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Abstract: Knowledge Graph Embedding aims to encode both entities and relations into a continuous
low-dimensional vector space, which is crucial for knowledge-driven application scenarios. As
abstract entities in knowledge graphs, concepts inherently possess unique hierarchical structures and
encompass rich semantic information. Although existing methods for jointly embedding concepts
and instances achieve promising performance, they still face two issues: (1) They fail to explicitly
reconstruct the hierarchical tree structure of concepts in the embedding space; (2) They ignore disjoint
concept pairs and overlapping concept pairs derived from concepts. In this paper, we propose a
novel concept representation approach, called Hyper Spherical Cone Concept Embedding (HCCE),
to explicitly model the hierarchical tree structure of concepts in the embedding space. Specifically,
HCCE represents each concept as a hyperspherical cone and each instance as a vector, maintaining
the anisotropy of concept embeddings. We propose two variant methods to explore the impact
of embedding concepts and instances in the same or different spaces. Moreover, we design score
functions for disjoint concept pairs and overlapping concept pairs, using relative position relations to
incorporate them seamlessly into our geometric models. Experimental results on three benchmark
datasets show that HCCE outperforms most existing state-of-the-art methods on concept-related
triples and achieves competitive results on instance-related triples. The visualization of embedding
results intuitively shows the hierarchical tree structure of concepts in the embedding space.

Keywords: knowledge graph embedding; concept; hierarchical structure; representation learning

1. Introduction

Concepts, as an important part of ontology, and instances collectively compose en-
tities in knowledge bases such as Wordnet [1], YAGO [2] and Freebase [3]. Knowledge
Graph Embedding (KGE) encodes entities and relations into continuous low-dimensional
vector spaces while capturing their semantics and preserving the inherent structure of the
Knowledge Graph (KG). Compared to traditional knowledge graph embeddings, KGE
methods with concept embeddings offer significant improvements in semantic understand-
ing, generalization, and integration with language models, making them highly effective
for various downstream applications such as relation extraction [4], question answering [5],
dialogue agent [6], and Concept-Enhanced Pre-Training Model [7].

Some studies have achieved promising performance by differentiating and jointly em-
bedding concepts and instances. Depending on the representation form of concepts, these
methods can be classified into vectorial methods (e.g., JOIE [8]) and geometric methods
(e.g., TransC [9]). Specifically, vectorial methods map both instances and concepts into vec-
tors. This uniform representation makes it challenging for models to distinguish between
their different characteristics. In comparison, geometric methods represent each concept
as a hyper geometric region and each instance as a vector to explicitly distinguish them.
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Furthermore, geometric methods exploit relative positions between embedding representa-
tions to model isA relations (instanceOf and subClassOf), thus providing an interpretation
that aligns with human intuition for maintaining the transitivity of isA relations.

Nevertheless, existing geometric methods do not explicitly model the unique hierarchi-
cal tree structure of concepts in embedding space. This structure naturally forms through
the subClassOf relation between concepts and their sub-concepts (or super-concepts), as
illustrated on the left of Figure 1. The concept tree structure effectively demonstrates the
hierarchical relationships between concepts. Higher-level concepts are typically more ab-
stract and general, while lower-level concepts are more specific and detailed. Moreover, a
concept can be reified by all of its actual or potential instances [9]. The instanceOf relation
between instances and different levels of concepts in a concept tree reflects the hierarchy
of classification and the scope of concepts (i.e., the higher-level concepts contain more in-
stances than the lower-level concepts). Therefore, establishing a hierarchical tree structure
in vector space can link the symbolic representation and vector representation in knowledge
graphs. This provides an intuitive explanation for concept reasoning and the transitivity
of isA relations and aids in positioning concept and instance representations within the
semantic space.

Figure 1. An example of knowledge graph consisting of concepts, instances, and relations (a); the
representation of instances, concepts, and relations in the vector space (b).

To preserve the hierarchical tree structure between concepts and perform logical
inference in a vector space, which was inspired by JoSH [10] and geometric methods, we
represent each concept embedding as a hyperspherical cone region and each instance as a
vector point in a unit of high-dimensional spherical space. Specifically, a hyperspherical
cone region is determined by a concept central vector as the axis and a half-vertex angle.
As shown in the Figure 1b, higher-level concepts, represented as larger hyperspherical
cone regions, iteratively encompass their sub-concepts, which are represented as smaller
hyperspherical cone regions, thus illustrating the hierarchical structure of concepts in the
embedding space. Starting from the root vector and connecting the central vectors of these
concept regions layer by layer reconstructs the tree structure of concepts in the knowledge
graph in Figure 1a.

In contrast to existing geometric methods, HCCE represents the anisotropy of concept
embeddings by allowing the lengths of the spherical cap sections of the hyperspherical
cone to vary across different dimensions, which can model the anisotropy of concept
embeddings. The sphere [9] ignores the anisotropy of concept embeddings. Compared
to the cuboid and ellipsoid [11] and box [12], HCCE requires fewer parameters and sim-
pler calculations. Compared to using hyperbolic embedding for modeling hierarchical
structures [13], our approach to modeling high-dimensional spherical cones in Euclidean
space makes the model easier to understand and easier to apply to downstream tasks
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while reducing computational complexity. Unlike existing conical modeling methods [14],
HCCE represents each concept as a high-dimensional spherical cone region composed of
all dimensions. This not only strengthens the connections between dimensions but also
provides better interpretability and simpler computational methods.

Models that do not differentiate between concepts and instances can only embed
entities in the same embedding space. However, distinguishing between instances and
concepts provides the option to embed concepts and instances into two different vector
spaces. Based on JOIE [8] and DGS [15], we not only explore embedding concepts and
instances in the same space (HCCE-SS) but also model them in different spaces to capture
their distinct structures (HCCE-DS). In our models, the primary distinction between these
two methods lies in the modeling of the instanceOf relation. Specifically, for the same space,
the instanceOf relation is modeled by having instances fall within the concept region. For
different spaces, we first use non-linear transformations to map instances from the instance
embedding space to the concept embedding space, then determine if the transformed
instance vector falls within the concept region in order to model the instanceOf relation.

Additionally, based on the tree structure of concepts, two special types of concept
pairs naturally occur in knowledge graphs. To the best of our knowledge, we are the first to
propose and define these concept pairs as follows: (1) Overlapping concept pairs: These two
concepts contain the same instance, but the subClassOf relation does not exist between them.
For example, two concepts “American artists” and “American television writers” have the
same instance, “Alice”, in Figure 1. (2) Disjoint concept pairs: These two concepts belong to
the same super-concept, but they do not comprise a subClassOf relation and do not have the
same instance. In Figure 1, two concepts “Chinese artists” and “American artists” belong
to the same super-concept “artist”. These two pairs of concepts can be seen as intrinsic
enhancement samples for concepts. They can accelerate the formation of concept regions,
improve concept representation, and enhance the performance of the subClassOf relation.
However, existing geometric methods do not account for the above two concept pairs.

In this paper, we propose a novel concept representation, HCCE, where each concept
is encoded as a hyperspherical cone, and each instance is encoded as a vector point. We
explicitly model the hierarchical tree structure of concepts in the embedding space while
preserving the transitivity of isA relations as geometric methods. Additionally, we utilize
the relative positions to design score functions for overlapping concept pairs and disjoint
concept pairs, thus enhancing the model’s ability to capture relationships between concepts
and improving the performance of concept representations. We explore the impact of
spatial configuration on HCCE by modeling concepts and instances in both the same space
(SS) and different spaces (DS). Finally, we perform exhaustive empirical experiments on
three benchmark datasets, which demonstrate the superiority of HCCE. We use t-SNE
visualization to demonstrate the embedding effect of our models on the concept tree
structure, concepts, and instances in the embedding space. Additionally, by illustrating
the relationship between the size of the concept embedding regions and the number of
concepts and instances, we validate the model’s rationality and effectiveness, providing a
basis for geometric modeling methodologies.

Our contributions can be summarized as follows:

1. To the best of our knowledge, our method, HCCE, is the first to explicitly model the
hierarchical tree structure of concepts by representing each concept as a hyperspherical
cone region in the embedding space.

2. We propose two methods, HCCE-SS and HCCE-DS, to explore the impact of embed-
ding instances and concepts in the same or different embedding spaces.

