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Abstract: As global energy demands continue to grow and environmental protection pressures
increase, microgrids have garnered widespread attention due to their ability to effectively integrate
distributed energy sources, improve energy utilization efficiency, and enhance grid stability. Due
to the complexity of internal structure, variety of energy sources, and uncertainty of load demand,
the optimal scheduling problem of microgrids becomes extremely complicated. Traditional opti-
mization methods often perform poorly in complex and dynamic microgrid environments, and it
is assumed that the complexity is low or that more simplification is needed, which leads to poor
convergence and local optimality when dealing with uncertainty and nonlinear problems, making
intelligent optimization algorithms a crucial solution to this problem. To address the shortcomings
of the traditional honey badger algorithm, such as the slow convergence speed and a tendency to
fall into local optima in complex microgrid optimal scheduling problems, this paper proposes a
multi-strategy improved honey badger algorithm. During the population initialization phase, a
combined opposition-based learning strategy is introduced to enhance the algorithm’s exploration
and exploitation capabilities. Additionally, the introduction of variable spiral factors and a linearly
decreasing strategy for parameters improves the overall efficiency of the algorithm and reduces
the risk of local optima. To further enhance population diversity, a hunger search strategy is em-
ployed, providing stronger adaptability and global search capabilities in varying environments. The
improved honey badger algorithm is then applied to solve the multi-objective optimal scheduling
problem in grid-connected microgrid modes. The simulation results indicate that the improved
honey badger algorithm effectively enhances the economic and environmental benefits of microgrid
operations, improving system operational stability.

Keywords: microgrid; optimization scheduling; honey badger algorithm; linearly decreasing strategy;
combined opposition-based learning; hunger search strategy; spiral factors

1. Introduction

Currently, China’s electric power industry is rapidly developing, aiming to enhance
energy efficiency, minimize operational costs, and achieve environmental protection goals.
Lowering electricity costs for users and accelerating the development of comprehensive
energy systems, as well as improving the economic operation of microgrid systems, are cur-
rent research hotspots. Therefore, optimizing the scheduling of microgrids is of significant
importance [1–3].

In recent years, with the large-scale introduction of renewable energy sources and the
continuous growth of electricity consumption demand, the complexity of energy networks
has significantly increased. As the core of the energy system, the economic dispatch prob-
lem (EDP) plays a crucial role in ensuring the efficient and stable operation of the power
system [4]. The goal of EDP is to allocate the output power of generators rationally to meet
the load demand with the lowest production cost while adhering to various operational
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constraints. This problem not only affects the pricing mechanism of the power market but
also plays an important role in promoting the effective integration of new energy sources
and improving energy utilization efficiency [5]. Therefore, researching how to efficiently
solve the economic dispatch problem in complex energy networks is crucial for achieving
efficient, reliable, and sustainable energy supply. The core objective of the economic dis-
patching problem is to optimize the distribution of power generation resources according
to the demand of the power load so as to minimize the cost of power generation [6]. In an
environment with multiple generators, varying fuel prices, emission limits, and complex
load fluctuations meeting electricity demand while minimizing operating costs and carbon
emissions is a highly challenging task.

Solving the economic dispatching problem is not only important for power companies
to optimize resource allocation and improve operational efficiency, but it also has a pro-
found impact on the security of the energy supply and environmental sustainability of the
whole society [7]. Therefore, in-depth research on how to efficiently solve the economic
dispatch problem in the dynamic energy network will not only help to minimize the cost of
the power system but also effectively promote the application of green energy and promote
energy transformation on a global scale.

For tackling the nonlinear problem of optimizing microgrid scheduling, most scholars
establish objective functions and employ intelligent optimization algorithms to solve them
under various constraints [8]. Traditional optimization algorithms struggle to achieve the de-
sired results, whereas intelligent optimization algorithms offer effective solutions [9]. Swarm
intelligence optimization algorithms involve iteratively sharing information to conduct sub-
sequent searches, differing mainly in their global and local search capabilities [10–12]. The
honey badger algorithm (HBA) [13] has been proven to be advantageous due to its simplic-
ity, ease of implementation, and fast convergence speed compared to algorithms like the
whale optimization algorithm (WOA) [14], particle swarm optimization (PSO) [15], and
grey wolf optimization (GWO) [16]. However, it faces challenges such as slow convergence
and susceptibility to local optima in solving high-dimensional complex problems. Address-
ing these issues involve optimizing the algorithm with additional strategies.

For instance, Yu et al. [17] proposed an improved IJAYA optimization algorithm that
incorporates adaptive weighting to avoid local optima and ensures faster convergence in
different search stages. Learning strategies to maintain population diversity and enhance
search capabilities. Deng et al. [18] introduced multi-population strategies, collaborative
evolution mechanisms, and information pheromone update strategies to balance the con-
vergence speed and solution diversity, thereby improving the overall efficiency. Ahmed
et al. [19] proposed an improved tabu search algorithm, improving the initialization stage
and using a new reinforcement mechanism, ultimately improving the algorithm’s com-
putational efficiency. Deng et al. [20] applied chaotic mapping to the initialization stage,
then used an antagonistic learning strategy to update the original pattern, improving the
convergence speed of the whale optimization algorithm (WOA). They also proposed a new
adaptive coefficient, leading to significant improvements in all aspects of the improved
WOA. Shishavan et al. [21] proposed an improved cuckoo search optimization (CSO) algo-
rithm, combining genetic algorithm (GA) for dynamic adjustment, improving the speed
and accuracy of CSO. Yıldız et al. [22] proposed a hybrid method to improve the arithmetic
optimization algorithm (AOA), enhancing its stability and quality and making it robust
when dealing with complex real-world problems. Wu et al. [23] proposed an improved
adaptive ant colony optimization algorithm, introducing a new heuristic mechanism and a
new state transition probability rule to improve the algorithm’s convergence speed and
practicality. Wei et al. [24] proposed an improved sine–cosine algorithm, introducing the
Haleton sequence in the initialization stage and a hybrid mutation strategy to improve
the algorithm’s convergence speed and accuracy. He [25] proposed an improved chaotic
sparrow algorithm, introducing a nonlinear dynamic weight silver and optimizing the
sparrow algorithm with the sine–cosine algorithm, improving the algorithm’s performance
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and convergence accuracy. Jia et al. [26] proposed a guided learning strategy (GLS) that
can improve the performance of most algorithms.

