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Abstract: We present TOLGAN that generates traditional oriental landscape (TOL) image from a
map that specifies the locations and shapes of the elements composing TOL. Users can create a
TOL map by using a user interface or a segmentation scheme from a photograph. We design the
generator of TOLGAN as a series of decoding layers where the map is applied between the layers.
The generated TOL image is further enhanced through an AdaIN architecture. The discriminator of
TOLGAN processes a generated image and its groundtruth TOL artwork image. TOLGAN is trained
through a dataset composed of paired TOL artwork images and their TOL maps. We present a tool
through which users can produce a TOL map by specifying and organizing the elements of TOL
artworks. TOLGAN successfully generates a series of TOL images from the TOL map. We evaluate
our approach using a quantitative way by estimating FID and ArtFID scores and a qualitative way
by executing two user studies. Through these studies, we prove the excellence of our approach by
comparing our results with those from several important existing works.

Keywords: traditional oriental landscape (TOL); GAN; SPADE; generator; discriminator

1. Introduction

Traditional orient landscape (TOL) is a fine art technique beloved in North-east Asian
countries including Korea, China and Japan. The artists in those countries have created
various landscapes using brushes with black ink. They express objects in a landscape
such as mountains, trees, rocks, cloud, water and buildings in their own abstract shape.
The strokes that express salient shape of the objects spread black ink on the paper. Since
many well-known TOL artworks are created hundreds years ago, most of the artworks
turn gray and yellow.

In computer graphics and computer vision society, many researchers have presented
various computational models that produce stroke patterns of TOL brushes [1–10]. They
build the skeleton of the strokes using controllable curve and the shape of the strokes
using offset from the skeleton curves. Some of them exploit physically-based models for
simulating the spread of ink on the surface of the paper. However, they encounter an
important limitation in expressing the abstraction and distortion of the objects in TOL.

The progressive of deep learning has presented various schemes that produce images
with various styles from the input photographs. These schemes analyze the style from the
sampled artworks and apply them to the target photos. The styles are transferred through a
texture structure such as Gram matrix or a set of loss functions. These schemes successfully
transfer the styles from many famous artworks such as Starry Nights by Gogh, Scream
by Munch and Portraits by Picasso to an arbitrary input photograph. These schemes,
however, have limitations in transferring TOL style to a photograph. Since TOL artworks
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are expressed by strokes and spaces, the schemes that transfer texture-based styles are not
effective for TOL artworks.

We present a deep learning-based approach for producing TOL artwork images from
a TOL map that specifies the shape and configuration of the components of TOL images.
TOL map is generated from users or input photographs. The components of a TOL map
including sky, land, water, mountains or grasses, etc., is denoted as TOL components. We
collect many TOL artwork images and analyze the components of the images. Then, we
segment the images into the components. Afterwards, we devise a deep learning-based
framework including GAN architecture and AdaIN network that can produce TOL image
from a user-initiated map. The GAN architecture is trained using the dataset composed
of the pairs of TOL image and its map. The result of GAN architecture can successfully
mimic the style of TOL artwork, but it suffers from unclear strokes. To address this
limitation, we further apply AdaIN network to enhance the strokes. Our framework can
produce visually-convincing TOL artwork images from user-initiated map or an input
landscape photograph.

A key advantage of our framework is its ability to generate visually pleasing TOL art-
work styles using user-initiated TOL maps effectively. While generating TOL artwork styles
has been challenging, our approach successfully produces high-quality TOL artwork styles.

Another advantage lies in the efficient training process achieved by leveraging ap-
propriate components of TOL artwork images. The complex and abstract nature of TOL
artwork images restricts effective training of the existing TOL generation models. To
address this challenge, our framework utilizes TOL artwork components extracted from
experts as training data, which enables successful training with just 253 samples.

Finally, our approach does not require users to create a detailed TOL map for generat-
ing TOL artwork images. Furthermore, the TOL map extracted from an input image is not
required to show exact contour. Note that the TOL artwork technique prioritizes abstract
representation by simplifying and compressing subjects, emphasizing their approximate
shape and position over precise details. Therefore, verifying the accuracy of TOL maps is
not a critical concern in our framework. This property eases the generation of TOL map,
which is an input to our framework.

