, thickness, specific heat capacity, thermal conductivity, and position of the chip, are
listed in Table 2.
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The results obtained from simulation can be used to calculate the heat conduction
resistance Rsim and convective heat transfer resistance Rconv_sim:{

Rsim =
Tchip_sim−Ta

Q
Rconv_sim = Tc−Ta

Q
(26)

where Tchip_sim is the junction temperature obtained through the simulation and Tc is the
case temperature.
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Table 2. IGBT module parameters.

Parameter Value Parameter Value

a 30.3 mm c2, c4, c6 384 J/(kg·◦C)
b 28 mm c3 (11) J/(kg·◦C)
c 7.2 mm kchip (10) W/(m·◦C)
d 6.75 mm k1, k5 54 W/(m·◦C)

tchip 0.15 mm k2, k4, k6 390 W/(m·◦C)
t1 0.1 mm k3 (10) W/(m·◦C)

t2, t4 0.3 mm Xc 11.25 mm
t3 0.38 mm Yc 14.485 mm
t5 0.12 mm Xc2 25 mm
t6 2.8 mm Yc2 22 mm

cchip (11) J/(kg·◦C) Ta 25 ◦C
c1, c5 230 J/(kg·◦C)

Figure 11 shows the thermal resistance of the chip and ceramic layers, and the tangent
of the heat diffusion angle of the ceramic layer is obtained by the FEM considering the
TS, the proposed method considering the TS, and the method without considering the TS
at different power losses. Because device suppliers typically do not provide information
on active and passive areas, it can be assumed that the heat is evenly distributed within
the chip and is transferred vertically downwards with a heat diffusion angle of 0◦. The
influence of temperature on the tangent value of the heat diffusion angle of the chip layer
is not shown.

As shown in Figure 11, when the value of power loss is low, the results obtained by
the three methods are relatively close. However, as the power loss increases, the difference
between the results obtained by the method without considering TS and the FEM becomes
increasingly significant. In contrast, the result obtained by the proposed method is still very
close to that of the FEM, and their error is very small. This indicates that as the power loss
increases, the TS of the material has an increasingly significant impact on the heat diffusion
angle of the ceramic layer and the thermal resistance of the chip and ceramic layers. This is
because as the material temperature increases, the values of thermal conductivity of the
ceramic and chip layers deviate more from those at the predetermined temperature. The
decrease in the thermal conductivity results in an increase in the thermal resistance and a
decrease in the tangent value of the heat diffusion angle.

Under different boundary conditions of power loss, the junction temperatures obtained
by the FEM considering the TS, the proposed method considering the TS, and the method
without considering the TS are shown in Figure 12. This shows that as the power loss
increases, the error of the method without considering TS compared to the FEM considering
TS increases, even exceeding 9% when the power loss is 200 W. When the power loss is less
than 200 W, the maximum error of the method proposed in this study does not exceed 4%,
which is more than 5% lower than that of the method that does not consider the TS.

This indicates that considering the TS can significantly improve the accuracy of the
junction temperature. The results obtained using the proposed method are extremely close
to those obtained using the FEM, which verifies that the proposed method is effective
and accurate.

The proposed method calculates a lower junction temperature than the FEM because
using the midpoint temperature of the ceramic layer and chip layer to represent the
temperature of the entire layer is not sufficiently accurate, resulting in a higher thermal
conductivity, a larger heat diffusion angle, and a lower thermal resistance. This leads to a
lower junction temperature.

