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Abstract: Adversarial attack methods have achieved satisfactory results in white-box attack scenarios,
but their performance declines when transferred to other deep neural network (DNN) models. Cur-
rently, there are many methods to improve the transferability of adversarial samples, and enhancing
transferability through input transformations is an effective approach. However, most existing input
transformations are performed in the spatial domain, neglecting transformations in the frequency
domain. Therefore, this paper proposes a novel input transformation-based attack: the frequency
domain enhancement (FDE) method, which performs input transformations in the frequency do-
main to increase input diversity. Specifically, this method processes input images in the frequency
domain, suppresses high-frequency information in the input images, and then randomly amplifies
certain frequency domain information, generating adversarial samples with stronger transferability.
Experimental results show that adversarial samples generated through FDE demonstrate signifi-
cant improvement in transferability on both undefended and defended models on the ImageNet
dataset. Notably, this method can be combined with many existing techniques to further enhance the
transferability of adversarial samples.

Keywords: adversarial examples; transferability; perturbation; frequency domain

1. Introduction

In recent years, DNN [1–4] have achieved tremendous success in the field of com-
puter vision, including applications such as autonomous driving, facial recognition, and
object detection. However, the stability of DNN remains a concern for the general public.
Researchers such as Szegedy and Goodfellow [5,6] have highlighted the existence of ad-
versarial attacks, where carefully designed but imperceptible perturbations are added to
natural images, enabling adversarial samples to successfully deceive DNN models. Thus,
designing effective attack methods to verify the robustness of DNN models before deploy-
ing them in critical domains, such as autonomous driving, is of paramount importance.

Adversarial attacks can be categorized into white-box and black-box attacks. In white-
box attacks, the victim model is fully transparent to the attacker, who has access to all
information, including the victim model architecture and parameters, resulting in a high
success rate for the adversarial samples. However, because it is challenging to gain access
to all information about the victim model, white-box attacks are not feasible in real-world
environments. Due to the inherent transferability of adversarial samples across various
DNN models, many researchers have focused on black-box attack scenarios. In black-
box attacks, adversarial samples are crafted using a reference white-box model and then
transferred to the black-box model for attacking. When the differences between the white-
box and black-box models are substantial, or the adversarial samples are overly fitted to
the original reference white-box model, their transferability decreases.

To address this issue, researchers have proposed several techniques to enhance the
transferability of adversarial samples, including gradient calculation-based methods [7,8],
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input transformations [7,9–13], and feature-level attacks [14,15]. Among these, input
transformation has emerged as one of the most effective methods, which is conceptually
similar to data augmentation techniques used in model training. This is also the main focus
of our research. The objective of applying transformations to input images is to reduce the
overfitting of the generated adversarial samples to the original reference white-box model,
thereby improving transferability.

Existing input transformations are mostly conducted in the spatial domain, but trans-
formations in the frequency domain, as shown in traditional image processing research, can
often achieve similar effects to those in the spatial domain. This paper proposes a frequency
domain enhancement (FDE) method, which processes images in the frequency domain to
generate adversarial samples with stronger transferability. Firstly, FDE performs image
transformations in the frequency domain by suppressing high-frequency information while
preserving low-frequency information, and then partially enhancing specific components
in the frequency domain. Experimental results demonstrate that adversarial samples gener-
ated by FDE achieve higher transferability when attacking multiple recognition models.
Overall, the main contributions of this paper are as follows:

• This study finds that the patterns in the frequency domain of images are relatively con-
sistent, allowing for more convenient modifications to specific regions of an image by
altering its frequency domain. Such modifications are difficult to achieve in the spatial
domain, and they can help generate adversarial samples with higher transferability.

• This paper proposes a novel method of frequency domain transformation and finds
that suppress high-frequency information in the input image, while enhancing the
frequency domain information of specific regions, is beneficial for improving the
transferability of generated adversarial samples.

• This paper conducts extensive experiments to demonstrate the superiority of the
frequency domain enhancement (FDE) method, which exhibits excellent transferability
across both standard models and defense models. Furthermore, combining FDE with
existing methods can enhance the transferability of the generated adversarial samples.