3. Based on the tree structure of concepts, we identify two types of concept pairs—
overlapping concept pairs and disjoint concept pairs—and design two score func-
tions for them by utilizing relative positions to enhance the representation of
concept embeddings.
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4. Through exhaustive experiments on three benchmark datasets, HCCE achieves the
best performance on the subClassOf relation and competitive performance on instance-
related relations.

2. Related Works
2.1. Instance Knowledge Graph Embedding

Early knowledge embedding methods, called factual knowledge graph embedding,
treat both concepts and instances as instances. They can be divided into three types: Tensor
Decomposition Models, Geometric Models, and Neural Network Models.

Tensor Decomposition Models model the KG as a three-way tensor, which is decom-
posed into a combination of low-dimensional vectors or matrices. RESCAL [16] is an early
model in this line, introducing three-way rank-r factorization across each relational slice
of the knowledge graph tensor. DistMult [17] simplifies RESCAL by restricting relation
matrices to diagonals, effectively modeling symmetric relations but lacking support for
asymmetric ones. ComplEx [18] also employs diagonal matrices but extends into a complex
vector space, allowing for both symmetric and asymmetric relations. HolE [19] reduces
time and space complexity by using circular correlation rather than bilinear products, thus
accommodating various types of relations. SimplE [20] builds on DistMult by giving each
entity and relation two embeddings, which enables it to capture asymmetry. TuckER [21]
employs Tucker decomposition [22] to factorize a tensor, achieving better performance than
the aforementioned models.

Geometric Models interpret relations as geometric transformations in the embedding
space. TransE [23] represents the relation in each triple as a translation from the head
entity to the tail entity and is the foundational geometric model. Building on TransE,
various methods have been proposed to improve its performance in handling complex and
multiple relations, including TransM [24], TransH [25], TransR/CtransR [26], TransD [27],
TransMS [28], Trans4E [29], etc. RotatE [30] represents each relation as a rotation from the
source entity to the target entity in the complex vector space to model and infer various
relation patterns, including symmetry/antisymmetry, inversion, and composition. Fur-
thermore, HAKE [31] uses the polar coordinate system to model the semantic hierarchies
in the knowledge graph. Additionally, an ensemble model [32] combines translation and
rotation models to capture structural features and employs a bi-encoder architecture based
on BERT to capture semantic features. HBE [13] applies an extended Poincaré Ball for
KGE to capture hierarchical structures. HMI [33] utilizes hyperbolic embeddings to handle
structured multi-label prediction tasks. However, hyperbolic models involve more complex
calculations than Euclidean operations, which limits their application in knowledge graph
embeddings. Compared to hyperbolic model RotH [34], RotL [35] proposes a lightweight
variant based on Euclidean calculations to reduces half of the training time.

Neural Network Models use neural networks for encoding semantic matching, yield-
ing remarkable predictive performance. (1) Neural Networks: SMEs [36] first utilize lin-
ear/bilinear blocks as neural networks to capture semantic and structural features in
knowledge graphs. In addition, multi-layer perceptrons (MLPs) [37], neural tensor net-
works (NTNs) [38], and neural association models (NAMs) [39] take entities or relations, or
both of them, into deep neural networks and compute a matching score. (2) Convolutional
Neural Networks: ConvE [40] uses 2D convolution over embeddings and multiple layers
of nonlinear features to model the interactions between entities and relations by reshaping
the head entity and relation into a 2D matrix. ConvKB [41] adopts CNNs for encoding the
concatenation of entities and relations without reshaping. ConvR [42] applies convolutional
filters adaptively constructed from relation representations across entity representations to
generate convolutional features. (3) Recurrent Neural Networks (RNNs). RSN [43] designs
a recurrent skip mechanism to enhance semantic representation learning by distinguishing
relations and entities. (4) Graph Neural Networks: R-GCN [44] proposes relation-specific
transformation to model the directed nature of knowledge graphs. CompGCN [45] pro-
poses entity-relation composition operations over each edge in the neighborhood of a cen-
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tral node and generalizes previous GCN-based models. (5) Pre-trained language models.
KG-BERT [46] borrows the idea from language model pre-training and takes Bidirectional
Encoder Representations from the Transformer (BERT) model as an encoder for entities
and relations. LMKE [47] adopts language models as knowledge embeddings and utilizes
textual descriptions to solve the problem of long-tail entities. KG-LLM [48] explores Large
Language Models for KGC. Although neural network models often enhance knowledge
graph performance and facilitate the integration of textual information, they also introduce
challenges such as low interpretability and high computational complexity.

2.2. Concept Knowledge Graph Embedding

Concept knowledge graph embedding treats both instances and concepts (or ontology)
as concepts. On2Vec [49] proposed a novel translation-based graph embedding method
for the ontology population. It integrates two components, a Component-specific Model
and a Hierarchy Model, to effectively characterize comprehensive relation facts in ontology
graphs. The research [50] studied how to use the knowledge graph embedding to ontology
embedding. It firstly shows that the most popular method in the previous KGE is not
applicable to the ontology population, and it proposes a novel method of modeling the
relation as an arbitrary convex region, which can properly express the class of so-called
quasi-chained existential rules. Embeds [51] proposes a method of using geometric interpre-
tation to incorporate ontology information in the knowledge graph embedding. CosE [52]
defined two score functions based on angle-based semantic space and translation-based
semantic space to simultaneously preserve the transitivity of subClassOf and the symmetry
of and disjointWith. Concept2Vec [53] utilizes a random walk strategy to learn concept
embedding through the similarity between concepts. Furthermore, OWL2Vec* [54] encodes
the semantics of an OWL ontology by taking into account its graph structure, lexical infor-
mation, and logical constructors. However, due to the nature of their learning strategies like
random walk, the methods like OWL2Vec* fail to distinguish concepts and instances clearly.

Additionally, some researchers introduce concepts as auxiliary information in knowl-
edge graph embeddings but overlook that concepts are themselves a type of entity. For
example, Entity Hierarchy Embedding [55] learns a distance metric for each category node
and measures entity vector similarity under an aggregated metric. SSE [56] combines the se-
mantic categories of entities to smoothly embed entities belonging to the same category into
the semantic space. KEC [57] incorporates concept information into instance embedding
by characterizing the semantic correlation between concepts and instances to improve the
representation of knowledge graphs. TransO [58] utilizes ontology information to design
relation and type constraints and hierarchical structure information constraints to enhance
instance-view knowledge representation. The research. [59] brings in feature embeddings
of concepts corresponding to entities to learn the semantic information implicit in the ontol-
ogy and builds type-constrained regular loss to alleviate the problem of missing ontology
information in order to improve the inductive inference performance on newly emerging
entities. RMPI [60] injects the KG’s ontological schema for richer relation semantics to
improve inductive relation inference.

2.3. Distinguish Concepts and Instances in Knowledge Graph Embedding

Some studies have tried to distinguish the difference between concepts and instances
in entities in knowledge graph embedding. TransC [9] is the first to propose and formalize
the problem. This approach enables the handling of the transitivity of the isA relation.
IBKE [12] addresses insufficient concept representation by proposing a box-based model,
where concepts are embedded as boxes and instances are represented by vectors in the same
semantic space. TransFG [61] is based on the TransC model, replacing TransC’s handling of
instance relation triples with TransD [27]. Additionally, it embeds concepts and instances
into separate spaces to resolve the ambiguity of instances. However, these methods do
not consider the anisotropy of concept embeddings. To address this issue, TransEllipsoid
and TransCuboid [11] represent each concept as either an ellipsoid or a cuboid, allowing
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for a flexible adjustment of the boundaries of concept regions to enhance representational
capacity. EIKE [62], based on TransEllipsoid, uses a pre-trained model to process the name
of each concept or the concatenation of the name and description as the initial vector for the
concept, thereby enhancing concept embedding representation. Although it incorporates
semantic information into the concept embedding representation, it increases the number
of parameters of the model.