This paper is organized as follows. In Section 2, we briefly review the existing works
for generative models and TOL image generation models. We explain our TOL generation
model in Section 3. In Section 4, we describe the preparation of the TOL image dataset and
the training process. We present the implementation details and results and evaluate our
results in Section 5 and Section 6, respectively. Finally, we conclude this paper and suggest
future study in Section 7.

2. Related Work

In computer graphics society, several studies have been proposed for simulating
traditional oriental paintings [1–10]. Recently, the progress of deep learning techniques
presents various schemes for producing traditional oriental paintings.

2.1. Deep Learning-Based General Approach

Gatys et al. [11] presented a pioneering work that transfers a texture-based style
captured from a source image to the content of a target image. This scheme can be applied
to transfer TOL style to a photograph. Ulyanov et al. [12] and Huang et al. [13] improved
Gatys et al.’s work to present a stable and efficient style transfer. These texture-based
style transfer schemes are very effective for preserving the content of the target image,
but they suffer from improper transfer of the TOL stroke patterns, which are very unique
characteristics of TOL artworks.

Generative adversarial network (GAN) [14] presents a very influential framework for
synthesizing various styles on images. Mizra and Osindero [15] presented a conditional
GAN that considers user-specified conditions for controlling styles and contents in the
produced images. Isola et al. [16] presents pix2pix, one of effective schemes that produce
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style transfer between two domains. Later, Zhu et al. [17] presented CycleGAN that
introduces cycle consistency loss to resolve the constraint of paired training dataset of
pix2pix framework. Park et al. [18] continued this approach by introducing SPADE that
controls the constraints of style transfer using a region map that specifies the contents
to produce. Another direction is MUNIT, which was presented by Huang et al. [19],
that translates images in multi domains. These schemes present a general-purpose style
transfer framework between images of multiple domains. Therefore, they can be employed
for producing images of TOL style. However, they have a limitation that the style they
synthesize is produced only mimicking stroke patterns of TOL artworks. They cannot
synthesize the deformation of objects, which is frequently observed in many TOL artworks.

The general approaches applied for producing traditional oriental paintings show a
serious limitation in producing visually pleasing quality, since they does not consider the
unique stroke patterns of oriental paintbrush observed in the traditional oriental paintings.
They also do not consider the difference of the stroke patterns on different objects in the
traditional oriental paintings.

2.2. Deep Learning-Based TOL Generation Approach

Li et al. [20] presented a framework that transfers input photograph into Chinese
traditional painting style. The abstraction of Chinese traditional painting is trained and
expressed through modified xDoG filters, which further process the result images of the
generator. The results of the modified xDoG filters are processed through a discriminator
with three loss functions including a morphological filter loss. Lin et al. [21] presented a
multi-scale GAN model that transfers sketches to Chinese paintings. The generator of this
model is trained with L1 and adversarial losses. By adding an edge detector, this model can
operate a style generation similar to that of neural style transfer. This model successfully
abstracts thick lines of the Chinese paintings, but they cannot properly express the spread
of ink.

He et al. [22] presented ChipGAN that produces Chinese ink wash painting style from
a photograph. They apply a brush stroke constraint on a generative model to extract an
edge-based representation, which is further transferred to a Chinese ink wash painting
style using an adversarial loss. They also apply a cycle consistence loss for the input
photograph and the reconstructed photograph from the result of the generator. The result
image of the generator is further eroded and blurred with ink wash loss for the final
result. Zhou et al. [23] presented Shanshui-DaDA, an interactive and generative model
that produces Chinese shanshui painting style using CycleGAN. Users of this model
are presented with a web-based interface through which users draw sketches for the
Shanshui-DaDA. Xue [24] presented SAPGAN that combines a couple of GAN structures
including sketch GAN and paint GAN. Sketch GAN produces an edge map from an input
image through either Relative Average Square GAN or StyleGAN2 model, and paint GAN
executes edge-to-paint translation using either pix2pix, pix2pixHD or SPADE. The paint
GAN is trained with a paired dataset of real Chinese paintings and their corresponding
edge maps.