To increase the accuracy of the calculated junction temperature, the chip and ceramic
layers can be refined into multiple thin layers. The temperature of each thin layer and the
thermal conductivity of each thin layer can be determined iteratively. At this point, the
temperature and thermal conductivity of each point in the chip and ceramic layers match
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the fitting equation very well. Although this method can improve accuracy, it introduces an
iterative calculation process to determine the thermal conductivity of each thin layer, which
significantly reduces the calculation speed. Owing to the poor linearity of the effective
heat conduction radius curve of the baseplate, the baseplate can be divided into multiple
layers, and linear fitting can be performed on each layer separately. This will result in a
more accurate heat diffusion angle of the baseplate, thereby improving the accuracy of the
thermal impedance model.
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When the power loss is 120 W, under different boundary conditions of convective heat
transfer, the junction temperatures derived from the FEM considering TS, the proposed
method considering TS, and the method without considering TS are shown in Figure 13.
Under different convective heat transfer conditions, the junction temperature obtained by
the proposed method considering TS is very close to that obtained by the FEM, whereas
the junction temperature obtained by the method without considering TS is significantly
different from that obtained by the FEM. This verifies that the proposed method is effective
under different boundary conditions of convective heat transfer.



Electronics 2024, 13, 4465 15 of 20

Electronics 2024, 13, x FOR PEER REVIEW 15 of 21 
 

 

exceed 4%, which is more than 5% lower than that of the method that does not consider 
the TS. 

This indicates that considering the TS can significantly improve the accuracy of the 
junction temperature. The results obtained using the proposed method are extremely 
close to those obtained using the FEM, which verifies that the proposed method is effective 
and accurate. 

 
Figure 12. Junction temperature under different methods and power losses. 

The proposed method calculates a lower junction temperature than the FEM because 
using the midpoint temperature of the ceramic layer and chip layer to represent the tem-
perature of the entire layer is not sufficiently accurate, resulting in a higher thermal con-
ductivity, a larger heat diffusion angle, and a lower thermal resistance. This leads to a 
lower junction temperature. 

To increase the accuracy of the calculated junction temperature, the chip and ceramic 
layers can be refined into multiple thin layers. The temperature of each thin layer and the 
thermal conductivity of each thin layer can be determined iteratively. At this point, the 
temperature and thermal conductivity of each point in the chip and ceramic layers match 
the fitting equation very well. Although this method can improve accuracy, it introduces 
an iterative calculation process to determine the thermal conductivity of each thin layer, 
which significantly reduces the calculation speed. Owing to the poor linearity of the effec-
tive heat conduction radius curve of the baseplate, the baseplate can be divided into mul-
tiple layers, and linear fitting can be performed on each layer separately. This will result 
in a more accurate heat diffusion angle of the baseplate, thereby improving the accuracy 
of the thermal impedance model. 

When the power loss is 120 W, under different boundary conditions of convective 
heat transfer, the junction temperatures derived from the FEM considering TS, the pro-
posed method considering TS, and the method without considering TS are shown in Fig-
ure 13. Under different convective heat transfer conditions, the junction temperature ob-
tained by the proposed method considering TS is very close to that obtained by the FEM, 
whereas the junction temperature obtained by the method without considering TS is sig-
nificantly different from that obtained by the FEM. This verifies that the proposed method 
is effective under different boundary conditions of convective heat transfer. 

Figure 12. Junction temperature under different methods and power losses.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 13. Junction temperature under different methods and convective heat transfer. 

Figure 14 shows the transient junction temperatures obtained by the FEM consider-
ing the TS, the proposed method considering the TS, and the method without considering 
the TS when the power loss is 120 W. Compared with the FEM, the proposed method 
obtains a faster increase in the junction temperature. Although the junction temperature 
rise process is somewhat different, the final steady-state junction temperature obtained is 
almost the same. Because there are no spikes during the process of junction temperature 
rise, the difference in the temperature rise of each junction has little effect on the reliability 
analysis of the chip. However, the steady-state junction temperature obtained by the 
method without considering TS differs significantly from that derived using the FEM. 

 
Figure 14. Transient junction temperature under different methods. 