JOIE [8] represents both concepts and instances as vectors. It explores the impact of
modeling concepts and instances in the same or different spaces from two perspectives: the
ontology view and the instance view. It also examines how different methods for model-
ing relationships between concepts and instances affect knowledge graph representation.
However, it cannot provide interpretability for the transitivity of the isA relations. Fur-
thermore, DGS [15] models instance-view entities in spherical space to capture cyclical
relations and ontology-view concepts in hyperbolic space to capture hierarchical relations.
Experimental results demonstrate the effectiveness of using non-Euclidean spaces with
different curvatures and properties to capture the various structures within the knowledge
graph. However, non-Euclidean spaces increase the complexity of applying models to
downstream applications. JECI [63] also represents both concepts and instances as vectors,
but it organizes hierarchical concepts as a tree structure. It attempts to determine more
fine-grained concepts for instances in the instanceOf relation, but the subClassOf relation is
not modeled. In addition, OntoEA [64] utilizes the embedding of ontologies (concepts) and
instances for entity alignment tasks.

3. Model

In this section, we first introduce our model HCCE, which encodes each concept as a
hyperspherical cone region and each instance as a vector in the embedding space. Next,
based on relative positions, we use an interpretable approach to design score functions for
different triples and concept pairs including instanceOf, subClassOf, instance relation triples,
overlapping concept pairs, and disjoint concept pairs in Figure 2. Then, we formally define
the loss function to be optimized by our model. Finally, we analyze the space and time
complexity of relative models to demonstrate HCCE’s advantages.

Figure 2. Hyperspherical cone embedding: concepts and their embedding regions are marked with
the same color.

3.1. Preliminaries

Given a knowledge graph KG, we represent knowledge graph elements as embeddings
in geometric form. Specifically, each instance i ∈ I is encoded as a point vector i ∈ Rd in the
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embedding space. Each concept c ∈ C is encoded as a hyperspherical cone region G(c, θ),
where concept central vector c ∈ Rd serves as the axis and θ ∈ R1 represents the half-vertex
angle. Moreover, to accelerate convergence and reduce computational complexity, we
constrain the embedding vectors of both concepts and instances on the unit sphere, which
means their norm is equal to 1. Thus, the concept region G(c, θ) can be defined by a set
as follows:

G(c, θ) =

{
x | arccos

(
x · c

∥x∥2 · ∥c∥2

)
⩽ θ, c ∈ Rk, x ∈ Rk, ∥x∥2 = ∥c∥2 = 1

}
, (1)

where ∥ · ∥2 represents the L2-norm. Equation (1) can be interpreted as defining the concept
region G(c, θ) in the embedding space as the set of vectors x whose angle with the concept
central vector c is less than or equal to θ.

3.2. Triples and Pairs
3.2.1. InstanceOf Relation Triple

We propose two methods to model instanceOf relation triple to explore the impact of
spatial configuration on HCCE: Same Space (SS) and Different Space (DS).

Same Space (SS) We embed instances and concepts in the same space, as shown in
Figure 2a. For the triple (Jackie Chan, instanceOf, artist), the instance Jackie Chan is inside the
concept artist region. In contrast, the instance Obama is outside the concept artist region
because there is no instanceOf relation between them. For a given instanceOf relation triple
(i, re, c), the instance embedding vector i should be inside the concept embedding region
G(c, θ), which is denoted as i ∈ G(c, θ). The score function is designed to measure whether
the instanceOf relation holds:

fins(i, c) = arccos(i · c)− θ, (2)

where fins ⩽ 0, the instanceOf relation re holds; otherwise, it does not hold. arccos(·) is the
inverse function of the cosine function.

Different Space (DS) We embed instances and concepts in different vector spaces,
as shown in Figure 2b. The instances Jackie Chan and Obama are embedded in an instance
embedding space and the concept artist is embedded in concept embedding space. For the
triple (Jackie Chan, instanceOf , artist), the instance Jackie Chan in the instance embedding
space is mapped inside the region of the concept artist in the concept embedding space.
Correspondingly, the instance Obama is mapped outside the region of the concept artist
because there is no instanceOf relation between them.

Therefore, for a given instanceOf relation triple (i, re, c), we first design a transformation
fT(·) to map the instance vector i in instance embedding space to an embedding vector
point i′ in the concept vector space:

i′ = fT(i) = σ(W · i + b), (3)

where W ∈ Rdi×dc is a weight matrix and b is a bias vector. σ(·) is a non-linear activation
function (we adopt tanh). Thus, the score function is designed to measure whether the
instanceOf relation holds:

fins(i, c) = arccos( fT(i) · c)− θ, (4)

where fins ⩽ 0, the instanceOf relation re holds; otherwise, it does not hold.

3.2.2. SubClassOf Relation Triple

For a given subClassOf triple
(
ci, rc, cj

)
, it should be satisfied that the concept embed-

ding region Gi(ci, θj) is contained by the concept embedding region Gj(cj, θj), which is
denoted as Gi(ci, θj) ⊆ Gj(cj, θj). For example, as shown in Figure 2c, the Chinese artist
concept region is contained by the artist concept region. Furthermore, according to the
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algebraic condition of determining the relative positions of two regions, we design a score
function to determine whether the subClassOf relation holds.

fsub(ci, cj) = arccos(ci · cj)− (θj − θi), (5)

where fsub ⩽ 0, the subClassOf relation holds, otherwise not.

3.2.3. Overlapping Concept Pair

An instance may belong to multiple concepts in a knowledge graph, and two of these
concepts can be called overlapping concept pair. For example, as shown in Figure 2d, an
instance Alice belongs to the concept artist and the concept writer. Accordingly, in the
embedding space, the concept regions corresponding to the concepts artist and writer have
overlapping parts. Extended to the general situation, if two concepts ci, cj ∈ C, ∃i ∈ I
satisfies (i, re, ci) ∈ Te and (i, re, cj) ∈ Te, then < ci, cj > can be called overlapping concept
pair Po. Based on the relative position of the two concept regions in the embedding space,
we design the following score function to measure the degree of overlap between the
concept regions.

fPo (ci, cj) = arccos(ci · cj)− (θj + θi). (6)

The term arccos(ci · cj) calculates the angle between the vectors representing the concepts ci
and cj. The sum θj + θi represents the combined angular spread of the two concepts. If the
angle between the vectors is less than or equal to the combined angular spread, the score
function will be non-positive, indicating that the two concept regions are overlapping.

It is worth noting that a concept pair satisfying the subClassOf relation also be-
longs to overlapping concept pairs, but the Equation (5) imposes stronger limitation than
Equation (6). Therefore, if the two aforementioned concepts do not exist in the subClassOf
relation, we can add a lower limited condition:

f ′Po
(ci, cj) = |θj − θi| − arccos(ci · cj). (7)

If the angle arccos(ci · cj) between the vectors is less than or equal to the difference |θj − θi|,
the score function will be non-positive, ensuring that two concept regions do not collapse
into a ‘contain’ relationship.

3.2.4. Disjoint Concept Pair

Multiple sub-concepts may belong to the same concept in the knowledge graph, two
of these sub-concepts can be called disjoint concept pair if there is no subClassOf relation
between them. For example, as shown in Figure 2e, the concept hockey team and the
concept hockey team belong to the concept team. Accordingly, in the embedding space, the
embedding regions corresponding to the two concepts in the concept pair <hockey team,
hockey team> have no overlapping parts. Extending to the general situation, if three concepts
ci, cj, c ∈ C are such that (ci, rc, c) ∈ Tc, (cj, rc, c) ∈ Tc, (cj, rc, ci) /∈ Tc, and (ci, rc, cj) /∈ Tc,
then < ci, cj > can be called a disjoint concept pair Pd. Based on the relative position of the
two concept regions in the embedding space, the following score function is designed:

fPd(ci, cj) = (θj + θi)− arccos(ci · cj). (8)

If the combined angular spread θj + θi is greater than the angle arccos(ci · cj) between the
vectors, the score function will be positive, indicating that two concept regions are disjoint.