2. Related Work

Szegedy et al. [5] highlighted the vulnerability of DNN to adversarial samples, which
can cause the model to misclassify with a high probability. They employed the LBFGS
method to generate adversarial samples. Since then, adversarial samples have been exten-
sively studied.

Depending on the level of access to model information, current attack methods can be
classified into white-box and black-box attacks. White-box attacks, such as the fast gradient
sign method (FGSM) [6], suggest that the existence of adversarial samples is due to the
linear characteristics of DNN and use gradient ascent to maximize the loss. Iterative FGSM
(I-FGSM) [16] extends FGSM by iteratively applying small perturbations in the direction
of gradient increase. DeepFool [17] generates minimal norm adversarial perturbations
through an iterative calculation method, pushing images beyond the classification boundary
until misclassification occurs. In practice, attackers usually do not have access to the internal
information of the model, making black-box attacks more relevant. Black-box attacks can
be broadly divided into query-based [18,19] and transfer-based approaches. Query-based
attacks focus on estimating the target model’s gradient by interacting with it. Transfer-
based attacks include gradient calculation-based methods, input transformation-based
methods and feature-level attacks. Momentum Iterative FGSM (MI-FGSM) [8] proposes
an iterative generation method based on momentum to avoid getting trapped in local
optima. Diverse input FGSM (DI-FGSM) [9] randomly adjusts the size of the input image
and applies padding. Translation-invariant FGSM (TI-FGSM) [20] smooths gradients using
a Gaussian kernel. Feature importance-aware (FIA) [14] introduces aggregated gradients
to capture feature importance, averaging gradients over the feature maps of the source
model. Spectrum simulation attack (SSA) [21] converts images to the frequency domain
and applies random masks, generating diverse spectral saliency maps that reflect the
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diversity of substitute models. Other transfer-based methods include scale-invariant (SI) [7],
which leverages the scale-invariance property of CNN by computing the average gradient
over multiple scaled images, and the Nesterov iterative (NI) [7], which incorporates the
Nesterov accelerated gradient method into iterative gradient-based attacks to mitigate local
optima during the optimization process. Object diversity-based input (ODI) [10] renders
images on different 3D objects, drawing adversarial images on these objects. Admix [11]
randomly samples images from other classes and mixes them with the original image for
gradient calculation. Linear backpropagation (LinBP) [22] removes certain ReLU layers
from the source model to reduce their impact during forward and backward computations,
making the model more linear. Backward propagation attack (BPA) [23] identifies that non-
linear layers (ReLU, max-pooling) truncate gradients during backpropagation, reducing
adversarial sample transferability. BPA uses a non-monotonic function as the derivative
of ReLU and combines softmax with a temperature parameter to smooth the derivative
of max-pooling. Affordable and generalizable substitute (AGS) [24] believes that current
adversarial attacks are all based on pre-trained models used as source models; however,
these models are not specifically developed for adversarial attacks. Therefore, they propose
a training architecture tailored for adversarial attacks. By employing various techniques,
these methods enhance the transferability of adversarial samples across different DNN
models, providing insights into their robustness and adaptability in both standard and
defense models.

3. Methodology

This paper focuses on the transferable attacks of adversarial samples. It begins with
an introduction to basic attack methods [6,8,16,21], followed by a detailed description of
the frequency domain enhancement (FDE) method and its underlying motivation.