In the improvement of the honey badger algorithm, Hu et al. [27] introduced the
Bernoulli displacement mapping strategy and horizontal crossover strategy into the honey
badger algorithm, enhancing the population diversity and improving the overall perfor-
mance of the original algorithm. Lei et al. [28] introduced a spiral exploration mechanism
and a density update silver based on the cosine law, improving the convergence speed
of the algorithm and enabling the algorithm to jump out of local optimal values. Nassef
et al. [29] introduced a strategy called dimensional learning hunting (DLH) into the honey
badger algorithm, greatly improving the effectiveness and stability of the honey badger
algorithm in solving global optimization problems. Han et al. [30] applied logical mapping
to the initialization stage of the honey badger algorithm, obtaining a more reasonable
population distribution. Deng et al. [31] proposed combining the Lévy flight strategy with
HBA, improving the algorithm’s optimization ability for complex engineering problems
but lacking stability in dealing with complex environments. Dong et al. [32] introduced
the cross-mutation principle into the exploration stage of the algorithm, obtaining a larger
search range and faster convergence speed. Chai et al. [33] introduced a dual-population
optimization mechanism that combines the slime mold algorithm and the honey badger
algorithm, thereby improving the search efficiency and optimization performance of the
entire algorithm. Xiang et al. [34] designed a restricted reverse learning mechanism and
introduced an adaptive weight factor, accelerating the convergence speed of the algorithm.
Compared with the original honey badger algorithm, the above-improved algorithms have
made some progress in certain aspects, but there are still shortcomings: some improved
algorithms only use a single optimization strategy, only improving the initialization stage
of the algorithm, and not making much improvement to the exploration stage. The ex-
isting optimization strategies do not delve into the reasons for falling into local optima,
only mentioning surface problems, leading to no improvement in the ability to escape
local optima.

The research content of this paper is as follows:

1. Establish a Microgrid Model: An optimization model of the microgrid is established
based on the total operating cost.

2. Propose a Multi-Strategy Improved Honey Badger Algorithm (MIHBA): Update of
Dynamic Density Factor in Exploration Phase: The dynamic density factor is updated
in the exploration phase to facilitate the smooth transition of the search phase. Intro-
duce the Spiral Factor: A spiral factor is introduced to enhance the searching ability
of the algorithm. Introduce a Hunger Search Strategy: A hunger search strategy is
introduced to explore the solution space in a larger range and reduce the possibility
of falling into local optima.

3. Benchmark Testing: Simulation and comparison tests are conducted using several
benchmark functions to evaluate the performance of the algorithms.

4. Solve the Microgrid Optimization Problem: The improved honey badger algorithm
is used to solve the optimization scheduling model of the microgrid, verifying the
effectiveness and superiority of the algorithm in solving the optimization schedul-
ing problem.

2. Microgrid Optimal Scheduling Model

The microgrid model established in this paper mainly includes photovoltaic cells (PV),
wind turbines (WT), fuel cells (FC), microturbines (MT), and storage batteries (BT).

2.1. Photovoltaic Power Generation Model

Photovoltaic power generation utilizes solar photovoltaic cells to convert solar energy
into electrical energy. This process involves the photovoltaic effect, where sunlight irradi-
ates the photovoltaic panels, generating electricity. In this study, the output power of the
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solar photovoltaic model is represented by solar irradiance. The mathematical model is as
follows [35]:

PPV(t) = δPV(t)×
PPV,st(1 + kPV(TC − TR))Mt

Mst
. (1)

In Equation (1), PPV(t) is the output power of the photovoltaic model at time period t,
PPV,st is the maximum output power of the photovoltaic cells under standard test condi-
tions, kPV is the power coefficient of the photovoltaic panels, TC is the surface temperature
of the cells at time period t, TR is the surface temperature of the cells under standard condi-
tions, Mt is the solar irradiance at time t, and Mst is the solar irradiance under standard
conditions. δPV(t) is the binary decision variable of a photovoltaic generator at time t.

2.2. Wind Power Generation System

The wind turbine (WT) is a device that converts wind energy into electrical energy.
The output power of a wind turbine is related to its rated capacity and wind speed [36].
The mathematical model is given by [37]:

PWT(t) =


0, 0 ≤ v(t) < vin,
δWT(t)(v3(t) + bv2(t) + cv(t) + d), vin ≤ v(t) < vN ,
δWT(t)PN , vN ≤ v(t) < vout,
0, v(t) ≥ vout.

(2)

In Equation (2), PWT(t) represents the output power of the wind turbine at time t, PN
is the rated power of the generator, v(t) is the actual measured wind speed at time t, vin is
the cut-in wind speed, vout is the cut-out wind speed, and vN is the rated wind speed. In
addition, a, b, c, and d are specific coefficients and are related to the fan model. δWT(t) is
the binary decision variable of the wind power plant at time t.

2.3. Micro Gas Turbine Model

A micro gas turbine (MT) is a type of thermal power generator that converts mechani-
cal energy into electrical energy by injecting consumed natural gas. The generated waste
heat can be recovered through a recovery device, providing thermal energy to heat or
cool loads to achieve efficient energy utilization. The mathematical models for electrical
efficiency and thermal efficiency are as follows:

PMT(t) = δWT(t)PgηE, (3)

VMT(t) =
Pg

Lg
∆T. (4)

In Equations (3) and (4), PMT is the output electrical power of the micro gas turbine,
ηE is the generating efficiency, Pg is the power consumption of natural gas, VMT(t) is
natural gas consumption, Lg is the lower heating value of natural gas, typically taken
as 9.78(kW · h)/m3, and ∆T is the unit running time [38]. δWT(t) is the binary decision
variable of the micro gas turbine at time t.

2.4. Fuel Cell Model

The fuel cell (FC) is a device that converts the chemical energy in natural gas into
electrical energy. Fuel cells have minimal environmental pollution during power generation
and relatively high energy conversion rates. The mathematical model for the consumption
of natural gas and the output electrical power is as follows [39]:

PFC(t) = δFC(t)×
VF(t)ηFC

∆t
. (5)
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In Equation (5), PFC(t) is the electrical power output of the fuel cell at time period
t, VF(t) is the amount of natural gas consumed, and ηFC is the efficiency of the fuel cell.
δFC(t) is the binary decision variable of the fuel cell at time t.

2.5. Battery Model

Batteries can store electrical energy when the load demand is low and release it when
the load is high to flatten peaks and fill valleys. The mathematical model is as follows [40]:

EBT(t + 1) = EBT(t)− ηb
inPBTin(t)∆t, (6)

EBT(t + 1) = EBT(t)− PBTout(t)∆t/ηb
out, (7)

SOC(t + 1) =

 SOC(t) +
ηb

inPBTin (t)∆tδin(t)
EBTmax

, if charge,

SOC(t)− PBTout (t)∆tδout(t)
ηb

outEBTmax
, if discharge.

(8)

In Equations (6)–(8), EBT(t + 1) and EBT(t) are the energy storage levels of the battery
at times t + 1 and t, respectively, EBTmax is the maximum energy storage capacity of the
battery, PBTin is the battery charging power, and PBTout is the battery discharging power.
SOC(t) is the charged state of the battery at time t, and SOC(t + 1) is the charged state
of the battery at time t + 1. As for ηb

in and ηb
out, these are the charging and discharging

efficiencies of the battery, respectively, and ηb
in = ηb

out = 0.9. δin(t) and δout(t) are the
decision variables of charging and discharging at time t, respectively.