3.2.5. Instance Relation Triple

For the instance triple (im, rl , in), we will learn low-dimensional vectors im, rl , in ∈ Rd
i

for instances and relations. In order to be consistent with concept embedding, we utilize
TransE [23] models to design the score function:

frl (im, in) = ∥im + rl − in∥L1/L2 . (9)
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3.3. Loss Function

For instance relation triples, we use ϕ and ϕ′ to denote a positive triple and a negative
triple. Tϵ and T ′

ϵ are used to describe the positive triple set and negative triple set. As we
adopt a margin-based ranking loss:

Lrl = ∑
ϕ∈Trl

∑
ϕ′∈T ′

rl

[
γrl + frl (ϕ)− frl

(
ϕ′)]

+, (10)

where γrl is the margin separating positive triples and negative triples.
Unlike Equation (9), the score functions (2), (4), and (5) for the instanceOf relation

triples and subClassOf relation triples allow the score of positive triples to be less than zero.
To more accurately constrain the model’s judgment of positive and negative triples, we
design a separate margin-based loss to constrain positive and negative examples separately.
Specifically, the loss function of instanceOf relation triples is

Lre = ∑
ϕ∈Tre

[γre + fre(ϕ)]+ + ∑
ϕ′∈T ′

re

[
γre − fre

(
ϕ′)]

+, (11)

where [x]+ ≜ max(0, x). Similarly, for subClassOf relation triples, we will have a loss
function as follows:

Lrc = ∑
ϕ∈Trc

[γrc + frc(ϕ)]+ + ∑
ϕ′∈T ′

rc

[
γrc − frc

(
ϕ′)]

+, (12)

where γre and γrc are the margins separating positive and negative triples of instanceOf
relation and subClassOf relation.

For overlapping concept pairs, based on Equations (6) and (7), we design the loss function
as follows:

LPo = ∑
ϕ∈Po

[ fPo (ϕ)]+ + ∑
ϕ∈Po

[
f ′Po

(ϕ)
]
+

(13)

For disjoint concept paris, based on Equation (8), we design the loss function as follows:

LPd = ∑
ϕ∈TPd

[
fPd(ϕ)

]
+

(14)

Finally, we define the overall loss function as linear combinations of the aforemen-
tioned five functions:

L = Lre + Lrc + Lrl + LPo + LPd . (15)

3.4. Complexity of Models

In Table 1, we list the space and time complexity of all the models used in the Section
of Experiments. As the most classic KGE model, TransE has the fewest parameters. In
comparison, HCCE-SS only adds approximately Nc parameters, which is the same as
TransC. Compared to Transellipsoid, EIKE, and IBKE, HCCE-SS reduces the number of
parameters by Ncdc. When Ni is similar to Nc (e.g., in the YAGO39K dataset), HCCE-SS
reduces about 33% fewer parameters, and this reduction becomes more significant as Nc
increases. Compared to HCCE-SS, HCCE-DS only introduces one additional mapping
matrix and a set of bias parameters. Moreover, these parameters depend solely on the
embedding dimensions of concepts (dc) and instances (di), which are generally negligible
compared to the total number of concepts (Nc) and instances (Ni). The high time complexity
of HCCE-DS is due to its approach of mapping instances to the concept space when
handling instanceOf relations, which increases computational demands. Overall, HCCE-SS,
TransE, and TransC have the lowest time and space complexity among models of the
same level.
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Table 1. Complexity of several embedding models. Ni, Nc, Nr denote the numbers of instances,
concepts, and relations. di, dc, dr denote the dimension of embeddings of instances, concepts, and
relations. For time complexity, d denotes the dimension of embeddings.

Model Ospace OTime

TransE [23] O(Nidi + Ncdc + Nrdr) O(d)
TransH [25] O(Nidi + Ncdc + 2Nrdr) O(d)
TransR [26] O(Nidi + Ncdc + Nrdr + Nrdrdi) O(ddr)
TransD [27] O(2Nidi + 2Ncdc + 2Nrdr) O

(
d2)

HolE [19] O(Nidi + Ncdc + Nrdr) O(d log d + d)
DistMult [17] O(Nidi + Ncdc + Nrdr) O(d)
ComplEx [18] O(Nidi + Ncdc + Nrdr) O(d)
TransC [9] O(Nidi + Nc(dc + 1) + (Nr − 2)dr) O(d)
TransFG [61] O(3Nidi + Nc(2dc + 1) + 2(Nr − 2)dr) O

(
d2)

JECI [63] O(Nidi + Ncdc + Nrdr) O(d log d)
IBKE [12] O(Nidi + 2Ncdc + (Nr − 2)dr) O

(
d2)

TransCuboid [11] O(Nidi + 2Ncdc + (Nr − 2)dr) O(d)
TransEllipsoid [11] O(Nidi + 2Ncdc + (Nr − 2)dr) O(d)
EIKE-UNP-EYE [62] O(Nidi + 2Ncdc + (Nr − 2)dr + dc) O

(
d2)

EIKE-UNP-MAT [62] O(Nidi + 2Ncdc + (Nr − 2)dr + dcdi) O
(
d2)

HCCE-SS (ours) O(Nidi + Nc(dc + 1) + (Nr − 2)dr) O(d)
HCCE-DS (ours) O(Nidi + Nc(dc + 1) + (Nr − 2)dr + dc(dr + 1)) O

(
d2)

4. Experimental Preliminaries
4.1. Datasets

We used the datasets YAGO39K, M-YAGO39K, and DB99K-242 in TransEllipsoid [11].
YAGO39K was created by TransC [9] and is based on YAGO, which contains lots of concepts
from WordNet and instances from Wikipedia. M-YAGO39K is an extension of the YAGO39K
dataset, which is designed to evaluate the model’s reasoning ability about the transitivity
of isA relations. DB99K-242 is created by removing other relations between concepts except
for the subClassOf relation on DB111K-174 [8] extracted from DBpedia. These three datasets
are described in detail in Table 2.

Table 2. Statistics of datasets.

Datasets YAGO39K M-YAGO39K DB99K-242

#Instance 39,374 39,374 99,744
#Concept 46,110 46,110 242
#Relation 39 39 298

#Training Relational Triple 354,997 354,997 592,654
#Training InstanceOf Triple 442,836 442,836 89,744
#Training subClassOf Triple 30,181 30,181 111

#Valid (Relational Triple) 9341 9341 32,925
#Test (Relational Triple) 9364 9364 32,925
#Valid (InstanceOf Triple) 5000 8650 4987
#Test (InstanceOf Triple) 5000 8650 4987
#Valid (subClassOf Triple) 1000 1187 13
#Test (subClassOf Triple) 1000 1187 13

4.2. Baselines

Following TransEllipsoid [11], we selected 13 state-of-the-art knowledge representa-
tion learning models as baselines for evaluating our proposed approach. Based on whether
to distinguish between concepts and instances, baselines are divided into two categories:
(1) Methods distinguishing concepts and instances, including TransC [9], TransFG [61],
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JECI [63], IBKE [12], TransEllipsoid [11], and TransCuboid [11]. (2) Methods that do not
distinguish between concepts and instances, including TransE [23], TransH [25], TransR [26],
TransD [27], DistMult [17], HolE [19], ComplEx [18].

Our baselines do not include concept embedding methods such as JOIE and TransO.
JOIE [8] requires numerous meta-relations between concepts, which are not present in our
datasets. Methods like TransO [58], which utilize concepts as supplementary information
without directly modeling them, are not suitable as our baselines. EIKE [62] introduces
additional textual information to pre-encode concept vectors, while other models do not in-
clude this information, leading to an unfair comparison. Therefore, we only use EIKE-UNP,
which initializes concept vectors without encoding ontology information, for comparison.

4.3. Experiment Settings

We implement HCCE on NVIDIA TITAN RTX. As for the training hyper-parameters,
we select them from the following ranges: learning rate λ ∈ {0.1, 0.01, 0.001}, the di-
mension of the embedding vector di, dc ∈ {50, 100, 150}, the three margins γe, γc, γl ∈
{0, 0.1, 0.3, 0.5, 1}, norm L1, L2. We use grid search to determine the hyper-parameters for
different tasks and datasets, which are shown in Table 3.

Table 3. Hyperparameters for different tasks and datasets.