3.1. Preliminary

First, we define f (·) as a neural network classifier, θ as the model parameters, and
x as the input image with the true label y. Let J denote the loss function. The goal of an
adversarial attack is to generate an adversarial perturbation δ such that the adversarial
example xadv = x + δ leads to misclassification by the model, i.e., f (x + δ) ̸= y. To ensure
that the perturbation δ is imperceptible to the human eye, an ℓ∞−norm constraint is
applied, represented as ∥ δ ∥∞ ≤ ϵ, where ϵ denotes the maximum perturbation magnitude.
Therefore, the process of generating an adversarial perturbation can be viewed as an
optimization problem, as shown in Equation (1):

xadv = argmax
∥δ∥∞≤ϵ

J
(

xadv, y; θ
)

(1)

where J
(

xadv, y; θ
)

represents the cross-entropy loss function.
In black-box attacks, the model parameters θ are not accessible. Therefore, the common

approach is to solve the optimization problem on a substitute model to generate adversarial
samples. Here, we introduce some other attack methods. The adversarial samples generated
by the fast gradient sign method (FGSM) [6] are formulated as follows:

xadv = x + ϵ · sign(∇x J(x, y; θ)) (2)

where ∇x J(x, y; θ) represents the gradient of the loss function with respect to x, sign(·) is
the sign function.

The iterative fast gradient sign method (I-FGSM) [16] is an improved version of
FGSM. Instead of adding a single-step perturbation in the direction of the gradient as in
FGSM, I-FGSM introduces multiple small perturbations iteratively in the direction of the
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gradient. The magnitude of each perturbation is controlled by α, and the gradient direction
is recalculated at each step. The formula is as follows:

xadv
0 = x (3)

xadv
t+1 = Clipε

x

{
xadv

t +α · sign
(
∇x J

(
xadv

t , y; θ
))

(4)

where xadv
t represents the adversarial example generated at the t-th iteration, Clipε

x (·)
denotes an element-wise clipping operation to ensure xadv

t ∈ [x − ε, x + ε], and α is the
step size.

The momentum iterative fast gradient sign method (MI-FGSM) [8] integrates the
technique of I-FGSM by accumulating a velocity vector in the direction of the gradient of
the loss function during the iteration process to accelerate the gradient descent algorithm.
The formula is as follows:

gt+1 = µ · gt +
∇xadv

t
J
(

xadv
t , y; θ

)
∥ ∇xadv

t
J
(
xadv

t , y; θ
)
∥1

(5)

xadv
t+1 = Clipε

x

{
xadv

t + α · sign(gt+1)
}

(6)

where gt is the accumulated gradient at the t-th iteration, and gt = 0. µ represents the
decay factor, which is typically set to 1.

3.2. Frequency Domain Enhancement

Previous work [1,2,25,26] has shown that different models often rely on different
frequency components of each input image when making decisions. From a frequency
domain perspective, Long at al. [21] explores the correlation between models by enhancing
the image in the frequency domain after applying a discrete cosine transform (DCT). After
a DCT transformation, the low-frequency components of an image are concentrated in the
upper-left corner of the spectrum. Compared to the spatial domain, information in the
frequency domain is more stable. The formula for transforming an image signal from the
spatial domain to the frequency domain using DCT is as follows:

DCT(x)[u,v] =
2
E

C(u)C(ν)∑E−1
i=0 ∑E−1

j=0 x[i, j]cos
[
(2i + 1)uπ

2E

]
cos

[
(2j + 1)νπ

2E

]
(7)

x[i, j] represents the value of the image at the coordinate [i, j], and E denotes the size
of the image, while C(u) and C(v) are compensation coefficients designed to ensure the
orthogonality of the DCT matrix.

JPEG [27] compression technology achieves a high compression ratio with minimal
degradation of image quality by retaining the low-frequency coefficients that are important
to human vision while setting most of the high-frequency coefficients to zero. Inspired
by this, we propose a new spectral transformation method, frequency domain enhance-
ment (FDE), which improves upon the SSA [21] through a modified random spectral
transformation. The formula for SSA is as follows:

T(x) = IDCT(DCT(x + ξ)⊙ M) (8)

where DCT stands for discrete cosine transform, and IDCT stands for inverse discrete cosine
transform, and ⊙ represents the Hadamard product. The values in ξ ∼ N

(
0, σ2 I

)
and each

element of M ∼ U (1 − ρ, 1 + ρ) represent random elements sampled from Gaussian and
uniform distributions, respectively. In the paper, σ = 16 and ρ = 0.5. It is important to note
that both DCT and IDCT are lossless transformations.