2.6. Objective Function for Daily Operating Cost

This paper establishes a real-time economic dispatch model for microgrids with
consideration given to the photovoltaic power generation units, wind turbine power
generation units, fuel cell power generation units, micropower generation units, and battery
energy storage. The model optimizes the output of controllable generation equipment to
minimize the system’s economic operating cost, environmental cost, and maintenance cost.

min C =
T

∑
i=1

(CNG + Cma + Cex + Cen). (9)

In Equation (9), CNG is the fuel cost for the system operation, Cma is the maintenance
cost of the system’s equipment, Cex is the cost of the grid interaction, and Cen is the cost of
the pollutant treatment generated by the equipment.

The various cost expressions are as follows:
(1) The fuel cost for system operation

CNG =
N

∑
i=1

Ci(Pit) =
N

∑
i=1

Cng ×
1

LHVng
× Pit

ηit
. (10)

In Equation (10), Ci is the fuel cost, N is the type of power generation unit, Pit is the
output power of the type of power generation unit i at time t, Cng is the price of natural
gas, LHVng is the low calorific value of natural gas, with a value of 9.7 kW · h/m3, and ηit
is the efficiency of the corresponding unit.

(2) The maintenance cost of the system’s equipment

Cma =
N

∑
i=1

DPi(Pit) =
N

∑
i=1

ADCCi
PN,i × 8760 × c fi

, (11)

ADCCi = InsCosti × CFRi, (12)
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CFRi =
di × (1 + di)

Li

(1 + di)
Li − 1

. (13)

In Equations (11)–(13), DPi is the depreciated maintenance cost, N is the generation
unit type (WT, PV, MT, FC), ADCCi is the average annual depreciation capital, PN,i is the
maximum output power, c fi is the capacity factor, InsCosti is the installation cost per unit
capacity, CFRi is the capital recovery factor, di is the annual depreciation rate, and Li is the
depreciation life of the generation unit type.

(3) The cost of grid interaction

Cex = CPt × CGPt − CSt × CSPt. (14)

In Equation (14), CPt is the electricity price from the microgrid to the distribution
network at time t, CGPt is the electricity price from the distribution network at time t, CSt
is the electricity price from the microgrid to the distribution network at time t, and CSPt is
the electricity sold from the microgrid to the distribution network at time t.

(4) The cost of pollutant treatment generated by the equipment

Cen =
N

∑
i=1

Ceni(Pit) =
N

∑
i=1

(
M

∑
k=1

αik × λik × Pit

)
. (15)

In Equation (15), CPt is the electricity price from the microgrid to the distribution
network at time t, CGPt is the electricity price from the distribution, Ceni is the pollutant
emission treatment cost of power generation unit type i, M is the emission type, αik is the
unit sewage treatment cost of power generation unit type i when the emission type k is
discharged, and λik is the emission coefficient of power generation unit type i when the
emission type k.

2.7. Constraints

In this microgrid scheduling model, constraints are imposed on various distributed
power sources and equipment to ensure power balance and to meet the upper and lower
limits on the output of each generation unit.

2.7.1. Power Balance Constraint

Pgrid(t) + PPV(t) + PWT(t) + PMT(t) + PFC(t) + PBTout(t)− PBTin(t) = PL(t). (16)

In Equation (16), Pgrid(t), PPV(t), PWT(t), PMT(t), and PFC(t) are the power exchange
with the grid, the power generation of the photovoltaic and wind turbines, and the power
generation of the micro gas turbine and fuel cell at time t, respectively. PBTout(t) is the
discharge power of the battery at time t, and PBTin(t) is the charging power of the battery
at time t. PL(t) is the total load in time period t. The power values are expressed in kW.

2.7.2. Constraints on Power Purchase and Sale with the Grid{
0 ≤ Pgrid,g ≤ Pgrid,gmax ,
0 ≤ Pgrid,s ≤ Pgrid,smax .

(17)

In Equation (17), Pgrid,gmax and Pgrid,smax are the maximum power for purchasing and
selling with the grid, respectively. The power values are expressed in kW.

2.7.3. Constraints on Controllable Generation Unit Output

Pxmin ≤ Px ≤ Pxmax . (18)

In Equation (18), Pxmin and Pxmax are the lower and upper limits of the output power
for each generation unit, respectively. The power values are expressed in kW.
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2.7.4. Micro Gas Turbine Ramp Constraint

RMTdown ≤ PMT(t)− PMT(t − 1) ≤ RMTup . (19)

In Equation (19), RMTup and RMTdown are the upper and lower limits of the ramp power
for the micro gas turbine unit, respectively.

2.7.5. Energy Storage Battery Constraints
Emin

BT (t) ≤ EBT(t) ≤ Emax
BT (t),

SOCmin(t) ≤ SOC(t) ≤ SOCmax(t),
ET

BT = E0
BT ,

δin(t) + δout(t) ≤ 1.

(20)

In Equation (20), Emax
BT (t), Emin

BT (t) are the upper and lower limits of the output power
of the battery at time t. Considering the charge and discharge loss of the battery, we set
SOCmax(t) at 95% and SOCmin(t) at 5%. As for ET

BT and E0
BT , they are the energy storage

levels at the final and initial states, respectively. As for δin(t) and δout(t), they are the
decision variables of charging and discharging at time t, respectively.

3. The Principle and Improvement Measures of Honey Badger Algorithm

This chapter introduces the basic principle of the honey badger algorithm and ex-
pounds its improvement measures, and explains and analyzes the operation process of the
improved honey badger algorithm.

3.1. Honey Badger Algorithm

The honey badger algorithm (HBA) is a novel intelligent optimization algorithm with
strong exploration and exploitation capabilities. It is based on the foraging behavior of
honey badgers and has two foraging modes: one is autonomous excavation, where the
honey badger uses its own sense of smell to locate prey and excavates the beehive along a
heart-shaped trajectory, and the other is the honey collection, where the honey badger relies
on a guiding bird to collect honey. By simulating the flexible foraging behavior of honey
badgers, the algorithm can balance global exploration and local exploitation, efficiently
escape local optima, find global optimal solutions, and demonstrate high adaptability and
robustness [13].

3.1.1. Population Initialization

xi = lbi + r1(ubi − lbi). (21)

In Equation (21), xi is the position of the i-th honey badger, with i = 1, 2, . . . , n, n
representing the total number of honey badger individuals. As for ubi and lbi, they are the
upper and lower bounds of the search space, and r1 is a random number in the range (0, 1).

3.1.2. Defining Odor Intensity

The odor intensity I determines the foraging speed of the honey badger. The larger
I is, the faster the honey badger’s foraging speed. The definition of odor intensity is as
follows [41]:

I = r2
S

4πd2
i

, (22)

S = (xi − xi+1)
2, (23)

di = xprey − xi. (24)

In Equations (22)–(24), S is the concentration intensity, di is the distance between the
prey and the i-th honey badger, and r2 is a random number between 0 and 1.
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3.1.3. Updating Density Factor

The density factor α ensures a smooth transition from exploration to exploitation. It
decreases with the number of iterations, reducing the randomness over time. The definition
is as follows:

α = C × exp
(

−t
tmax

)
. (25)

In Equation (25), tmax is the maximum number of iterations, and C ≥ 1, typically set
to 2.