Task Dataset Model
Hyperparameters

γl γe γc λ di dc norm

Triple Classification

YAGO39K HCCE-SS 1 0.3 0.1 0.001 100 100 L2
HCCE-DS 1 0.1 0.1 0.001 100 100 L2

M-YAGO39K HCCE-SS 1 0.3 0.1 0.001 100 100 L1
HCCE-DS 1 0.1 0.1 0.001 100 100 L2

DB99K-242 HCCE-SS 1 0.1 0 0.001 100 100 L2
HCCE-DS 1 0.1 0 0.001 100 100 L2

Link Prediction
YAGO39K HCCE-SS 1 0.1 0.1 0.001 100 100 L1

HCCE-DS 1 0.4 0.3 0.001 100 100 L1

DB99K-242 HCCE-SS 1 0.1 0 0.001 100 100 L2
HCCE-DS 1 0.1 0 0.001 100 100 L2

5. Experimental Results and Discussion

In this section, we first evaluate the performance of our methods on two standard tasks
for Knowledge Graph Embedding (KGE): link prediction [23] and triple classification [38].
Next, we assess the impact of overlapping and disjoint concept pairs through ablation ex-
periments. Then, we present visualizations of concept embeddings and their corresponding
instance embeddings to illustrate the hierarchical tree structure of concepts in the embed-
ding space. Additionally, we analyze the half-vertex angle θ to validate the rationality of
our models. Finally, we analyze the theoretical implications, practical implications, and
limitations of our methods.

5.1. Triple Classification

Triple classification is a binary classification task to judge whether a given triple is
correct or not. We conduct classification experiments on three datasets: YAGO39K, M-
YAGO39K, and DB99K-242. We trained three types of triples—instance triples, instanceOf
triples, and subClassOf triples—simultaneously and show their performance separately.

Evaluation protocol
Following most previous works [9,38], we employ the micro-averaged evaluation

metric on four metrics—Accuracy, Precision, Recall, and F1-Score—to evaluate a triple
classification task. This approach captures the overall effectiveness of the embedding model
across all relations without being biased by class size on three datasets YAGO39K, M-
YAGO39K, and DB99K-242. The decision rule for classification is simple: We set a relation-
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specific δr for each relation triple prediction, including instance relations, instanceOf relation,
and subClassOf relation. Then, for a triple, if its score fr is below the threshold δr, the triple
is predicted as positive, otherwise negative. The relation-specific threshold δr is determined
by maximizing classification accuracy on the validation set. The optimal configurations are
determined by accuracy in the validation set, which are shown in Table 3.

Result
Table 4 shows the experimental results of subClassOf triple classification on the

YAGO39K and M-YAGO39K datasets. Compared with recent competitive models, HCCE-
SS and HCCE-DS demonstrate clear improvements in almost all metrics for both datasets.
This indicates that using hyperspherical cones to model concepts enhances the representa-
tion of concept embeddings. At a significant cost to either precision or recall performance,
EIKE-UNP-EYE and TransEllipsoid achieve the highest recall and precision results, respec-
tively. This likely stems from the design of each model: TransEllipsoid restricts concept
regions more tightly, while EIKE-UNP-EYE allows broader concept regions. Specifically,
compared to our method (HCCE-DS), EIKE-UNP-EYE shows a slight improvement in
recall (1% in YAGO39K dataset and 0.85% in the M-YAGO39K dataset), but at a substantial
decrease in precision (12.23% lower in the YAGO39K dataset and 12.59% lower in the
M-YAGO39K dataset). Similarly, TransEllipsoid achieves higher precision than HCCE-
DS (1.1% higher in the YAGO39K dataset and 2.23% higher in M-YAGO39K dataset) but
exhibits a notable decline in recall (7.9% lower in YAGO39K dataset and 9.48% lower in
M-YAGO39K dataset). As a result, HCCE-DS achieves higher overall F1-Scores, surpassing
TransEllipsoid by 2.83% on the YAGO39K dataset and 2.9% on the M-YAGO39K dataset,
and outperforming EIKE-UNP-EYE by 7.64% on YAGO39K dataset and 7.55% on the M-
YAGO39K dataset. These results suggest that HCCE effectively balances classification
metrics to enhance the performance of the subClassOf triplet classification task. The supe-
rior performance of HCCE-DS compared to HCCE-SS indicates that modeling concepts
separately in the concept embedding space helps capture the hierarchical tree structure
of concepts, thereby improving the effectiveness of concept embeddings. The enhanced
performance of the HCCE model on M-YAGO39K compared to YAGO39K indicates that
the HCCE model can effectively model the transitivity of the subClassOf relation.

Table 4. Experimental results on subClassOf triple classification (%).

Datasets YAGO39K M-YAGO39K

Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TransE [23] 77.6 72.2 89.8 80.0 76.9 (−0.7) 72.3 (+0.1) 87.2 (−2.6) 79.0 (−1)
TransH [25] 80.2 76.4 87.5 81.5 79.1 (−1.1) 72.8 (−3.6) 92.9 (+5.4) 81.6 (+0.1)
TransR [26] 80.4 74.7 91.9 82.4 80.0 (−0.4) 73.9 (−0.8) 92.9 (+1) 82.3 (−0.1)
TransD [27] 75.9 70.6 88.8 78.7 76.1 (+0.2) 70.7 (+0.1) 89.0 (+0.2) 78.8 (+0.1)
HolE [19] 70.5 73.9 63.3 68.2 66.6 (−3.9) 72.3 (−1.6) 53.7 (−9.6) 61.7 (−6.5)
DistMult [17] 61.9 68.7 43.7 53.4 60.7 (−1.2) 71.7 (+3) 35.5 (−8.2) 47.7 (−5.7)
ComplEx [18] 61.6 71.5 38.6 50.1 59.8 (−1.8) 65.6 (−5.9) 41.4 (+2.8) 50.7 (+0.6)
TransC (unif) [9] 82.9 77.1 93.7 84.6 83.0 (+0.1) 77.5 (+0.4) 93.1 (−0.6) 84.7 (+0.1)
TransC (bern) [9] 83.7 78.1 93.9 85.2 84.4 (+0.7) 80.7 (+2.6) 90.4 (−3.5) 85.3 (+0.1)
TransFG (unif) [61] 82.8 75.7 96.5 84.8 83.1 (+0.3) 76.5 (+0.8) 95.5 (−1) 84.9 (+0.1)
TransFG (bern) [61] 84.5 78.6 95.2 86.1 84.7 (+0.2) 78.7 (+0.1) 94.1 (−1.1) 85.7 (−0.4)
TransEllipsoid [11] 85.1 82.1 89.7 85.7 85.5 (−0.4) 84.2 (+2.1) 87.4 (−2.3) 85.8 (+0.1)
TransCuboid [11] 74.7 68.3 92.3 78.5 75.5 (+0.8) 69.1 (+0.8) 92.4 (+0.1) 79.1 (+0.6)
EIKE-UNP-EYE [62] * 76.8 68.77 98.2 80.89 77.3 (+0.5) 69.38 (+0.61) 97.73 (−0.47) 81.15 (+0.26)
EIKE-UNP-MAT [62] * 77.8 70.23 96.5 81.3 77.55 (−0.25) 69.99 (−0.24) 96.46 (−0.04) 81.12 (−0.18)

HCCE-SS 85.9 79.72 96.3 87.23 86.52 (+0.62) 80.59 (+0.87) 96.21 (−0.09) 87.71 (+0.48)
HCCE-DS 87.35 81.00 97.60 88.53 87.66 (+0.31) 81.97 (+0.97) 96.88 (−0.72) 88.70 (+0.17)

The values in parentheses (in the M-YAGO39K column) represent the difference in scores from YAGO39K to
M-YAGO39K. Results of * are taken from [62], and other results are taken from [11]. Bold font represents the
best results.
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Table 5 displays the experimental results of instanceOf triple classification on the
YAGO39K and M-YAGO39K datasets. On YAGO39K, TransEllipsoid and EIKE-UNP-EYE
outperform HCCE-SS and HCCE-DS, potentially because the former models have more
parameters. Specifically, according to Tables 1 and 2, TransEllipsoid and EIKE-UNP-EYE
have nearly 50% more parameters than HCCE-SS. Compared to TransC, which has a similar
number of parameters, HCCE-SS achieves better results across all four metrics. On M-
YAGO39K, HCCE-SS outperforms all baselines on almost all metrics. This indicates that
using hyperspherical cones for concept modeling enhances the model’s performance in
handling instanceOf relation. Similar to the results for subClassOf relation, EIKE-UNP-EYE
performs slightly better than HCCE-SS in terms of precision but falls short in the other
three metrics. This further demonstrates that HCCE can effectively balance classification
metrics. Therefore, these results suggest that our HCCE model can effectively improve
the performance of the instanceOf relation classification task while significantly reducing
the parameter count. Moreover, on both datasets, HCCE-SS outperforms HCCE-DS. We
speculate that this may be due to the difficulty of mapping functions accurately and
assigning all instances to their corresponding concept regions. This suggests that modeling
instances and concepts in the same space can reduce errors from spatial mapping, thereby
benefiting the modeling of the instanceOf relation.