The proposed frequency domain enhancement (FDE) method filters certain frequency
components of the image using a weight matrix. One of the designed weight matrices, M1
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has the same size as the image, with values linearly decreasing from 1 at the top-left corner
to 0 at the bottom-right corner. Specifically, the top-left 1/64 region has a value of 1, and
the bottom-right 1/64 region has a value of 0, as shown in Figure 1a, where different colors
represent the distribution of M1 values. By applying the Hadamard product between M1
and the spectrum, the resulting spectrum attenuates certain high-frequency components.
To increase the variety of processed images, the method also designs another weight matrix,
M2, composed solely of 0 and 5. This matrix is used for random frequency enhancement
operations. Figure 1b shows a selected weight matrix, where the black areas have a value
of 5 and the white areas have a value of 1. The enhancement operation is performed by
applying the Hadamard product between M2 and the spectrum elements. Finally, the
inverse discrete cosine transform (IDCT) is applied to convert the image from the frequency
domain back to the spatial domain, yielding the enhanced image. The formula is as follows:

P(x) = DCT(x + ξ)⊙ M (9)

F(x) = IDCT(P(x) ⊙ M1 ⊙ M2(S, K)) (10)

S represents the area of frequency domain enhancement, with the enhanced region being
randomly selected, and K denotes the enhancement coefficient in the frequency domain; ⊙
represents the Hadamard product.
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mation, guiding the adversarial samples toward improved transferability. 

    

Figure 1. (a) M1 illustrates values that display with the variation in color. (b) M2 shows values where
the black areas have a value of 5 and the white areas have a value of 1.

As shown in Figure 2, the transformation in the frequency domain differs from input
transformations in the spatial domain. In the frequency domain, the transformation not only
retains the essential semantic information but also involves color changes and effectively
distinguishes important features from less significant ones. For example, in Figure 2,
the main features—such as the panda, beetle, frog, and bird—are clearly separated from
the background after the FDE transformation. This is because there is significant spatial
correlation between pixels in the image, and DCT significantly reduces these correlations,
concentrating the image’s energy in the upper-left region, representing low-frequency
information, while high-frequency information is concentrated in the lower-right region.
High-frequency information corresponds to the edges of the image, which often overlap
with key regions of the image. Our transformation suppresses high-frequency information,
guiding the adversarial samples toward improved transferability.
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Figure 2. Through the visualization of the spectral transformation, the first row displays the clean
images, the second row shows the visualized images after the frequency domain transformation, and
the third row presents the generated adversarial samples.

3.3. Attack Algorithms

In the previous section, we introduced the spectral transformation method proposed in
this paper. This transformation can be combined with any gradient-based attack. The attack
algorithm designed in conjunction with FGSM in this paper is as follows (Algorithm 1):

Algorithm 1. FDE-FGSM

Input: A classifier f (·) with parameters θ, loss function J, clean image x with true label y, the
maximum perturbation magnitude ϵ, Clip(x, 0, 1) ensures that the generated pixel values remain
within the range [0, 1] during the adversarial sample generation process, number of spectral
transformations N, number of random enhancements Q, std σ of noise ξ, and number of
iterations T.

Output: The adversarial example xadv

1: α = ϵ/T, xadv
0 = x, g0 = 0

2: for t = 0 → T − 1 do
3: for i = 1→ N do
4: Get transformation output xadv

t = P
(

xadv
t

)
using Equation (9)

5: for k = 1 → Q do
6: Get transformation output F

(
xadv

t

)
using Equation (10)

7: Gradient calculate gi,k = ∇xadv
t

J
(

F
(

xadv
t

)
, y; θ

)
8: end for
9: end for
10: Average gradient: g = 1

N∗Q ∑N
i=1 ∑Q

k=1 gi,k

11: xadv
t+1 = Clipε

x

{
xadv

t + α · sign(g)
}

12: xadv
t+1 = Clip

(
xadv

t+1, 0, 1
)