3.1.4. Excavation Stage

During the excavation stage, the honey badger updates its individual position in a
motion similar to a cardioid, as shown in the following equation:

xnew = xprey + F × β × I × xprey + F × r3 × α × di × |cos(2πr4)× [1 − cos(2πr5)]|. (26)

In Equation (26), xnew is the new position of the honey badger, xprey is the current
global best position, β(≥ 1) is the honey badger’s ability to find food, di is the distance
between the prey and the i-th honey badger, r3, r4, and r5 are three different random
numbers between 0 and 1. F is a flag that changes the search direction, calculated as:

F =

{
1, if r6 ≤ 0.5,
−1, else.

(27)

In Equation (27), r6 is a random number in the range (0, 1).

3.1.5. Honey Harvesting Phase

In the honey collection phase, the honey badger updates its individual position fol-
lowing the honeyguide bird, as shown in the following equation:

xnew = xprey + F × r7 × α × di. (28)

In Equation (28), xnew represents the new position of the honey badger, xprey represents
the current global best position, F and α are determined by the equation, and r7 is a random
number in the range (0, 1). In this stage, the search is influenced by the search behavior α,
which changes over time.

3.2. Improved Honey Badger Algorithm
3.2.1. Population Initialization Based on Cooperative–Competitive Learning

The honey badger algorithm typically uses a random method to generate the initial
population of individuals. However, the initial population generated by random methods
cannot guarantee their diversity, nor can it effectively extract useful information from
the search space, which may affect the search efficiency of the algorithm to some extent.
Combined opposition-based learning (COBL) is an enhancement strategy for optimization
algorithms that consider both the current candidate solution and its opposite solution
to improve the diversity and convergence speed of the population [42]. Therefore, this
paper proposes to improve the honey badger algorithm using the COBL strategy. For a
given candidate solution xi within a search space defined by lower and upper bounds, the
opposite solution xpop is defined as follows:

xpop = lbi + ubi − xi. (29)

In Equation (29), xpop represents the opposite solution, and lbi and ubi are vectors
representing the lower and upper bounds for each dimension. Calculate the fitness values
of the original solution and the opposite solution, and retain the solution with the higher
fitness value for the next step. This approach introduces more potentially good solutions
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during the population initialization stage, improving the diversity and overall quality of
the population.

3.2.2. Fixed Parameter Linear Decrease Strategy

In the original algorithm, C is a fixed constant greater than or equal to 1. However,
a fixed value of C cannot balance the exploration of simple and complex environments
throughout the entire solving process to find the optimal solution. It lacks adaptability to
different environments and can weaken the algorithm’s exploitation ability [43]. In the
early stages of algorithm optimization, a sufficiently large C is needed to search more space.
In later iterations, the algorithm needs to be more precise for exploitation and requires a
smaller value. Therefore, a linear decrease strategy for the parameter is proposed.

C = (Cmin − Cmax)×
t
T
+ Cmax. (30)

In Equation (30), Cmin and Cmax are, respectively, the maximum and minimum values
of the parameter. By plugging the improved C into the density factor formula shown in
Equation (25), according to its characteristics, there is a large enough density factor to find
more space in the early exploration phase of optimization. In later iterations, the algorithm
needs to be more precise to reduce the density factor.

3.2.3. Introducing Spiral Factor

In the process of finding the optimal solution, the search range of the algorithm is
larger, but the number of overshoots also increases, so it is necessary to add a variable
spiral factor to search within a certain space.

H = αk × cos(k × l × π), (31)

ak =

{
1, t < M

2 ,
e5l , otherwise.

(32)

l = 1 − 2 × t/M. (33)

In Equations (31)–(33), H represents the variable spiral factor [43], αk is a parameter
used to control the spiral, with a value close to 1 in the early iterations and gradually
decreasing later on, k is M/10, and l is a parameter that linearly decreases from 1 to −1
as the number of iterations increases. M is the maximum number of iterations. After
introducing the spiral factor, the position update formula for the exploitation mode is
shown in (34):

xnew = xprey + F × β × I × xprey + F × r3 × α × di × |cos(2πr4)× [1 − cos(2πr5)]| × H. (34)

In the process of searching for the optimal solution, the honey badger algorithm has a
wide search range but also increases the number of ineffective searches. To address this,
a variable spiral factor is introduced to fully utilize the entire search space and conduct
effective searches within the space, thereby avoiding the attraction of locally optimal
solutions and improving effectiveness. As shown in Figure 1, in the early stages, the
algorithm can conduct a wide range of spiral searches in the entire space, enhancing the
algorithm’s global search capability. In the later stages, the range gradually decreases,
enhancing the algorithm’s localization and development capabilities. In the honey badger
algorithm, individuals in the exploitation mode play a dominant role. Therefore, this paper
uses the spiral factor for the position update in the exploitation mode, allowing other
individuals to also improve their search capabilities.
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Figure 1. Diagram of the spiral factor principle.

3.2.4. Starvation Search Strategy

In the honey collection phase of the honey badger algorithm, individuals tend to
prematurely converge near the prey’s location under the guidance of the guide bird. To
avoid the algorithm becoming stuck in local optima, a new starvation search strategy is
introduced. After updating the position in the honey collection phase, if an individual
exhibits low energy and poor fitness, it is defined as being in a state of starvation. By
immediately changing the search path of the individual in a starvation state, the algorithm’s
search capability is enhanced, helping the individual to overcome starvation and allowing
the algorithm to escape from local optima.

xnews = xprey + F × r7 × α × di × exp(xworse − xi). (35)

In Equation (35), xworse represents the position of the globally worst individual, and xi
represents the position of the current individual in the population. From the formula, it can
be seen that the starvation search strategy is based on the improvement of the difference
between the globally worst position and the current position. After improvement, the
honey badger algorithm has a wider search range in the exploration phase, which allows it
to better reach the global optimum.

3.3. Implementation Process of the MIHBA Algorithm

The improved honey badger algorithm’s computation process is as follows: randomly
generate an initial population and initialize the original data of the microgrid system
and various parameters in the honey badger algorithm. Then, set the calculation value of
the objective function as the fitness value of the honey badger individual. Calculate the
fitness value of the honey badger individual, record the best solution, and derive candidate
solutions based on combined opposition-based learning. Calculate the fitness values of the
original solution and the opposite solution and retain the solution with the higher fitness
value. Update the density factor according to the linear decrease strategy, then conduct
global search iterations and update the positions of the honey badger individuals. Introduce
the spiral factor in the exploration process of the exploitation mode. After updating the
positions and fitness values of the honey badger individuals in the exploration and honey
collection modes, update the optimal position for individuals with a significant fitness
difference through the starvation search strategy. Record the individual with the best fitness
value in the current population and check if the termination condition of the algorithm is
met. If the termination condition is met, output the individual with the best fitness value in
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the current population as the optimal solution. If not, return to continue the iteration. The
flowchart is shown in Figure 2.
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Figure 2. MIHBA algorithm flowchart.