Hung et al. [25] presented UTGAN, which extends CycleGAN for transforming images
from very different two image sets. They employ UTGAN for transforming two different
image sets such as portraits and Shan-Shui paintings. They devised a special loss term
for their UTGAN in order to transform very different image sets. However, they do not
support the transformation for the landscape photos and traditional oriental landscapes.

Chung and Huang [26] presented a traditional Chinese painting using a cycle-consistent
GAN with pix2pix. They presented a border enhancing scheme in order to enhance the de-
tails of border images, which improves the quality of resulting images. However, they suffer
from obscure stroke patterns inside an object whose border is rendered using enhanced
strokes by their scheme.

The deep learning-based TOL models preserve the stroke patterns of traditional
oriental paintings to their input photographs. However, these models have a limitation in
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applying different stroke patterns to the objects in a scene. We resolve this limitation by
sampling the stroke patterns for the objects and applying them to the appropriate objects,
which presents very visually pleasing quality.

3. TOL Generation Framework
3.1. Overview

The overall structure of our TOL generation framework is presented in Figure 1.
The input to our model is a TOL map, which is either initiated from users or extracted from
an input photograph through an image segmentation model. The input to the generator is a
latent vector Z and the TOL map, which is inserted to each SPADE layer of the architecture.
Note that Z is 512 dimension, which is used in GauGAN [18]. Similar to GauGAN, Z is
constructed from normal Gaussian distribution. The result of the generator mimics the
style of TOL artwork image, which is further processed through AdaIN architecture to
emphasize and to enhance the salient strokes of TOL brushes. The generated TOL images
are processed through a discriminator. The overview of our framework is presented in
Figure 1.

Figure 1. An overview of our TOL generation framework.

3.2. Model Architecture
3.2.1. Generator

Our generator consists of two main components: the TOL generator and the AdaIN
module. The TOL Generator takes a latent vector Z and a TOL map as inputs to produce a
TOL image. The latent vector enables the generation of diverse TOL images, while the TOL
map specifies the configuration of TOL map components.

Our generator is constructed using a combination of convolutional layers, SPADE
modules, skip connections, upsampling operations, and the LeakyReLU activation function.
The SPADE module at each stage consistently takes the TOL map as input. The SPADE
module executes a spatial normalization where the pixels in each TOL components are
normalized independent to the pixels belong to different components. This SPADE module
is very effective in generating images, which are composed of several components. Addi-
tionally, skip connections are applied at every corresponding stage. The arthitecture of our
generator is described in Figure 2.

While the output of the TOL generator successfully replicates the general style of
TOL artwork, it falls short in accurately expressing the distinctive stroke effects, which is a
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key characteristic of TOL artwork. To address this limitation, we incorporate the AdaIN
module, which applies the stroke style of TOL artwork to the TOL image. This module is
pre-trained to enhance image boundaries and increase scene contrast. By integrating the
AdaIN module, we achieve the generation of TOL images that effectively capture both the
texture and stroke effects unique to TOL artwork.

Figure 2. The architecture of our generator. *n indicates that the same structure consists of n components.

3.2.2. Discriminator

Our discriminator is designed to differentiate between the final TOL images generated
by the generator and real TOL artwork images, which is collected in our TOL artwork
image dataset, while a generated TOL image is the result of our generator.

The detailed architecture of our discriminator is depicted in Figure 3. The Discrim-
inator is composed of a combination of convolutional layers, the LeakyReLU activation
function, and instance normalization.

The detailed configuration of our generator and discriminator is illustrated in
Figure 4.

Figure 3. The structure of our discriminator. *n indicates that the same structure consists of n components.
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Figure 4. The structure of our model. *n indicates that the same structure consists of n components.