13: end for
14: xadv = xadv

T
15: return xadv

4. Experiments
4.1. Experiment Setup

The experiments in this paper are based on a dataset compatible with ImageNet, which
contains 1000 images with a resolution of 299 × 299 × 3. This dataset was previously used
in the NIPS 2017 adversarial competition. For model selection, six commonly used normally
trained models were chosen, including Inception-v3 (Inc-v3) [1], Inception-v4 (Inc-v4) [2],
Inception-Resnet-v2 (IncRes-v2) [2], Resnet-v2-50 (Res-50), Resnet-v2-101 (Res-101), and
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Resnet-v2-152 (Res-152) [3]. Additionally, three defense models were employed: Inc_v3ens3,
Inc_v3ens4, IncRes_v2ens [28].

Comparison: To demonstrate the effectiveness of the spectral transformation attack
proposed in this paper, we compared it with various state-of-the-art attack methods, in-
cluding MI-FGSM [8], DI-FGSM [9], TI-FGSM [8], and S2I-FGSM [21]. Additionally, we
also compared the combined versions of these methods, such as SIM [7], DI-MI-FGSM,
VMI-FGSM [29], and S2I-MI-FGSM.

Parameter settings: In all experiments, the maximum perturbation is set to ϵ = 16, with
the number of iterations T = 10 and step size α = ϵ/T = 1.6. For MI-FGSM, we set the decay
factor µ = 1.0. For DI-FGSM, the transformation probability p = 0.5. For TI-FGSM, the kernel
size k = 7. For SIM, the number of copies m = 5, and for VMI-FGSM, the neighborhood upper
limit β = 1.5 ∗ ϵ. For S2-FGSM, we set the number of spectral transformations N = 20.
For FDE, we set the number of enhancements Q = 2, enhancement area S = 70 × 70, and
enhancement coefficient K = 5. For discarding high-frequency information, the generated
weight matrix has the top-left 1/64 area set to 1, the bottom-right 1/64 area set to 0, and the
values linearly decrease from 1 to 0 from the top-left to the bottom-right.

5. Attack Models

The effectiveness of the proposed method was evaluated by comparing it with bench-
mark methods (MI-FGSM, DI-FGSM, S2 I-FGSM). Adversarial examples generated by
the proposed method were first created on four standard models and then evaluated for
transferability on five standard models and three defense models. Table 1 shows the trans-
ferability of the proposed method compared to other methods. The proposed method
outperforms other benchmarks in terms of transferability. For example, when Inc_v3
is used as the white-box model, the transfer success rates of MI-FGSM, DI-FGSM, and
S2I-FGSM on Inc_res_v2 are 46.50%, 47.60%, and 58.80%, respectively, while the success
rate of the proposed method is 73.00%. This significant improvement demonstrates the
effectiveness of the proposed method in enhancing transferability. Additionally, when com-
bined with other attack methods, as shown in Table 2, the proposed method also exhibits
superior performance. For instance, when combined with the momentum-based methods,
the transfer success rates on Res_152 when using Inc_v3 as the white-box model are 69.00%
for SIM, 68.30% for DI-MI, 61.00% for VMI, and 80.90% for S2 I-MI, whereas the proposed
method achieves a success rate of 89.30%. This further highlights the effectiveness of our
method in improving transferability. When combined with TIM and DIM, our method
demonstrated even stronger transferability. When using Inc_v3 as the white-box model,
the transferability on non-defense models improved by 2.7–5.1% compared to S2I-DI-TI-MI,
and on defense models, the transferability increased by 6.5–9.2%.

Table 1. The table below shows the success rates of ensemble attacks based on IFGSM, with adversarial
examples generated from Inc-v3, Inc-v4, IncRes-v2, and Res_152. The best results are highlighted in
bold.