4. Algorithm Performance Testing and Comparison

This chapter illustrates the testing process of the improved honey badger algorithm
and other common optimization algorithms by comparing different unimodal and bimodal
test functions. The experimental results based on actual data are included to show whether
the improved honey badger algorithm performs better than the traditional algorithm in
different test scenarios. In general, this chapter demonstrates the performance differences
of different algorithms through empirical comparison and verifies the effectiveness of the
improved honey badger algorithm.

4.1. Selection of Test Functions

To verify the optimization effectiveness and stability of MIHBA, we compared it
with the genetic algorithm (GA), particle swarm optimization (PSO), whale optimization
algorithm (WOA), grey wolf optimization (GWO), sparrow search algorithm (SSA), as well
as the original honey badger algorithm and the improved honey badger algorithm. We
used eight unimodal and multimodal benchmark test functions to measure the algorithm’s
performance based on three evaluation criteria: Mean, STDEV.P (population standard
deviation), and best. A comparative analysis was then conducted.
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4.2. Parameter Settings and Test Environment

This paper conducted simulation experiments using MATLAB R2021b. The processor
was an AMD Ryzen 7 6800H with Radeon Graphics 3.20 GHz, with 4 GB of RAM, and
running on Windows 10. The population size was set to 50, the maximum number of
iterations was 1000, and the algorithm dimensions were 10, 30, and 100, respectively. The
algorithm parameters for GA, PSO, WOA, GWO, SSA, HBA, and MIHBA are shown in
Table 1.

Table 1. Algorithm simulation experiment parameters.

Optimization Algorithm Parameters

GA Pc = 0.8, Pm = 0.2
PSO W = 0.9, Wdamp = 0.9, c1 = 2, c2 = 2

WOA B = 1
GWO ω1 = ω2 = ω3 = 1

3
NGO P = 0.2
HBA β = 6, c = 2

MIHBA β = 6

4.3. Analysis of Test Function Results

In this paper, multiple experiments were conducted using MATLAB simulation soft-
ware to evaluate the performance of different algorithms on various test functions. The
resulting metrics for each algorithm are shown in Table 2. Functions F1 to F5 are unimodal
test functions, while F6 to F8 are multimodal test functions [44]. Unimodal test functions
are used to simulate problems with globally optimal solutions. It has different peaks
or extremes throughout the search space, allowing the optimization algorithm to test its
performance in simple cases. The bimodal test function is used to simulate problems with
multiple locally optimal solutions—but only one global optimal solution—and it can test
the ability of the optimization algorithm to avoid the trap of locally optimal solutions in
complex environments.

From Table 2 and Figure 3, the optimal adaptive values are obtained by different
algorithms in the iterative process of different test functions. For example, the test function
in Figure 3 focuses on accuracy evaluation, and some algorithms quickly reach the mini-
mum adaptive value, indicating that the MIHBA algorithm can quickly find the optimal
solution. Figure d shows the performance of each algorithm under high precision require-
ments. MIHBA and HBA have obvious advantages, and the adaptive value drops to an
extremely low level. When comparing overall performance, MIHBA showed fast and stable
convergence in almost all tests. It can be concluded that when the dimension is constant
and under the same test function, MIHBA shows a faster convergence speed and higher
convergence accuracy compared to GA, PSO, WOA, GWO, NGO, and HBA, demonstrating
better performance. In the unimodal benchmark test function F1, both HBA and MIHBA
can find the theoretical optimal value, but HBA is significantly weaker than MIHBA in
terms of convergence accuracy. In the unimodal benchmark test functions F2 to F4, HBA’s
various metrics are generally superior to other algorithms by several orders of magnitude,
and MIHBA can consistently find the optimal value, highlighting the superiority of the
improved algorithm. For the unimodal benchmark test function F5, although MIHBA did
not find the theoretical optimal solution, its three evaluation metrics are better than those
of other algorithms. For the multimodal benchmark test function F7, compared to other
algorithms, HBA and MIHBA can stably find the optimal value across different dimensions,
demonstrating the inherent superiority of the honey badger algorithm.
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Table 2. The metrics for different algorithms on various test functions.

Function Dimension Metric GA PSO WOA GWO NGO HBA MIHBA

F1

10
Best 7.65 × 10−5 2.09 × 10−4 2.32 × 10−193 4.01 × 10−148 1.67 × 10−206 0.00 0.00

Mean 2.93 × 10−4 5.71 × 10−4 1.34 × 10−175 8.84 × 10−146 1.65 × 10−204 0.00 0.00
Std 1.38 × 10−4 3.08 × 10−4 0.00 1.93 × 10−145 2.82 × 10−204 0.00 0.00

30
Best 5.23 × 10−1 1.14 × 10−1 4.53 × 10−183 1.88 × 10−72 1.09 × 10−183 1.83 × 10−305 0.00

Mean 8.23 × 10−1 1.85 × 10−1 5.33 × 10−173 8.70 × 10−70 7.61 × 10−182 3.13 × 10−301 0.00
Std 3.64 × 10−1 6.51 × 10−2 0.00 1.82 × 10−69 1.17 × 10−181 4.3 × 10−301 0.00

100
Best 1.30 × 104 1.32 × 10 1.35 × 10−178 2.75 × 10−35 4.51 × 10−174 5.62 × 10−276 0.00

Mean 1.73 × 104 1.51 × 10 5.49 × 10−171 2.77 × 10−34 6.74 × 10−172 1.07 × 10−269 0.00
Std 3.17 × 103 1.29 0.00 3.34 × 10−34 1.44 × 10−171 0.00 0.00

F2

10
Best 9.55 × 10−4 6.55 × 10−2 3.71 × 10−121 1.08 × 10-82 3.54 × 10−106 4.75 × 10−197 0.00

Mean 2.14 × 10−3 9.61 × 10−2 1.18 × 10−116 2.23 × 10−80 1.99 × 10−104 6.46 × 10−195 0.00
Std 8.18 × 10−4 2.83 × 10−2 1.76 × 10−116 4.41 × 10−80 3.11 × 10−104 1.07 × 10−194 0.00

30
Best 1.18 × 10−1 1.66 3.77 × 10−116 1.50 × 10−41 1.34 × 10−93 9.83 × 10−163 0.00

Mean 1.90 × 10−1 2.51 1.50 × 10−109 5.84 × 10−41 6.64 × 10−93 1.25 × 10−156 0.00
Std 8.98 × 10−2 8.22 × 10−1 2.69 × 10−109 6.67 × 10−41 4.20 × 10−93 2.23 × 10−156 0.00