3.2.3. Loss Function

The loss functions we employed for TOLGAN are feature matching loss and hinge
loss. The feature matching loss LFM is defined as follows:

LFM = ∑
i

wi||VGG19i(y)− VGG19i(G(z))||2,

where y belongs to TOL artwork images and G(z) belongs to generated TOL images. i
denotes the i-th layer of the VGG19 network.

The hinge loss LH is defined as follows:

LH = −Ez∼pz ,y∼pdata [min(0,−1 + D(D(z), y))]− Ez pz ,y∼pdata [D(G(z), y)].

4. Training
4.1. Building TOL Image Dataset

The first step of our building dataset is to collect TOL artwork images. First of all, we
collect traditional oriental artwork images from various websites and museum archives
as many as possible. As a result, we have collected 18K TOL artwork images including
landscape, portrait, and still-life, etc. At the end of the first step, we select landscape
artwork images by excluding portrait, still-life and other inadequate low-quality artwork
images. Finally, we select 4627 TOL artwork images for our purpose. In this step, we do not
include cultural or stylistic considerations during selection. We only consider the quality
and resolution of TOL artwork images.

The second step is preprocessing where we apply color correction and resizing for
the selected TOL artwork images. The images in our dataset are organized to have
256 × 256 resolution.

We illustrate some of the collected TOL artwork images in Figure 5.
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(a)

(b)

Figure 5. TOL image dataset: (a) The images belong to 18K TOL artwork images, (b) The selected
TOL images.

The third step is TOL map generation. We select the most frequently observed objects
in TOL artwork images as sky, close mountain, far mountain, ground, rock, grass, water,
close tree and far tree. In many TOL artwork images, characters or artists’ seal are observed.
These components are excluded. Persons and animals are also excluded, since they are
observed very rarely. These objects are denoted as TOL components. A TOL map is
composed of these TOL components segmented from a TOL artwork image. We select
253 images among the TOL artwork images and build TOL maps. For this purpose,
we implement a TOL map generation tool that segment regions corresponding to TOL
components of TOL artwork.

Finally, the TOL artwork images with TOL maps are augmented by flipping, tone
control and three-way rotation. Finally, we train our model with 11,418 images.

The process of building TOL image dataset is illustrated in Figure 6.
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TOL map generationpreprocessing

Resizing

Color correction

Generation of TOL map for sample images

The components of TOL map includes sky, close mountain, far 
mountain, ground, rock, grass, water, close tree and far tree

Augmentation

Tone control

Image resize

Image flip

TOL collection

Crawling from
Museum archives

Crawling from Websites

Figure 6. The process of building dataset.

4.2. Training Our Model

The paired set of real TOL artwork image with their matching TOL map is employed
for the training. The discriminator compares the generated TOL image from the TOL map
with its matching real TOL artwork image. This training process is executed for 120 epochs.
The training process of 120 epochs takes 100 h. We present the graphs of loss values for the
loss functions of our model in Figure 7.

Figure 7. The loss curves of our model.

5. Implementation and Results

We implemented our TOL generation framework on a personal computer with a
Pentium i7 CPU, 128 GB main memory and double nVidia RTX3090 GPUs. The software
environment is Python 3.9 with PyTorch 1.12.1 and torchvision 0.13.1. We employed Adam
optimizer whose β1 is 0.1 and β2 is 0.9. The learning rate is 0.0002. Further specific
hyperparameters are suggested in Table 1. In compared to many studies that employ high-
end GPUs such as A100 or H100, our framework is trained on RTX3090 GPU. Therefore,
we claim that our framework shows an efficient traing record.

After the training we implement a tool with a user interface for generating TOL
images (See Figure 8). This interface presents nine components of TOL artwork images.
The components cover sky, close mountain, far mountain, ground, rock, grass, water, close
tree and far tree. Users select the component to insert and draw the shape of components
in the left canvas of the interface. After finishing the drawing, they select the resolution of
the image to generate using the job shuttle and generate TOL image.