Table 5. Experimental results on instanceOf triple classification (%).

Datasets YAGO39K M-YAGO39K

Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TransE [23] 82.6 83.6 81.0 82.3 71.0 (−11.6) 81.4 (−2.2) 54.4 (−26.6) 65.2 (−17.1)
TransH [25] 82.9 83.7 81.7 82.7 70.1 (−12.8) 80.4 (−3.3) 53.2 (−28.5) 64.0 (−18.7)
TransR [26] 80.6 79.4 82.5 80.9 70.9 (−9.7) 73.0 (−6.4) 66.3 (−16.2) 69.5 (−11.4)
TransD [27] 83.2 84.4 81.5 82.9 72.5 (−10.7) 73.1 (−11.3) 71.4 (−10.1) 72.2 (−10.7)
HolE [19] 82.3 86.3 76.7 81.2 74.2 (−8.1) 81.4 (−4.9) 62.7 (−14) 70.9 (−10.3)
DistMult [17] 83.9 86.8 80.1 83.3 70.5 (−13.4) 86.1 (−0.7) 49.0 (−31.1) 62.4 (−20.9)
ComplEx [18] 83.3 84.8 81.1 82.9 70.2 (−13.1) 84.4 (−0.4) 49.5 (−31.6) 62.4 (−20.5)
TransC (unif) [9] 80.2 81.6 80.0 79.7 85.5 (+5.3) 88.3 (+6.7) 81.8 (+1.8) 85.0 (+5.3)
TransC (bern) [9] 79.7 83.2 74.4 78.6 85.3 (+5.6) 86.1 (+2.9) 84.2 (+9.8) 85.2 (+6.6)
TransFG (unif) [61] 80.2 82.4 78.6 80.4 85.5 (+5.3) 88.3 (+5.9) 82.0 (+3.4) 85.0 (+4.6)
TransFG (bern) [61] 81.7 83.8 75.5 79.4 85.9 (+4.2) 88.4 (+4.6) 82.2 (+6.7) 85.2 (+5.8)
JECI (cbow) [63] 82.7 84.1 81.0 82.8 86.0 (+3.3) 88.2 (+4.1) 81.2 (+0.2) 84.6 (+1.8)
JECI (sg) [63] 83.9 86.6 83.0 84.8 86.1 (+2.2) 88.7 (+2.1) 84.1 (+1.1) 86.3 (+1.5)
TransEllipsoid [11] 87.23 87.89 86.36 87.12 87.84 (+0.61) 87.88 (−0.01) 87.78 (+1.42) 87.83 (+0.71)
TransCuboid [11] 79.3 80.43 77.44 78.91 84.77 (+5.47) 87.59 (+7.16) 81.03 (+3.59) 84.18 (+5.27)
EIKE-UNP-EYE [62] * 87.13 86.63 87.54 87.18 87.77 (+0.64) 89.91 (+3.28) 85.21 (−2.33) 87.45 (+0.27)
EIKE-UNP-MAT [62] * 85.23 86.43 84.06 85.23 85.24 (+0.01) 86.33 (−0.1) 83.75 (−0.31) 85.02 (−0.21)

HCCE-SS 84.06 86.28 81 83.56 88.16 (+4.10) 88.32 (+2.04) 87.95 (+6.95) 88.14 (+4.58)
HCCE-DS 83.69 84.71 82.22 83.45 88.00 (+4.31) 89.83 (+5.12) 85.70 (+3.48) 87.72 (+4.27)

The values in parentheses (in the M-YAGO39K column) represent the difference in scores from YAGO39K to
M-YAGO39K. Results of * are taken from [62], and other results are taken from [11]. Bold font represents the
best results.

Table 6 shows the experimental results of subClassOf and instanceOf triple classification
on the DB99K-242 dataset. On the DB99K-242 dataset, HCCE achieves only competitive
results across all metrics, without the outstanding performance seen on the M-YAGO39K
and YAGO39K datasets. This may be due to the DB99K-242 dataset having fewer concepts,
fewer subClassOf and instanceOf triples, and a lower ratio of concepts to instances compared
to the other two datasets. As a result, the advantages of HCCE in concept modeling are not
fully realized, and HCCE may overfit the structure of the instances due to a larger quantity
of instances. This is also reflected in the instance triple classification experiments.
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Table 6. Triple Classification results on the DB99K-242 dataset.

Task instanceOf (%) subClassOf (%)

Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TransE [23] 78.82 79.76 77.26 78.49 61.54 100 23.08 38
TransC [9] 83.59 92.38 73.21 81.69 57.69 75 23.08 35

TransEllipsoid [11] 93.1 94.81 91.64 93.2 61.54 100 23.08 38
TransCuboid [11] 69.91 65.23 85.28 73.92 76.92 73.33 84.62 79

EIKE-UNP-EYE [62] * 94.21 96.17 92.1 94.09 73.08 68.75 84.62 75.86
EIKE-UNP-MAT [62] * 78.34 72.4 91.62 80.88 53.85 53.33 61.54 57.14

HCCE-SS 92.33 93.01 91.54 92.27 73.08 71.43 76.92 74.07
HCCE-DS 89.89 92.47 86.87 89.58 69.23 77.78 53.85 63.64

Results of * are taken from [62], and other results are taken from [11]. Bold font represents the best results.

Table 7 shows the instance triple classification results on the YAGO39K and DB99K-242
datasets. On the YAGO39K dataset, HCCE achieves competitive results on all metrics com-
pared to state-of-the-art models. Compared with TransE, HCCE-SS yields better results on
all metrics, illustrating that using relative position modeling for instanceOf and subClassOf
relations can indirectly benefit instance embedding. Compared to TransEllipsoid and EIKE-
UNP-EYE, HCCE-SS achieves better results. The combined performance on instanceOf
and subClassOf relations suggests that using hyperspherical cones for concept embedding
is more accurate than ellipsoids for spatial distribution, improving instance embedding
through the instanceOf relation. TransFG and JECI achieve better performance than HCCE-
SS and HCCE-DS. It is because TransFG enhances instance performance beyond TransE,
while JECI does not consider subClassOf relations. On the DB99K-242 dataset, HCCE-SS
and HCCE-DS outperform other models on three metrics. This echoes the previous results
of HCCE on subClassOf and instanceOf triple classification.

Table 7. Experimental results on instance triple classification (%).

Datasets YAGO39K DB99K-242

Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TransE [23] 92.1 92.8 91.2 92.0 90.5 91.5 89.29 90.38
TransH [25] 90.8 91.2 90.3 90.8 - - - -
TransR [26] 91.7 91.6 91.9 91.7 - - - -
TransD [27] 89.3 88.1 91.0 89.5 - - - -
HolE [19] 92.3 92.6 91.9 92.3 - - - -

DistMult [17] 93.5 93.9 93.0 93.5 - - - -
ComplEx [18] 92.8 92.6 93.1 92.9 - - - -

TransC [9] 93.8 94.8 92.7 93.7 90.17 90.9 89.27 90.08
TransFG [61] 94.4 94.7 93.3 94.0 - - - -

JECI (cbow) [63] 93.4 94.8 92.6 93.7 - - - -
JECI (sg) [63] 93.9 95.2 93.1 94.1 - - - -

TransEllipsoid [11] 92.64 92.68 92.6 92.64 93.63 94.67 92.46 93.55
TransCuboid [11] 92.18 93.8 90.26 92.02 88.4 90.26 86.1 88.13

EIKE-UNP-EYE [62] * 92.69 92.54 92.87 92.7 92.38 93.46 91.14 92.29
EIKE-UNP-MAT [62] * 93.14 93.5 92.74 93.12 63.6 60.96 75.64 67.51

HCCE-SS 93.17 93.72 92.55 93.13 94.19 94.62 93.71 94.16
HCCE-DS 92.05 91.24 93.03 92.13 94.08 94.59 93.51 94.04

Results of * are taken from [62], and other results are taken from [11]. Bold font represents the best results.