By increasing the values of the thermal capacitance of each layer obtained using the 
proposed method, the transient junction temperatures compared with the FEM were ob-
tained when the values of the thermal capacitance of each layer obtained using the pro-
posed method were increased by 10%, 30%, and 50%, as shown in Figure 15. The larger 
the proportion of increase in the value of thermal capacitance, the slower the rate of junc-
tion temperature rise, and the closer the junction temperature curve obtained by the pro-
posed method is to that obtained by the FEM. This indicates that the thermal capacitance 
of each layer is a key factor that affects the rate of increase of the junction temperature. 

Figure 13. Junction temperature under different methods and convective heat transfer.

Figure 14 shows the transient junction temperatures obtained by the FEM considering
the TS, the proposed method considering the TS, and the method without considering
the TS when the power loss is 120 W. Compared with the FEM, the proposed method
obtains a faster increase in the junction temperature. Although the junction temperature
rise process is somewhat different, the final steady-state junction temperature obtained is
almost the same. Because there are no spikes during the process of junction temperature
rise, the difference in the temperature rise of each junction has little effect on the reliability
analysis of the chip. However, the steady-state junction temperature obtained by the
method without considering TS differs significantly from that derived using the FEM.

By increasing the values of the thermal capacitance of each layer obtained using
the proposed method, the transient junction temperatures compared with the FEM were
obtained when the values of the thermal capacitance of each layer obtained using the
proposed method were increased by 10%, 30%, and 50%, as shown in Figure 15. The larger
the proportion of increase in the value of thermal capacitance, the slower the rate of junction
temperature rise, and the closer the junction temperature curve obtained by the proposed
method is to that obtained by the FEM. This indicates that the thermal capacitance of
each layer is a key factor that affects the rate of increase of the junction temperature. The
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larger the value of the thermal capacitance in each layer, the slower the rise in the junction
temperature and the longer it takes to reach a steady state.
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Using the same computer, the CPU model is Intel (R) Xeon (R) Gold6426Y, which
is a 32-core processor with 64 GB of running memory. The number of nodes in the FEM
is 140,000, and the solution time is as long as 7.5 min. However, the solution time of
the proposed method is 51 s, which reduces the solution time by 88.7% and significantly
accelerates the solution speed.

When the power loss is applied to chip p, Equation (26) can be used to obtain the heat
conduction resistance Rp_sim and convective heat transfer resistance Rp_conv_sim of chip p.
When power loss is applied to chips p and q, Equation (26) can be used to obtain the heat
conduction resistance Rp_sim2 and convective heat transfer resistance Rp_conv_sim2 of chip
p. The coupling heat conduction resistance Rpq_sim and coupling convective heat transfer
resistance Rpq_conv_sim of chip q to chip p through simulation are given by{

Rpq_sim = Rp_sim2 − Rp_sim
Rpq_conv_sim = Rp_conv_sim2 − Rp_conv_sim

(27)
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Based on considering the TS of a single chip and considering the TCE between chips,
Figure 16 shows the multi-chip thermal simulation model. The power loss of both chips
was 120 W, and Table 2 lists the coordinates of the two chips. It can be seen from Figure 16
that the junction temperature of one of the chips was 139.51 ◦C.
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Table 3 shows the junction temperatures obtained using the different methods. It
shows that based on considering the TS mentioned above, considering the TS and TCEs
between chips can reduce the error by 12.6%. Considering the TCEs can greatly enhance
accuracy. The error of the proposed method considering the TS and TCEs is only 7.73%,
which verifies that the proposed method is highly accurate. The starting layer of the
thermal coupling region was located in the baseplate in this simulation. The coupling
heat conduction resistance calculated using the proposed method was 0.00083 (K/W),
and the coupling convective heat transfer resistance was 0.146 (K/W). This indicates that
the coupling convective heat transfer resistance contributes significantly to the junction
temperature, whereas the contribution of the coupling heat conduction resistance to the
junction temperature can be ignored. The reason for the lower junction temperature
calculated using the proposed method may be the simplification of the shape of the effective
heat conduction area. Actually, the shape of the effective heat conduction area is similar
to a rectangle, with curvature at all four corners. This study simplified the shape of the
effective heat conduction area into a circle to facilitate the calculation. This leads to a
smaller calculated coupled heat conduction area, resulting in a lower calculated coupled
thermal resistance.

