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Abstract: To copewith the challenges posed by the complex linguistic structure and lexical polysemy
in ancient texts, this study proposes a two‑stage translation model. First, we combine GujiBERT,
GCN, and LSTM to categorize ancient texts into historical and non‑historical categories. This catego‑
rization lays the foundation for the subsequent translation task. To improve the efficiency of word
vector generation and reduce the limitations of the traditional Word2Vec model, we integrated the
entropyweight method in the hopping lattice training process and spliced the word vectors with Gu‑
jiBERT. This improved method improves the efficiency of word vector generation and enhances the
model’s ability to accurately represent lexical polysemy and grammatical structure in ancient docu‑
ments through dependency weighting. In training the translation model, we used a different dataset
for each text category, significantly improving the translation accuracy. Experimental results show
that our categorization model improves the accuracy by 5% compared to GujiBERT. In contrast, the
Entropy‑SkipBERT improves the BLEU scores by 0.7 and 0.4 on historical and non‑historical datasets.
Ultimately, the proposed two‑stage model improves the BLEU scores by 2.7 over the baseline model.

Keywords: Chinese ancient texts; GujiBERT; machine translation; text classification; dependency
analysis; SkipGram

1. Introduction
In recent years, machine translation technology [1] has developed rapidly, primarily

driven by neural network models, resulting in a significant improvement in the transla‑
tion quality ofmodern languages. However, ancient language translation still faces unique
challenges, mainly due to differences in language structure and grammatical features com‑
pared tomodern languages. The syntactic structure of ancient languageswasmore flexible,
and the word order varied. For example, in ancient Chinese, the subject–verb object order
is relatively free, and even some components are often omitted, while modern language
usually follows a more fixed sentence structure. This flexibility brings parsing difficulties
to traditional machine translation models. The phenomenon of polysemy is common in
the ancient Chinese literature. The same word can have multiple meanings in different
contexts, and machine translation makes it difficult to accurately determine its meaning
based solely on context, leading to ambiguity. Modern language has relatively straight‑
forward word meanings, reducing the possibility of translation ambiguity. The classical
Chinese literature contains many vocabulary and allusions that rely on specific cultural
backgrounds, and understanding these contents requires relevant historical and cultural
knowledge. In contrast, modern language expression is more direct and explicit, with
lower cultural dependence. Classical Chinese lacks a rich bilingual parallel corpus, while
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modern languages have sufficient data resources to support machine translation training.
The lack of this corpus limits the effectiveness of machine translation models in translating
ancient texts.

To further improve the accuracy of ancient text translation, this paper proposes a two‑
stage text translation model, which aims to capture the semantics of ancient texts more
accurately by combining multiple deep learning techniques. The model first classifies
ancient texts through a structure that combines GujiBERT [2], Graph Convolutional Net‑
works (GCNs) [3], and Long Short‑Term Memory Networks (LSTMs) [4], which classify
ancient texts into historical and non‑historical categories based on the type of document.
The purpose of this classification is to lay the foundation for the subsequent translation
task because different types of ancient texts have significant differences in content and lan‑
guage style, and the post‑classification processing helps to improve the relevance of the
model and the translation effect.

On this basis, this paper proposes an improved word vector generation method for
the existing Word2Vec [5], which applies the entropy weighting method to the training
process of SkipGram [6] and combines it with GujiBERT to optimize the word vector gen‑
eration process. The entropy weighting method [7] is a statistical method commonly used
for weight allocation, and the importance of words in different contexts can be determined
more objectively by calculating the entropy value. Introducing the entropy weighting
method into the training of word vectors can effectively enhance the model’s ability to
capture lexical polysemy and complex grammatical structures in ancient texts, thus im‑
proving the semantic comprehension ability of the translation model.

The main contributions of this work are as follows.
(1) We propose a classification model for ancient texts combining GujiBERT, GCN, and

LSTM, laying the foundation for translating different ancient texts.
(2) We design a word vector trainingmethod that introduces the entropyweight method

in the training of the SkipGram model, optimizes the generation process of word
vectors, and splices themwith the word vectors obtained from the GujiBERT training
to improve the model’s ability to capture lexical polysemy and complex grammatical
structures in ancient texts.

(3) Our proposed method trains the model separately for different types of ancient text
datasets and achieves the accurate translation of historical and non‑historical texts.

2. Related Works
With the development ofmachine translation, attempts to combine classificationmod‑

els with machine translation have begun to solve the language changes brought by differ‑
ent domains. Classification models help translation systems adaptively adjust translation
strategies by recognizing features such as the text’s domain, style, or context, thus im‑
proving translation quality. Li [8] proposed a two‑stage sentiment quaternion extraction
framework based on machine translation and text categorization. The first stage treats the
sentiment quaternion extraction task as machine translation and realizes the extraction of
aspect–opinion pairs through a span‑based labeling scheme and a question‑and‑answer
mechanism. The second stage treats the categorization of aspect categories and sentiment
polarity as a text‑generation task, utilizing natural language generation to enhance the se‑
mantic representation of sentiment elements. Finally, the results of the two phases are
merged through a template generator to decode the complete sentiment quaternion. Al‑
though the method has improved emotion quaternion extraction, some shortcomings re‑
main. The difference between tree structure and sequence information is significant. The
technique of fusing tree structure information with virtual template words has a limited
effect on the comprehensive utilization of structure information. It is difficult to bridge
the difference between tree structure and sequence information completely. Wu et al. [9]
divided ancient texts into three periods, ancient, middle‑aged, and near‑ancient, according
to the characteristics of the ancient texts, and used the corpus of each period to train various
machine translation models. The experimental study shows that the machine translation
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model training of ancient texts divided into three periods can improve the accuracy and
fluency of the ancient translationmodels. Still, the deep semantic analysis and understand‑
ing of the characteristics of each period are not yet sufficient, especially in the rhetorical
devices, allusions, and other aspects that have not been fully emphasized.