100
Best 4.61 × 10 3.52 × 10 1.17 × 10−114 5.52 × 10−21 2.88 × 10−89 6.06 × 10−145 2.20 × 10−239

Mean 5.75 × 10 4.36 × 10 1.38 × 10−107 1.07 × 10−20 4.10 × 10−89 2.90 × 10−142 1.45 × 10−235

Std 7.47 1.02 × 10 2.75 × 10−107 6.11 × 10−21 7.37 × 10−90 6.07 × 10−142 1.36 × 10−234

F3

10
Best 1.06 × 10 3.44 × 10−3 1.51 × 10−3 8.34 × 10−73 5.21 × 10−99 7.00 × 10−308 0.00

Mean 1.12 × 102 7.02 × 10−3 2.79 7.01 × 10-67 1.09 × 10−96 3.41 × 10−294 0.00
Std 1.31 × 102 4.04 × 10−3 6.06 1.57 × 10-66 1.28 × 10−96 7.63 × 10−294 0.00

30
Best 1.22 × 104 1.20 × 10 4.88 × 103 1.42 × 10−23 9.75 × 10−54 6.39 × 10−232 0.00

Mean 1.49 × 104 1.40 × 10 1.22 × 104 2.35 × 10−19 1.86 × 10−48 1.67 × 10−227 0.00
Std 2.69 × 103 2.35 7.14 × 103 3.13 × 10−19 3.06 × 10−48 3.30 × 10−227 0.00

100
Best 1.58 × 105 3.56 × 103 6.97 × 105 1.71 × 10−3 2.02 × 10−30 3.76 × 10−190 0.00

Mean 2.08 × 105 4.82 × 103 7.69 × 105 5.38 × 10−1 2.41 × 10−22 2.87 × 10−180 0.00
Std 3.35 × 104 8.91 × 102 6.68 × 104 7.36 × 10−1 5.20 × 10−22 0.00 0.00

F4

10
Best 4.25 × 10−2 1.84 × 10−2 1.02 × 10−7 3.92 × 10−47 1.55 × 10−92 2.72 × 10−166 0.00

Mean 1.04 × 10−1 2.94 × 10−2 5.83 × 10−3 7.89 × 10−45 3.76 × 10−91 5.56 × 10−162 0.00
Std 5.44 × 10−2 1.40 × 10−2 1.28 × 10−2 1.57 × 10−44 5.49 × 10−91 1.24 × 10−161 0.00

30
Best 1.37 × 10 5.36 × 10−1 7.61 × 10−1 8.02 × 10−19 2.00 × 10−77 4.95 × 10−134 0.00

Mean 1.81 × 10 1.13 4.16 × 10 2.42 × 10−17 7.41 × 10−77 3.00 × 10−127 0.00
Std 3.31 6.11 × 10−1 3.09 × 10 3.27 × 10−17 6.00 × 10−77 6.22 × 10−127 0.00

100
Best 6.64 × 10 7.67 5.80 1.30 × 10−5 3.92 × 10−70 1.27 × 10−93 0.00

Mean 7.49 × 10 9.28 6.33 × 10 5.67 × 10−5 8.97 × 10−70 1.13 × 10−88 0.00
Std 6.48 1.27 3.82 × 10 6.40 × 10−5 6.46 × 10−70 2.42 × 10−88 0.00

F5

10
Best 3.16 × 10−3 8.92 × 10−2 1.81 × 10−5 4.46 × 10−5 4.089 × 10−5 1.46 × 10−5 7.80 × 10−6

Mean 4.22 × 10−3 2.83 × 10−1 1.90 × 10−3 1.45 × 10−4 1.93 × 10−5 1.15 × 10−4 2.19 × 10−5

Std 1.14 × 10−3 1.27 × 10−1 1.72 × 10−3 1.15 × 10−4 1.23 × 10−5 1.05 × 10−4 1.32 × 10−5

30
Best 1.45 × 10−2 1.14 × 10−1 9.46 × 10−5 6.45 × 10−5 8.19 × 10−5 1.38 × 10−5 2.45 × 10−6

Mean 2.03 × 10−2 4.68 × 10−1 1.76 × 10−3 3.82 × 10−4 2.02 × 10−4 1.20 × 10−4 7.82 × 10−6

Std 4.97 × 10−3 2.86 × 10−1 3.17 × 10−3 2.69 × 10−4 1.06 × 10−4 1.22 × 10−4 4.47 × 10−6

100
Best 1.43 × 10 1.59 × 10−1 1.86 × 10−4 1.20 × 10−3 2.45 × 10−4 2.98 × 10−5 3.31 × 10−7

Mean 2.38 × 10 2.38 × 10 9.95 × 10−4 1.73 × 10−3 3.42 × 10−4 1.71 × 10−4 3.08 × 10−5

Std 1.07 × 10 4.18 × 10 7.18 × 10−4 4.98 × 10−4 8.59 × 10−5 1.30 × 10−4 2.74 × 10−5

F6

10
Best 2.82 × 10−5 4.06 0.00 0.00 0.00 0.00 0.00

Mean 2.46 × 10−4 5.12 0.00 0.00 0.00 0.00 0.00
Std 2.45 × 10−4 1.25 0.00 0.00 0.00 0.00 0.00

30
Best 8.20 5.53 × 10 0.00 0.00 0.00 0.00 0.00

Mean 8.66 6.65 × 10 0.00 2.47 0.00 0.00 0.00
Std 5.20 × 10−1 1.20 × 10 0.00 5.53 0.00 0.00 0.00

100
Best 3.45 × 102 3.67 × 102 0.00 2.27 × 10−13 0.00 0.00 0.00

Mean 3.91 × 102 5.06 × 102 0.00 2.96 × 10−13 0.00 0.00 0.00
Std 2.89 × 10 9.54 × 10 0.00 1.02 × 10−13 0.00 0.00 0.00

F7

10
Best 3.73 × 10−3 2.72 × 10−2 4.44 × 10−16 4.00 × 10−15 4.00 × 10−15 4.44 × 10−16 4.44 × 10−16

Mean 8.26 × 10−3 4.28 × 10−2 3.29 × 10−15 4.71 × 10−15 4.00 × 10−15 4.44 × 10−16 4.44 × 10−16

Std 6.20 × 10−3 1.81 × 10−2 1.59 × 10−15 1.59 × 10−15 0.00 0.00 0.00

30
Best 2.36 × 10−1 2.23 4.44 × 10−16 1.11 × 10−14 4.00 × 10−15 4.44 × 10−16 4.44 × 10−16

Mean 4.66 × 10−1 2.47 3.29 × 10−15 1.32 × 10−14 4.71 × 10−15 4.44 × 10−16 4.44 × 10−16