Table 3. Junction temperatures obtained by different methods.

Method Junction Temperature (◦C) Error (%)

FEM 139.51 0
Proposed method considering TS 111.15 20.33

Proposed method considering TS and TCE 128.72 7.73

5. Conclusions

This study proposes a thermal impedance model that considers the nonlinear thermal
characteristics of the TS of chips and ceramic materials. Using the Fourier series method to
analyze the heat flux density, the effective heat conduction radius curve was obtained, and
then the heat diffusion angle was obtained through linear fitting. Considering the nonlinear
thermal characteristics of the material, the modified values of the thermal resistance and
thermal capacitance were obtained, thus obtaining a single-chip thermal impedance model
that considers the nonlinear thermal characteristics of the material. On this basis, a thermal
resistance model for multiple chips was obtained considering the TCEs of multiple chips.
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To verify the reliability of the method proposed in this study, a finite element model
was constructed and simulated. Through simulation verification, the following can be
taken to be the conclusions of this study:

1. When the power loss was less than 200 W, compared with the FEM, the maximum
errors in the thermal resistance of the ceramic layer, the thermal resistance of the chip
layer, and the tangent of the heat diffusion angle of the ceramic layer obtained by
the method proposed in this study were 6.73%, 1%, and 5.5%, respectively. However,
compared with the FEM, the maximum errors in the thermal resistance of the ceramic
layer, thermal resistance of the chip layer, and tangent of the heat diffusion angle of
the ceramic layer obtained by the method without considering the TS of the material
were 30%, 25.1%, and 17.34%, respectively. After considering the TS of the ceramic
and chip materials, the accuracy of the thermal resistance of the ceramic and chip
layers and the accuracy of the tangent value of the ceramic layer heat diffusion angle
were greatly improved.

2. When the power loss is less than 200 W, the error of the method without considering
TS compared to the FEM considering TS increases, even exceeding 9% when the
power loss is 200 W. When the power loss is less than 200 W, the maximum error of
the method proposed in this study does not exceed 4%, which is more than 5% lower
than that of the method that does not consider the TS. This indicates that the nonlinear
thermal characteristics of the chip and ceramic materials can affect the heat diffusion
angle and thermal resistance of the chip and ceramic layers, thereby affecting the
junction temperature. Considering the TS of the materials can significantly improve
the accuracy of the junction temperature.

3. Compared to the FEM, the junction temperature obtained by the proposed method
increased faster. Although there are some differences in the process of junction
temperature rise, the final steady-state junction temperature obtained is almost the
same. The rise in junction temperature becomes slower by increasing the thermal
capacitance of each layer, indicating that thermal capacitance affects the speed of the
junction temperature rise.

4. Based on considering the TS mentioned above, considering the TS and TCEs between
chips can reduce the error by 12.6%, and the error of the proposed method considering
TS and TCEs is only 7.73%. This indicates that the TCEs between chips will greatly
increase the junction temperature of the chips, and considering the TCEs can greatly
improve the accuracy.

5. Compared to the FEM, the solution time of the proposed method was reduced by
88.7%. In addition, the FEM has a complex modeling process, whereas the proposed
method requires only the input of the size, material, and boundary parameters of the
IGBT modules.

Compared to [23,31], the proposed method has a similar accuracy but a much faster
solving speed. Compared to reference [33], the proposed method not only has a higher
accuracy but also has a much faster solving speed. Compared to references [25,29], the
proposed method not only has high accuracy but is also easier to implement.

Overall, the method proposed in this article not only has high computational ac-
curacy but also has a fast solving speed and simple implementation process, making it
highly practical.

A future research agenda is to conduct experimental verification, which can better
validate the method proposed in this study.
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