Additionally, we observe that HCCE-DS and HCCE-SS perform similarly across the
three datasets with slight differences; for example, HCCE-DS performs better on subClassOf,
while HCCE-SS excels on instanceOf, indicating that different space configurations affect
the performance of HCCE.
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5.2. Instance Link Prediction

Link prediction [65] aims to predict the missing head entity (?, r, t) or tail entity
(h, r, ?). For each testing instance triple, we use the method proposed in [66] to replace
the head or tail instance from the instance set to construct the corrupted triples, and then
such triples are ranked in descending order according to the scores by the score function of
Equation (9). We conduct link prediction experiments for instance triples on YAGO39K and
DB99K-242 datasets because the instanceOf relation and subClassOf relation are not suitable
for this task [11].

Evaluation protocol Following most previous works [9,65], we adopt two evaluation
metrics as follows: (1) The mean reciprocal rank of all correct instances (MRR); (2) The
proportion of correct instances that rank no larger than N (Hits@N). The higher the value
of a model in MRR and Hits@N, the better its performance is. Note that a corrupted triple
may have already existed in the knowledge graph, which should be regarded as a correct
prediction. The settings “Raw” and “Filter” distinguish whether or not to consider the
impact of a corrupted triple already existing in the knowledge graph.

Result Table 8 shows the experimental results of link prediction on the YAGO39K and
DB111K-242 datasets. On the YAGO39K dataset, TransEllipsoid and EIKE perform better
than HCCE, likely because former models use more parameters to enhance performance.
However, with the same number of parameters, the performance of HCCE-SS outperforms
TransC’s. This indicates that using hyperspherical cones to model concept embeddings
is more effective than spheres for improving embedding quality and instance inference.
DistMult achieves the the best performance in MRR, possibly because we determine the best
configurations based solely on Hits@10, which may lead to a lower MRR. The performance
of HCCE-DS is better than HCCE-SS, which may indicate that using the independent
embedding space for instances is beneficial for models to instance inference. On the
DB111K-242 dataset, the performance of HCCE is similar to it on the YAGO39K dataset,
except that HCCE-DS achieves the best performance in Hits@10.

Table 8. Experimental results on link prediction.

Datasets YAGO39K DB99K-242

Metric MRR Hits@N(%) MRR Hits@N(%)
Raw Filter 1 3 10 Raw Filter 1 3 10

TransE [23] 0.114 0.248 12.3 28.7 51.1 0.170 0.232 10.2 31.5 45.7
TransH [25] 0.102 0.215 10.4 24.0 45.1 - - - - -
TransR [26] 0.112 0.289 15.8 33.8 56.7 - - - - -
TransD [27] 0.113 0.176 8.9 19.0 35.4 - - - - -
HolE [19] 0.063 0.198 11.0 23.0 38.4 - - - - -

DistMult [17] 0.156 0.362 22.1 43.6 66.0 - - - - -
ComplEx [18] 0.058 0.362 29.2 40.7 48.1 - - - - -

TransC [9] 0.112 0.420 29.8 50.2 69.8 0.147 0.188 6.6 25.7 40.8
TransFG [61] 0.114 0.475 32.5 52.1 70.1 - - - - -

JECI (cbow) [63] 0.088 0.418 28.6 49.7 69.8 - - - - -
JECI (sg) [63] 0.122 0.441 30.0 51.1 70.1 - - - - -

IBKE [12] - 0.522 40.4 60.5 73.1 - - - - -
TransEllipsoid [11] 0.112 0.536 41.6 68.7 75.1 0.170 0.248 11 34.4 48.1
TransCuboid [11] 0.095 0.475 36.3 55.6 66.9 0.149 0.200 4.2 30.4 47.8

EIKE-UNP-EYE [62] * 0.115 0.577 47.1 65.4 76.2 0.175 0.256 11.9 34.9 49.4
EIKE-UNP-MAT [62] * 0.113 0.545 42.4 62 74.7 0.045 0.056 0.1 9.2 15

HCCE-SS 0.108 0.439 28.7 52.9 73.9 0.169 0.233 7.38 34.46 49.83
HCCE-DS 0.096 0.442 29.8 53.2 72.3 0.170 0.234 7.49 34.50 50.06

Hits@N uses result of “Filter” evaluation setting. Results of * are taken from [62], and other results are taken
from [11]. Bold font represents the best results.
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5.3. Ablation

In this section, to prove the effectiveness of disjoint concept pairs and overlapping
concept pairs, We implement three sets of experiments by separately removing overlapping
concept pairs (LPo ), disjoint concept pairs (LPd ), and both on YAGO39K and M-YAGO39K
dataset. Table 9 shows the results. (1) When we exclude overlapping concept pairs, the
performance of subClassOf and instanceOf shows a slight decline. This shows that the
overlapping concept pairs are important and can prompt the effectiveness of jointly embed-
ding concepts and instances. (2) When we exclude disjoint concept pairs, the performance
degrades again, but significant drop in subClassOf relation effect (more than 10% F1-Score).
This may be due to the fact that the entities involved in disjoint concept pairs are all con-
cepts, so the performance on subClassOf relation is significantly improved. Additionally,
incorporating disjoint concept pairs allows the model to separate multiple concept regions
that belong to the same super-concept in embedding space. This helps improve the model’s
discrimination of the subClassOf and instanceOf relation triples related to these concepts.
(3) When we simultaneously exclude overlapping concept pairs and disjoint concept pairs,
compared with other results, this scheme has the worst effect. This continues to prove
the effectiveness of overlapping and disjoint concept pairs to improve the performance of
jointly embedding concepts and instances.

Table 9. Ablation experimental results on F1-Score of triple classification (%).

Datasets YAGO39K M-YAGO39K

Triple instanceOf subClassOf instanceOf subClassOf

HCCE (one) 83.94 87.09 88.15 87.35
HCCE (one) w/o LPo 82.53 85.59 86.68 85.80
HCCE (one) w/o LPd 82.47 76.04 86.31 75.85
HCCE (one) w/o LPo & LPd 81.85 76.21 86.18 75.82

HCCE (two) 83.45 88.53 87.72 88.70
HCCE (two) w/o LPo 83.05 83.61 87.05 83.96
HCCE (two) w/o LPd 82.34 74.33 86.94 74.86
HCCE (two) w/o LPo & LPd 82.68 73.89 87.00 73.32

5.4. Tree Structure Visualization

To understand how concepts and instances are distributed in the embedding space
and how the hierarchical tree structure of concepts is modeled, we apply t-SNE [67] on
YAGO39K to visualize the embedding space in Figure 3. We utilize t-SNE to depict the
instance embeddings i and the concept embeddings c of G(c, θ). For HCCE-DS, each
instance is mapped to an embedding point in the concept vector space.

In Figure 3(a3,b3), we observe the following: (1) Instances surround their corre-
sponding concepts. In the visualizations, each star representing a concept is surrounded
by points of the same color, which represent instances. (2) Sub-concepts surround their
super-concepts, forming a concept tree structure. To clearly illustrate this structure, we
connect super-concepts and sub-concepts layer by layer from the “ROOT” concept, re-
constructing the hierarchical tree structure of concepts in the knowledge graph. Further-
more, sub-concepts belonging to the same super-concept are closer together, which in-
clude the sub-concepts belonging to the concepts “party” and “hockey team”. To enhance
clarity regarding the distribution of these two concepts along with their respective sub-
concepts and instances, we have separately depicted two subtree structures, as shown in
Figure 3(a1,a2,b1,b2). From these visualizations, we observe the following: (1) Instances
belonging to the super-concepts fill the entire space, with black dots spread throughout
sub-figure (e.g., Figure 3(a1)). (2) Instances belonging to different sub-concepts exhibit
distinct partition clusters. In Figure 3(a1), the three different color dots are concentrated
in the upper left, upper right, and lower left parts of the sub-figure. These visualizations
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demonstrate that HCCE can distinguish and model different sub-concepts belonging to
the same super-concepts. Importantly, as anticipated, both HCCE-SS and HCCE-DS yield
similar t-SNE visualization results, affirming that the HCCE method can universally model
concepts and instances in either the same or different spaces.