Std 2.38 × 10−1 2.99 × 10−1 2.97 × 10−15 1.95 × 10−15 1.59 × 10−15 0.00 0.00

100
Best 1.35 × 10 4.92 4.00 × 10−15 6.44 × 10−14 4.00 × 10−15 4.44 × 10−16 4.44 × 10−16

Mean 1.50 × 10 5.34 4.71 × 10−15 6.94 × 10−14 6.84 × 10−15 4.44 × 10−16 4.44 × 10−16

Std 1.29 4.86 × 10−1 1.59 × 10−15 5.39 × 10−15 1.59 × 10−15 0.00 0.00

F8

10
Best 3.50 × 10−2 5.67 × 10−2 0.00 0.00 0.00 0.00 0.00

Mean 6.83 × 10−2 1.65 × 10−1 8.00 × 10−2 2.91 × 10−2 0.00 0.00 0.00
Std 2.08 × 10−2 1.14 × 10−1 9.24 × 10−2 2.55 × 10−2 0.00 0.00 0.00

30
Best 7.02 × 10−1 2.74 × 10−2 0.00 0.00 0.00 0.00 0.00

Mean 8.74 × 10−1 4.21 × 10−2 0.00 0.00 0.00 0.00 0.00
Std 1.31 × 10−1 2.35 × 10−2 0.00 0.00 0.00 0.00 0.00

100
Best 1.76 × 102 4.27 × 10−1 0.00 0.00 0.00 0.00 0.00

Mean 2.05 × 102 4.79 × 10−1 0.00 3.62 × 10−3 0.00 0.00 0.00
Std 2.63 × 10 3.09 × 10−2 0.00 8.09 × 10−3 0.00 0.00 0.00
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Figure 3. Convergence curves of selected test functions with 30 dimensions. (a) Convergence curve
of test function F1 in dimension 30; (b) convergence curve of test function F2 in dimension 30;
(c) convergence curve of test function F5 in dimension 30; (d) convergence curve of test function F8 in
dimension 30.

In order to further verify the solving efficiency of MIHBA in different test functions,
the solution times of different algorithms in the F1–F5 function in the 30 dimension is
compared, as shown in Table 3.

Table 3. Comparison of the average running time of MIHBA algorithm and other algorithms on test
functions (s).

Function MIHBA HBA NGO GWO WOA PSO GA

F1 0.226 0.232 0.241 0.282 0.392 0.298 0.248
F2 0.176 0.212 0.240 0.218 0.239 0.396 0.256
F3 0.525 0.558 0.678 0.589 0.445 0.631 0.465
F4 0.409 0.445 0.609 0.576 0.450 0.619 0.509
F5 0.411 0.508 0.465 0.377 0.431 0.418 0.340

As shown in Table 3, the MIHBA algorithm consistently delivers the shortest average
runtime across multiple test functions, particularly excelling in F1, F2, and F4 with times of
0.226 s, 0.176 s, and 0.409 s, respectively. Even in F3 and F5, although its performance is
slightly inferior to that of a few individual algorithms, MIHBA still significantly outper-
forms the majority of others in terms of speed. Overall, MIHBA demonstrates superior
efficiency and adaptability, making it a strong candidate for solving optimization problems.
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5. Microgrid Model Simulation Analysis

Through simulation analysis of the microgrid, this chapter mainly shows the excellent
performance of the improved honey badger algorithm under the cost optimization objective
and proves its superiority by comparing it with other algorithms.

5.1. Basic Parameter Settings of Microgrid

To address the nonlinear issues in the microgrid model and verify the effectiveness of
the microgrid model and the improved algorithm, the MIHBA algorithm is used to solve
the microgrid optimization scheduling model. The relevant parameters for each power
source are shown in Table 4, the time-of-use electricity price parameters are shown in
Table 5 [45], and the pollutant emission parameters are shown in Table 6.

Table 4. Distributed power parameters.

Type of Power Supply WT PV MT FC BT

Power Upper Limit/kW 20 40 20 50 20
Power Lower Limit/kW 0 0 0 0 −20

Operating Cost/(¥·kWh−1) 0.314 0.014 0.032 0.085 0.0016

Table 5. Microgrid time-of-use electricity prices.

Periods Purchase Price (¥) Sale Price (¥)

Off-Peak Hours (23:00–7:00) 0.52 0.32
Flat Hours (8:00–9:00, 15:00–19:00) 0.83 0.63

Peak Hours (10:00–14:00, 20:00–22:00) 1.13 0.88

Table 6. Emission amount and treatment cost of pollutants.

Pollutant Types
Treatment Costs/

(¥·kg−1)
Pollutant Emission Amounts (g·kWh−1)

WT PT MT FC Grid

SO2 19.034 0 0 0.041 0.004 1.841
NOX 65.249 0 0 0.32 0.022 1.626
CO 11.842 0 0 0.053 0 0.044

5.2. Simulation Results and Analysis

Figures 4–6, respectively, show the power curves for wind and photovoltaic loads, the
power balance of distributed energy sources, and the output power of distributed energy
sources in the microgrid. From the data in these figures, the following can be observed.

Figure 4 shows the power changes for the PV, wind, and microgrid loads. The photo-
voltaic curve peaks during the day, the output is zero at night, and the photovoltaic power
generation is highest at noon. The effect of sunlight on the photovoltaic system can be
observed through the curve of the day. The wind power generation curve shows relatively
irregular fluctuations, indicating the volatility of wind energy, which is affected by wind
speed and climate conditions. By looking at the load curve of the microgrid, it can be
concluded that the load is lower in the morning and night (non-working hours) and higher
in the day.
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Figure 4. Photovoltaic, wind power, and microgrid load power curves.
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Figure 5. Distributed power source power balance.

Figure 5 shows in detail the dynamic balance of power supply and demand throughout
the day, as well as the scheduling strategies for different types of power. The electricity
demand fluctuates throughout the day, is low at night and in the morning, rises during the
day, and peaks in the evening. Natural gas turbines and fuel cells provide stable power
support at all times of demand. They are the main power source for the entire system,
while with photovoltaic and wind power, photovoltaic output peaks in the middle of the
day, indicating that the light is strongest at this time. Wind power generation is relatively
irregular and is greatly affected by wind conditions. Regarding the purchase of electricity
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from the grid when demand exceeds self-produced electricity (such as in the morning
and at dusk); when there is a surplus of power supply (such as the peak of photovoltaic),
electricity is sold to the grid to maximize economic benefits. It can be seen from this figure
that the power management system achieves an all-weather power balance through the
flexible combination of a variety of energy sources and the interaction with the grid, which
not only meets the basic power demand but also realizes the improvement of economic
benefits through electricity sales and optimization strategies.
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Figure 6. Distributed power source output power.

Figure 6 shows how the distributed power output changes over the course of a day,
including the output power of four power sources. During times of high demand, natural
gas turbines and fuel cells provide the main power, while batteries discharge to meet
additional demand. In times of low demand, the system may purchase power from the
grid and charge it at a low load.