We present twelve TOL map images in Figure 9 and their corresponding TOL images
in Figure 10. For the comparison, some of them are generated from photographs.
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Table 1. The hyperparameters of our model.

D steps per G 1

batch size 1

optimizer Adam Adam (β1 = 0.1, β2 = 0.9)

preprocessing resize, crop, flip

crop size 256

number of labels 12

parameter initialization Xavier

GAN mode Hinge

training scheme TTUR

discriminator multiscale (no. of subnet = 2, no. of layer = 4)
ine epoch 120

normalization instance normalization

Figure 8. The user interface of our model.

Figure 9. Twelve different input TOL maps (a–l) drawn by the user for TOL generation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. Twelve generated TOL images (a–l), corresponding to each of the twelve input TOL maps
in Figure 9.
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6. Analysis
6.1. Comparison

We compare the results from our model with those from several important existing
works including MUNIT [19], ChipGAN [22], CycleGAN [17] and neural style transfer
(NST) [11]. For a comprehensive comparison, we selected the compared studies from
two areas: one is GAN-based study and the other is non GAN-based study. Further-
more, the GAN-based studies can be further categories into general purpose GAN and
TOL-specific GAN. MUNIT and CycleGAN are general-purposed GAN-based model that
transfers styles between various domains of images. We re-train MUNIT and CycleGAN
using the collected TOL images and landscape photographs. ChipGAN is a designated
GAN-based model for TOL image generation. Neural style transfer is one of the most
pioneering works for applying the styles captured from TOL to a photograph. The results
are presented in Figure 11 and are compared in Tables 2–4.

Table 2. The FID and ArtFID scores for the four existing studies and ours. The red figures denote the
smallest score.

MUNIT CycleGAN ChipGAN NST Ours

FID 213.5 198.4 235.7 187.6 154.5

ArtFID 185.7 156.3 176.3 163.3 131.5

Table 3. The results of a user study for two questions: The red figure denotes best result.

Question Models 01 02 03 04 05 06 07 08 Sum

MUNIT 0 0 0 0 0 0 0 0 0

ChipGAN 4 6 0 9 3 12 10 12 56

1 CycleGAN 0 0 5 5 0 0 4 0 14

NST 0 4 4 1 2 4 3 2 20

ours 26 20 21 15 25 14 13 16 150

MUNIT 0 0 0 0 0 0 0 0 0

ChipGAN 3 2 0 8 1 10 7 9 40

2 CycleGAN 0 5 5 8 2 3 5 0 28

NST 6 12 11 3 14 8 8 10 72

ours 21 11 14 11 13 9 10 16 150

Table 4. The results of a focus group evaluation: The red figure denotes best result.

Models 01 02 03 04 05 06 07 08 Average

MUNIT 2.5 1.8 2.2 2.1 2.2 2.1 2.2 1.9 2.13

ChipGAN 4.2 4.7 3.7 7.2 6.3 7.2 7.0 6.4 5.84

CycleGAN 3.3 4.0 5.8 5.7 2.9 5.4 5.7 1.7 4.31

NST 2.9 5.8 5.2 4.2 6.1 6.3 6.9 4.5 5.24

ours 6.9 7.4 7.6 7.7 7.6 6.5 7.1 6.3 7.14

6.2. Quantitative Evaluation

For the quantitative evaluation of our study, we estimate Frechet Inception Distance
(FID) and ArtFID [27] for the TOL images in Figure 11. FID is a widely used metric for
evaluating the quality and diversity of images generated by generative models, particularly
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GAN. It compares the distributions of real images and generated images by measuring the
distance between their feature representations. FID is calculated in the following formula:

FID(X, G) = ||µx − µg||2 + Tr(Σx + Σg − 2(ΣxΣg)
1/2),

where X and G are real and generated images. We set X as the TOL artwork images and G
as the generated TOL images.

ArtFID, which is originally devised to evaluate neural style transfer models, is also em-
ployed to estimate our results, since ArtFID is very effective for evaluating images with artis-
tic elements such as texture and brush strokes. FID is calculated in the following formula:

ArtFID = αFID(C, G) + βFID(S, G),

where C is a content image, S, a style image, and G, a generated image. In our study, C is
the input photograph, S is a TOL artwork image, and G is the generated TOL image. We
set α and β as 0.5, respectively.