Model Attack Inc_v3 Inc_v4 Inc_res_v2 Res_50 Res_101 Res_152 Inc_v3ens3 Inc_v3ens4 IncRes_v2ens

Inc_v3

MI-FGSM
DI-FGSM
S2I-FGSM

FDE-FGSM(our)

100.00
100.00
99.70
99.70

51.50
56.70
63.70
75.60

46.50
47.60
58.80
73.10

48.30
46.70
57.50
69.70

42.90
42.30
52.60
62.80

41.40
40.90
48.60
61.50

22.80
18.50
31.20
42.60

21.30
19.80
33.00
43.30

11.00
9.00

17.10
24.00

Inc_v4

MI-FGSM
DI-FGSM
S2I-FGSM

FDE-FGSM(our)

60.90
63.20
70.70
78.40

99.90
99.80
99.70
99.30

45.50
46.20
55.50
64.50

46.30
41.90
55.40
63.70

42.70
38.40
49.90
57.70

43.10
38.30
48.60
57.60

19.80
15.50
30.90
38.90

18.40
16.50
31.80
38.50

10.70
8.70

17.60
24.90

Inc_res_v2

MI-FGS
MDI-FGSM
S2I-FGSM

FDE-FGSM(our)

61.00
64.40
76.40
85.60

52.70
60.60
68.00
78.10

99.20
99.60
98.30
98.20

50.90
48.10
60.50
73.70

44.60
46.30
58.30
69.50

44.30
45.00
56.20
66.80

22.00
17.80
37.60
51.50

22.10
18.10
33.90
46.90

13.10
11.80
28.40
39.90
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Table 1. Cont.

Model Attack Inc_v3 Inc_v4 Inc_res_v2 Res_50 Res_101 Res_152 Inc_v3ens3 Inc_v3ens4 IncRes_v2ens

Res_152

MI-FGSM
DI-FGSM
S2I-FGSM

FDE-FGSM(our)

55.80
63.10
66.50
73.20

51.20
60.30
62.30
67.40

46.50
57.70
56.80
65.80

84.70
89.80
92.80
95.00

85.50
91.90
93.10
95.40

99.40
99.80
99.80
99.10

26.60
26.30
37.90
43.50

26.10
24.10
35.10
41.40

15.20
15.20
25.30
29.30

Table 2. The table below presents the success rates of ensemble attacks based on MI-FGSM, with
adversarial examples generated from Inc-v3, Inc-v4, IncRes-v2, and Res_152. The best results are
highlighted in bold.

Model Attack Inc_v3 Inc_v4 Inc_res_v2 Res_50 Res_101 Res_152 Inc_v3ens3 Inc_v3ens4 IncRes_v2ens

Inc_v3

SIM
DI-MI
VMI

S2I-MI
S2I-DI-TI-MI
FDE-MI(our)

FDE-DI-TI-MI(our)

100.00
100.00
100.00
99.60
99.10
99.90
99.70

76.30
78.80
73.90
87.90
92.00
93.60
95.20

74.90
73.50
68.50
86.10
91.20
93.30
93.80

72.60
71.20
64.90
83.70
87.80
90.50
91.50

68.60
67.60
59.90
81.40
86.80
89.30
90.70

69.00
68.30
61.00
80.90
87.40
89.30
90.50

39.90
40.80
38.80
55.10
81.70
69.20
89.20

38.00
38.40
38.70
56.50
80.40
70.20
87.90

23.80
21.70
23.30
35.20
69.60
45.00
78.80

Inc_v4

SIM
DI-MI
VMI

S2I-MI
S2I-DI-TI-MI
FDE-MI(our)

FDE-DI-TI-MI(our)

87.60
83.10
77.40
91.20
92.70
94.20
95.60

100.00
99.90
99.90
99.40
98.10
99.30
99.10

77.60
75.30
69.00
86.30
89.20
90.20
92.60

76.40
68.90
63.90
83.50
85.80
88.10
91.30

73.70
64.80
61.70
82.60
85.20
86.60
88.60

73.30
65.50
62.20
81.80
86.40
85.80
88.50

47.60
35.90
39.00
57.40
79.20
68.20
85.90

42.60
33.70
38.60
56.40
78.30
65.20
84.40

28.80
19.70
24.20
36.50
69.80
46.00
77.10

Inc_res_v2

SIM
DI-MI
VMI

S2I-MI
S2I-DI-TI-MI
FDE-MI(our)