By analyzing Figures 4–6, we can draw the following conclusions:
During the low-demand period from 23:00 to 7:00, due to low load and sufficient

wind power, wind turbines continuously output power, and the pollution coefficient of the
fuel cell is relatively low. Therefore, the fuel cell and wind power are used together. The
battery continuously charges and discharges to meet the load demand. During this period,
electricity prices are low, so only a small amount of electricity is purchased from the main
grid to alleviate peak electricity costs.

During the medium-demand periods from 8:00 to 9:00 and 15:00 to 19:00, the load
demand exceeds the total output of wind, photovoltaic, and fuel cells. Because of sufficient
sunlight during these times, the priority is to use photovoltaic and wind turbines together,
then use the fuel cell and gas turbine for auxiliary power generation. In this case, the cost
of power generation from the fuel cell and battery is higher than the price of grid electricity,
so the system purchases electricity from the grid to make up the difference.

During the high-demand periods from 10:00 to 14:00 and 20:00 to 22:00, to enhance
the operational stability of the microgrid, wind and photovoltaic power generation are
prioritized to meet the minimum generation requirements. Additionally, the output of
fuel cells, gas turbines, and batteries increases, with fuel cells taking precedence over gas
turbines and operating near full capacity. If the output limits of all distributed energy
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sources are reached, additional power is purchased from the main grid to meet the overall
load demand.

To verify the solving accuracy and stability of MIHBA, an initial population size
of 50 and a maximum of 1000 iterations were set. The proposed microgrid optimization
scheduling model was applied to MIHBA, HBA, GA, PSO, WOA, GWO, and NGO, with
each algorithm solving the problem 30 times. The operational cost curves are shown in
Figure 7, and the specific mean, standard deviation, maximum, and minimum values of
each algorithm are listed in Table 7.
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Figure 7. Comparison curve of daily operating costs algorithm for microgrid.

From the algorithm comparison curves shown in Figure 7, it can be observed that
MIHBA achieved the lowest economic cost scheduling scheme in solving the microgrid
optimization scheduling model. The optimal fitness values are uniformly distributed, and
the curve fluctuations are significantly smaller than those of other algorithms.

Table 7. Comparison of algorithmic results.

Algorithm
Daily Operation Cost of Microgrid (Yuan)

Maximum Value Minimum Value Average Value Standard Deviation

MIHBA 1411.138 1167.602 1298.381 51.399
HBA 1730.782 1295.395 1490.700 102.740
NGO 1910.764 1401.868 1629.087 129.897
GWO 1843.409 1347.808 1620.149 123.078
WOA 1858.906 1444.331 1599.982 89.967
PSO 1831.749 1355.912 1595.317 115.612
GA 1864.723 1398.646 1597.750 107.783

By analyzing the data in Table 7, the performance of several algorithms in the opti-
mization of the daily operating cost of microgrids is given. By comparing the maximum
value, minimum value, average value, and standard deviation, we can fully understand
the efficiency and stability of these algorithms in solving microgrid optimization problems.
The average values of MIHBA is 12.90%, 20.30%, 19.86%, 18.85%, 18.61%, and 18.74% lower
than that of the HBA, NGO, GWO, WOA, PSO, and GA, respectively. The standard devia-
tion of MIHBA was 49.97%, 60.43%, 58.24%, 42.87%, 55.54%, and 52.31% lower than that
of the HBA, NGO, GWO, WOA, PSO, and GA, respectively. Specifically, the average cost
of MIHBA is 1298.381 yuan, which is the lowest among all algorithms and 12.90∼20.38%
lower than other algorithms. This significant cost reduction is a testament to MIHBA’s
efficiency. At the same time, the standard deviation of MIHBA is 51.399, which is also
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significantly lower than other algorithms. This means that WHBA can maintain more
consistent and stable results over multiple runs, further demonstrating its reliability. In
contrast, the average costs of the HBA, NGO, GWO, WOA, PSO, and GA algorithms are
generally higher, which are 1490.700 yuan, 1629.087 yuan, 1602.149 yuan, 1599.982 yuan,
1595.317 yuan, and 1599.750 yuan, respectively. In addition, the standard deviations of
these algorithms are large; for example, the standard deviations of the NGO and the HBA
are 129.897 and 102.740, respectively, showing the volatility and instability of the results.
These results show that although these algorithms can achieve certain optimization effects
when dealing with microgrid operation cost optimization, they are relatively insufficient in
terms of stability and cost-effectiveness. Comprehensive analysis shows that MIHBA is
superior to other algorithms in terms of cost-effectiveness and result stability and is suitable
for microgrid systems with high stability requirements and low-cost requirements. The
MIHBA algorithm not only reduces the operating costs, but also provides a more stable
solution, which proves its theoretical superiority in practice.

In summary, MIHBA demonstrates superior solving accuracy and stability compared
to other algorithms, confirming the advantages of the improved algorithm.

6. Conclusions

To address the shortcomings of the traditional honey badger algorithm in complex mi-
crogrid optimization and scheduling problems, such as slow convergence and susceptibility
to local optima, this paper proposes an improved honey badger algorithm for microgrid
optimization and scheduling. By introducing joint opposite learning strategies, variable
spiral factors, parameter linear decreasing strategies, and starvation search strategies, the
algorithm’s global search capability and local development capability are significantly
improved.

Through comparisons with classical intelligent optimization algorithms, new intel-
ligent optimization algorithms, and traditional honey badger algorithms, the improved
algorithm demonstrates significant enhancements in stability, convergence speed, and
convergence accuracy in experiments involving multiple benchmark test functions and
different dimensions. In specific applications of microgrid optimization and scheduling,
the improved honey badger algorithm exhibits high solution accuracy and efficiency. In
this paper, we compare the performance of various algorithms in the optimization of the
daily operating costs of microgrids and identify the significant advantages of the MIHBA
algorithm. MIHBA achieved the lowest average operating cost of only 1298.381 yuan,
12.90% to 20.38% lower than other algorithms, while maintaining the lowest result volatility
with a standard deviation of 51.399, showing extremely high stability. Although other
algorithms have some performance in optimization, they are relatively insufficient in terms
of cost-effectiveness and stability. Therefore, the MIHBA algorithm provides the opti-
mal solution for reducing operation costs and improving stability, indicating its practical
application potential and value in microgrid optimization. The simulation results show
that the algorithm has higher adaptability and robustness in microgrid optimization and
scheduling, effectively handling complex optimization problems and improving the overall
operational efficiency of microgrids.

Future studies can further explore the application of the algorithm in different types
of microgrid environments and optimize its parameter settings to adapt to a wider range
of practical application scenarios. As technologies such as artificial intelligence, machine
learning, and the Internet of Things continue to advance, future research can also con-
sider combining these emerging technologies with algorithms to further improve their
efficiency. In general, future research should start with improving the performance of the
algorithm and by expanding its application range so that it can become an important tool
for responding to diverse energy needs and challenges in the evolving energy landscape.
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