We estimate both FID and ArtFID for the results from four existing schemes including
MUNIT, CycleGAN, ChipGAN and NST are compared with ours for the eight input
landscape images. The FID and ArtFID values from the results of four existing schemes
and ours are suggested in Table 2.

In Table 2, our results show lower FID and ArtFID scores than those from the existing
studies. Since our results preserve the TOL texture and stroke patterns better than those
from the existing studies, ours show lower FID and ArtFID scores.

6.3. Qualitative Evaluation

We evaluate our results in comparisons of two viewpoints: one comparison is with
the results from the existing works and the other comparison is with real TOL artwork
images. For this purpose, we design two tests: a user study and a focus group evaluation.
The participants for our user study are selected from ordinary people who do not have
special backgrounds on TOL artworks, and the participants for our focus group evaluation
is selected from those who have backgrounds on TOL artworks.

6.3.1. User Study

We hire thirty volunteer participants for a user study. nineteen of them are in their
twenties and eleven of them are in their thirties. seventeen of them are female and thirteen
are male. They are required to have not special backgrounds on TOL painting artworks.

We have two questions for the images in Figure 11.

1. Question 1 (Quality of the generated image): Among the five result images, select one
image that most resembles TOL style.

2. Question 2 (Preservation of input photograph): Among the five result images, select
one image that most resembles the input image.

Each participant marks one model for the eight images in Figure 11. We summarize the
marks from the participants and present the results in Table 3. For question 1, the scores of
our model are higher than those of the other models for all sample images. For question 2,
our model records higher scores for five images among eight sample images. Even though
our model outperforms for generating TOL style, some of the models show better results
for preserving shapes of the objects.

We further execute Chi-square test to prove that our results are preferred over other
results in a statistic way. Null hypothesis (H0) is that there is no evidence that our model is
preferred over other models. and Alternative hypothesis (H1) is that our model is preferred
over ours. After executing the Chi-square test, the p-value for Question 1 is 0.0000169 and
for Question 2 is 0.0000941. Since the p-values are less than 0.05, we can reject H0. This
indicates that our model is statistically and significantly preferred over other models.
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input MUNIT ChipGAN CycleGAN NST Ours

Figure 11. Comparison of our results with those from existing works.
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6.3.2. Focus Group Evaluation

We hire ten experts who have an experience of painting TOL artworks. All of them
major in oriental paintings. Three of them are senior undergraduate students, four of them
are graduate students, and three of them are professional oriental painting artists. Four of
them are female and six of them are male.

We ask the participants to evaluate the completeness of the TOL images generated
by our model in ten-point metric. The completeness includes both the authenticity and
the aesthetics. The authenticity estimates the similarity of our results with real TOL
artwork images. They have long been engaged in both the appreciation and creation of
TOL artwork, which has established their high standards for TOL artwork images. Their
evaluation standards include color fidelity, level of detail, and stroke effect. Based on these
standards, they are instructed to evaluate the similarity between the generated TOL images
and real TOL artwork images. The aesthetics metric assesses how well the generated TOL
images align with their aesthetic criteria. The participants are guided to consider these
two metrics in conjunction. The points range in (1 ∼ 10). They are instructed to mark the
generated TOL images by assuming the real TOL artworks have 10 points. The results are
presented in Table 4. Among the eight sample images, our results record highest scores for
six images.