FDE-DI-TI-MI(our)

86.20
81.90
78.70
90.40
90.40
94.10
94.40

83.70
79.70
74.50
88.90
89.10
92.20
93.40

99.90
99.50
98.80
98.00
97.30
98.80
97.90

79.30
73.20
66.80
86.30
85.70
89.80
92.00

77.60
72.10
65.60
84.30
84.50
89.80
91.40

76.30
69.80
63.00
84.10
84.40
88.80
91.20

55.70
43.10
45.80
68.90
80.00
78.10
91.10

48.70
39.30
41.70
63.40
76.50
73.80
88.70

39.70
30.60
34.30
55.70
76.30
66.40
86.40

Res_152

SIM
DI-MI
VMI

S2I-MI
S2I-DI-TI-MI
FDE-MI(our)

FDE-DI-TI-MI(our)

76.40
85.10
72.90
87.80
93.60
91.40
94.70

73.30
83.90
67.10
86.90
93.20
89.30
93.30

71.70
80.10
65.80
85.50
92.20
90.40
93.80

95.10
95.30
92.30
97.50
98.10
97.70
98.20

95.50
96.00
92.60
97.40
97.90
97.90
98.20

99.80
99.90
99.50
99.70
99.80
99.50
99.30

47.00
51.70
46.10
62.90
85.70
71.30
89.80

43.50
48.20
41.90
59.70
84.30
68.80
87.40

29.90
34.60
30.60
46.40
79.70
55.00
83.80

5.1. Ablation Study

In this section, we examine the impact of different parameters (such as the enhance-
ment coefficient, area, and frequency) on the transferability of adversarial samples gener-
ated using the proposed method.

First, we analyze the effect of different frequency domain enhancement areas S on the
performance of FDE-MI, as shown in Figure 3a. The adversarial samples were generated
on Inc_v3 with an enhancement coefficient K = 5 and frequency domain enhancement
iterations Q = 2. It can be observed that the highest transferability is achieved when S is set
to 70 × 70. However, when S exceeds 70 × 70, the transferability begins to decline. This
decline may be due to the larger enhancement area causing significant alterations to the
image, potentially changing its semantic content.

In Figure 3b, we investigate the effect of different enhancement coefficients K on
transferability. For this experiment, we fixed the enhancement area S = 70 × 70 and
the frequency domain enhancement iterations Q = 2. The results show that the best
transferability is achieved when K is between 5 and 7. However, when K exceeds 7, the
success rate begins to decrease, likely because an excessively large enhancement coefficient
causes the image to lose its essential semantic information.
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In Figure 3c, we study the impact of the number of enhancements Q on transferability,
with the enhancement area S set to 70 × 70 and the enhancement coefficient K set to 5. The
results indicate that performance improves as the number of enhancements Q increases.
Notably, even after a single enhancement (Q = 1), as shown in Figure 4, FDE achieves
success rates of 91.50%, 92.20%, 88.50%, 86.70%, and 86.40% on Inc_v4, Inc_res_v2, Res_50,
Res_101, and Res_152, respectively, which are significantly higher than the corresponding
success rates of 87.90%, 86.10%, 83.70%, 81.40%, and 80.90% achieved by S2 I-MI. This
demonstrates the effectiveness of the proposed method.
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Figure 4. The comparison of attack success rates between FDE and SSA is shown when the enhance-
ment frequency area S = 70 × 70, enhancement coefficient c = 5, and number of enhancements Q = 1.
The adversarial samples were generated on Inc_v3, with blue representing the SSA attack success
rates and orange representing the FDE attack success rates.

In Figure 5, we study the impact of two types of frequency domain modifications in
FDE on the transferability of generated adversarial samples. The FDE-FGSM method was
applied on Inc_v3 with an enhancement coefficient K = 5, frequency domain enhancement
iterations Q = 2, and enhancement area S = 70 × 70. The performance was evaluated across
five models. The results indicate that both types of frequency domain operations play a
crucial role in enhancing the transferability of the generated adversarial samples using the
proposed method.
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