Figure 3. Concept embedding space visualization. Each concept embedding vectors is denoted as a
star; each instance embedding vector is denoted as a dot in the same color with the concept to which
it belongs. Level-X indicates the position of a concept at the Xth level within the hierarchical tree
of concepts.

An interesting observation is that some sub-concepts that belong to different super-
concepts are embedded closer, e.g., “American artists” under “artist” and “American
television writers” under “writer”. Clearly, for concept “American artists” and concept
“American television writers”, we can easily identify their commonality: these two sub-
concepts are “American”. Furthermore, in the YAGO39K dataset, we find that the afore-
mentioned two concepts neither share common instances nor have the same super-concepts
(except “ROOT”). These show that HCCE not only models the concept tree structure
but also captures the semantic correlation among concepts via jointly training concepts,
instances, and their relation embedding.
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5.5. Overlapping Concept Pair Visualization

To demonstrate the impact of overlapping concept pairs on Knowledge Graph Em-
bedding, we employed t-SNE to illustrate their distributions in the embedding space, as
depicted in Figure 4. For HCCE-DS, each instance is mapped to an embedding point in
the concept vector space. According to the definition of overlapping concept pairs in the
introduction, we separately denote instances shared by two concepts by ×. By observing
the distribution of these instances, we examine the overlap between the concept regions.

(a) HCCE-SS

(b) HCCE-DS

Figure 4. Overlapping concept pair visualization. Each concept embedding vectors is denoted as
a star; each instance embedding vector that belongs to both two concepts is represented as a ×; an
instance vector that belongs only to one of the two concepts is represented as a dot of the same color
as the concept to which it belongs.

In each sub-figure, instance vectors form two independent clusters according to the
concept to which they belong, and the instance vectors belonging to both concepts are lo-
cated at the intersection of these clusters. This indicates that the regions of the two concepts
are independent but partially overlap due to the shared instances, confirming the model
design described in Section 3.2.3. Additionally, in some sub-figures (Figure 4(a2,b2)), we
observe that the clusters of stars and instance points of the same color are widely separated,
which seems unreasonable. However, we should consider the instance vectors represented
by × in conjunction with the instance vectors of the same color as the concept, as they
all belong to the same concept. When viewed together, the concept is located within the
cluster formed by these instances, which aligns with our expectations. Furthermore, the
visualization of HCCE-SS and HCCE-DS exhibit similar distributions, suggesting that
HCCE can universally embed concepts and instances in either the same or different spaces.

5.6. Analysis of the Half-Vertex Angle θ

In the preceding visualization section, we have illustrated the spatial distribution of
concept vectors. However, representing angles (θ) in high-dimensional space accurately in
lower-dimensional spaces poses challenges. Therefore, we opted to depict the distribution
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of all concept angles using frequency distribution to demonstrate the pattern of half-vertex
angle distribution, as depicted in Figure 5. Here, we partitioned the entire range of angles
into 1000 equal intervals based on the maximum and minimum angles. Observing the
images of HCCE-SS, we notice that the half-vertex angles of concepts are concentrated
between 0.3 and 1.1. HCCE-DS, on the other hand, exhibits an approximating Gaussian
distribution, with concept half-vertex angles predominantly falling between 0.3 and 0.8. In
both spatial scenarios, concepts with excessively small or large angles are relatively rare.
We attribute concepts with small angles to either their limited number of instances or their
granularity (concepts closer to leaf nodes in the concept tree). Conversely, concepts with
large angles are likely to be closer to the root node in the concept tree (and inherently less
frequent), and due to spatial constraints, it is reasonable for concepts with large angles to
be less.

(a) HCCE-SS (b) HCCE-DS

Figure 5. Frequency distribution histogram of θ of concept region G(c, θ) of HCCE-SS and HCCE-DS.

To further validate our hypothesis, we computed the average number of instances
for all concepts within each angle interval, which are normalized by the number of con-
cepts within the interval, as shown in Figure 6. In HCCE-SS and HCCE-DS, concepts
encompassing more instances tend to have larger half-vertex angles, which indicates a
broader conceptual domain. This observation aligns with our hypothesis and modeling
assumptions, as well as human intuition.

(a) HCCE-SS (b) HCCE-DS

Figure 6. Average instance numbers of concept angle interval.

5.7. Theoretical and Practical Implications

In this section, we provide a scientifically detailed analysis of the theoretical and
practical implications of our HCCE model, which is supported by mathematical modeling
and experimental evidence.

From a theoretical perspective, our model addresses a gap in knowledge graph em-
beddings (KGE) by introducing high-dimensional spherical cones to represent concept
embeddings, enabling the modeling of hierarchical and relational structures such as in-
stanceOf, subClassOf, and instance relations. As detailed in Section 3, our mathematical
framework produces anisotropic embeddings that capture both hierarchy and relationships
within knowledge graphs. This approach allows for a refined representation of overlapping
and disjoint concept pairs, providing a more nuanced geometry than traditional embed-
dings. By leveraging these high-dimensional cones, HCCE encapsulates hierarchical tree
structures directly within the embedding space, making it, to our knowledge, the first KGE
model to achieve this level of hierarchy-preserving detail.
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Experimental results in Section 5.1 validate the efficacy of HCCE, demonstrating that
our model maintains anisotropy while significantly reducing the number of parameters,
thereby offering a compact yet expressive representation of concepts. Furthermore, HCCE
significantly outperforms prior models on concept-related triples and achieves competitive
performance on instance-related triples. Experimental results in Section 5.6 demonstrate
the validity of the design of our approach and provide evidence for using geometric regions
to model concept embeddings.

From a practical perspective, our method has far-reaching implications in various
applications. HCCE’s explicit geometric representation of hierarchical and relational struc-
tures enhances knowledge graph construction by enabling precise, hierarchy-aware concept
embeddings. Furthermore, this concept-based approach can benefit concept-based question
answering systems, where accurate hierarchical and relational inferences are essential. The
model’s capability to represent structured knowledge makes it a valuable asset for large
language models, providing them with concept-aware knowledge that improves both
generalization and interpretability.

In summary, our HCCE model advances the theoretical understanding of hierarchical
embeddings in KGEs and offers practical tools for applications that rely on structured,
concept-aware knowledge.

5.8. Limitation

Our model employs an interpretable geometric framework that focuses on leverag-
ing structural information among instances, concepts, and relationships. Concepts are
abstract descriptions of entities, which contain a wealth of semantic information. However,
our model lacks the utilization of textual descriptions of concepts to enhance concept
embedding representations.

Our model primarily focuses on the design of concept representation while retaining
the original instance embeddings. Experimental results indicate that the HCCE method
can implicitly improve performance on instance-related triples through the instanceOf
relationship, although the effect is limited. Future work could explore modifying the
instance embeddings, for example, by employing alternative approaches or fine-tuning the
mapping functions to enhance the model’s performance on instance-related triples.

6. Conclusions

In summary, this paper proposes a novel geometric model named HCCE to jointly em-
bed concepts and instances. First, HCCE is the first to explicitly model the hierarchical tree
structure of concepts by representing each concept as a hyperspherical cone region in the
embedding space. It significantly reduces the model’s parameter count while maintaining
the anisotropy of concept embeddings. Additionally, we design two techniques, HCCE-SS
and HCCE-DS, to explore the impact of embedding concepts and instances in either the
same or different embedding spaces. Moreover, based on the tree structure of concepts, we
identify two types of concept pairs—overlapping concept pairs and disjoint concept pairs—
and design two score functions for them by utilizing relative positions. These approaches
enable HCCE to capture more structural information, thereby enhancing the representation
of concept embeddings. Empirical experiments conducted on the YAGO39K, MYAGO39K,
and DB99K242 datasets demonstrate that HCCE significantly outperforms previous mod-
els on concept-related triples and achieves competitive performance on instance-related
triples. The visualization of embedding results intuitively shows the hierarchical tree struc-
ture of concepts in the embedding space, providing evidence for interpretable reasoning
regarding the transitivity of the isA relations. For future research, we intend to explore
the following directions: (1) The enhancement of concept, which embeds at the semantic
level by introducing text information through pre-trained models, to generate and process
descriptions of concepts. (2) The investigation of additional inter-concept relations and
the examination of their impact on the relations among associated instances. We hope
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that these relations can mutually reinforce each other in enhancing the performance of
knowledge graph embedding.
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