6.4. Ablation Study

For an ablation study of our model, we compare two sets of generated TOL images
in Figure 12. The images in the upper row are generated without AdaIN module that
enhances the generated TOL images. The images in the lower row are produced by
processing the images in the upper row through the AdaIN module. In comparing the
generated TOL images in both upper and lower row, we can conclude that TOL generator
using SPADE module has a limitation in producing thick stroke patterns of TOL artwork
images. By adding AdaIN module for the enhancement, we can generate TOL images
that mimic the thick stroke patterns of TOL artwork. We estimate FID and ArtFID for the
generated TOL images in Figure 12 and present the average FID and ArtFID values in
Table 5. The average FID and ArtFID values in Table 5 show that the TOL images generated
with AdaIN module is superior to those without AdaIN module. From the values in Table 5,
we conclude that AdaIN module plays an important role in generating TOL artwork images.
Similar to the FID and ArtFID scores in Table 2 that compares ours with those from the
existing studies, ours show better FID and ArtFID scores.

Table 5. The FID and ArtFID values for the images in Figure 12.

FID ArtFID

(a) without AdaIN 194.7 178.6
(b) with AdaIN 157.4 140.8

6.5. Diversity

The diversity of TOL images comes from both shape and texture. However, since
the shape is determined by the user-initiated TOL map, the diversity controlled by our
framework is related to texture. Figure 13 illustrates TOL images generated from similar
TOL maps. These images demonstrate that our framework is capable of generating TOL
images with diversity in texture.
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(a)

(b)

Figure 12. Ablation study of our results: generated TOL images based on six different TOL maps.
(a) The images in the upper row are generated without the AdaIN module, which enhances the
generated TOL images. (b) The images in the lower row are produced by processing the images in
the upper row through the AdaIN module.

Figure 13. Various TOL images generated from similar TOL maps.

6.6. Limitation

We analyze the most serious limitation of our model is that our model depends on
the TOL map produced by users. Users are required to initiate a reliable TOL map for
a successful TOL image generation. Figure 14 illustrates some of the failed TOL images
generated from improper TOL map, that has TOL components either improperly organized
or unreal. This limitations comes from the training dataset of TOL artwork images. The TOL
artwork images have a lot of common TOL components such as land, sky, water, and grass,
etc. and these TOL components have located in a similar style. Therefore, user-initiated
TOL map whose components do not follow the components of TOL artwork images may
lead to failed TOL images.

Another limitation of our model is that the generated TOL images from our model
depends on the components of the TOL map. Since we have selected components of
frequently appearing components of real TOL artwork images, some components such as
person or animals are neglected.
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Figure 14. Failed TOL images generated: (a) shows TOL images generated from improper user-
initiated TOL map, (b) shows TOL images generated from unreal TOL map.

The other limitation of our model is that the result images show yellow-paper effect,
which is frequently observed for papers more than hundred years. We have collected real
TOL artwork images from many museums. Therefore, the collected TOL artwork images
are painted on yellow papers. Some contemporary TOL artwork images are required to be
collected for produce diverse TOL images.

7. Conclusions and Future Work

We have presented TOLGAN that generates TOL images from TOL map that specifies the
locations and shapes of the elements composing TOL. TOL map is produced by a user interface
or a segmentation scheme from a photograph. The generator of TOLGAN is developed as a
decoder structure where SPADE module is inserted between the layers. The SPADE module
processes TOL map to control the result of TOL image. The generated TOL image is further
enhanced through AdaIN structure to complete a visually-pleasing TOL image.

The results of our approach are evaluated through both quantitative and qualitative
evaluations. For the quantitative evaluation, we estimate FID and ArtFID scores for
our results and the results from important existing studies and show that ours show
smallest FID and ArtFID scores. For the qualitative evaluation, we execute two user studies
including volunteers and focus group. These user studies show our framework produces
better TOL images than the compared studies.

For a further work, we aim to enhance our model that can produce TOL artwork
images without TOL maps. In order to produce scholastic TOL artwork images, TOL
map should be produced automatically. We aim to design a model that can produce TOL
maps from scratches. Another direction is to extent our TOL generation model for various
applications such as TOL animation. TOLGAN can automatically generate background
images of TOL animation. TOL style can be extended to different applications such as
virtual environment, game and metaverse. Many researchers or artists have rarely tried to
apply TOL style to these applications. Our scheme, which effectively generates TOL images
from simple user-initiated TOL maps, can present a helpful tool for these applications.
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