According to existing research, introducing classification models in machine transla‑
tion to classify text according to its features can significantly improve the accuracy and nat‑
uralness of translation. In recent years, pre‑trainedmodels have performedwell in text clas‑
sification, and by pre‑training on large‑scale text data, the pre‑trained models can capture
deep linguistic features, making text classificationmore accurate. Despite the excellent per‑
formance of BERT variants in modern language processing, they have certain limitations
in the task of ancient text translation. This limitation mainly stems from the differences in
syntactic structure, vocabulary usage, and contextual understanding between ancient and
modern texts, and traditional pre‑training models are too complex to meet these specific
needs adequately. Liu et al. [10] proposed the RoBERTamodel, which achieved significant
results through training and optimization on large‑scale data. Still, due to the sparse con‑
textual information and concise syntactic structure of the ancient text corpus, it is difficult
to capture the deep linguistic features of ancient texts effectively. Sanh et al. [11] proposed
the DistilBERT model, which improves computational efficiency by reducing the number
of parameters. Although it performswell in resource‑constrained environments, its perfor‑
mance is still insufficient for ancient texts’ complex syntactic structure and deep cultural
background. Cui et al. [12] proposed the BERT‑wwm model. This model enhances the
comprehension of modern Chinese. Still, it is mainly trained on the modern Chinese cor‑
pus, which makes it difficult to cope with the significant differences between ancient texts
andmodern Chinese in terms of lexical and semantic features. Wang et al. [2] proposed the
GujiBERT model, which significantly improves the performance in comprehension tasks
such as automatic sentence breakage, linguistic annotation, and entity recognition through
self‑supervised training on the Simplified‑Traditional Chinese (STCW) ancient text dataset.
Performance: Compared to previous small‑scale models, GujiBERT excels in fine‑grained
processing tasks such as sentence breaking and lexical annotation but has limited capabil‑
ity in generative tasks and needs to be combinedwith other generativemodels. In addition,
compared to larger‑scale models, GujiBERT has a smaller parameter size, which may limit
its performance in processing complex tasks.

In the study of word embeddingmodels, traditional methods such asWord2Vec have
significant results in capturing semantic relations between words. However, they are still
deficient in dealing with complex dependency and polysemous words. Based on CBOW,
Zheng et al. [13] obtainword vectors based on dependencywords and contextword predic‑
tion targets and combine the obtainedword vectorswith LSTMas the input sequence. This
method effectively improves the performance of the translation model, but the translation
accuracy decreases when dealingwith longer texts. Xin et al. [14] conducted a comparative
study of two models of Word2Vec, SkipGram, and CBOW, and the experimental results
showed that the SkipGrammodel has a more obvious advantage in neologism recognition
when Chinese word vectors are trained through a large corpus.

Existing studies have improved the translation adaptability of domain‑specific texts
by combining classification models with machine translation. However, they still face
some limitations, such as the insufficiency of complex dependency modeling, the process‑
ing of deep semantic and cultural elements to be further optimized, and the insufficient
performance of the generative task capability and the translation of long texts. To solve
these problems, the modeling of complex dependencies should be further optimized to
enhance the deep‑level understanding of the text and cultural adaptation. More effective
text categorization and translation methods are explored to improve the model’s capture
of complex dependencies and deep semantic features.
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3. Methods
3.1. Phase One: GujiBERT‑GCN‑LSTMModel for Classical Chinese Text Classification

Ancient texts are significantly different from modern texts due to the linguistic fea‑
tures, structures, and contexts of ancient texts, including the change in meaning of the
words used, the differences in syntactic structures, and the uniqueness of rhetorical tech‑
niques, which leads to the poor performance of traditional text classification models in
classifying ancient texts. To address the above problems, a GujiBERT‑GCN‑LSTM‑based
text classification model for ancient texts is proposed, which efficiently processes the com‑
plex structure and semantics of ancient texts by closely integrating a series ofmodules. The
model structure of the GujiBERT‑GCN‑LSTM model is visualized in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 20 
 

 

3. Methods 
3.1. Phase One: GujiBERT-GCN-LSTM Model for Classical Chinese Text Classification 

Ancient texts are significantly different from modern texts due to the linguistic fea-
tures, structures, and contexts of ancient texts, including the change in meaning of the 
words used, the differences in syntactic structures, and the uniqueness of rhetorical tech-
niques, which leads to the poor performance of traditional text classification models in 
classifying ancient texts. To address the above problems, a GujiBERT-GCN-LSTM-based 
text classification model for ancient texts is proposed, which efficiently processes the com-
plex structure and semantics of ancient texts by closely integrating a series of modules. 
The model structure of the GujiBERT-GCN-LSTM model is visualized in Figure 1. 

...

GujiBERT

Classical 
China 

Sentence

Classification 
Results

GCN

LSTM
LSTM

LSTM

LSTM
LSTM
LSTM

LSTM

LSTM

w1

w2

w3

w4

w5

... ...

Gradient Flow to LSTM

Gradient Flow to GCNGradient Flow to GujiBERT

 
Figure 1. Structure of GujiBERT-GCN-LSTM model. 

Firstly, the model takes the ancient text as input and afterword segmentation and 
encoding, and it is fed into the GujiBERT model. GujiBERT is based on the Transformer 
architecture, which has powerful bidirectional encoding capability and captures the se-
mantic information of each word in context through the self-attention mechanism. It first 
transforms the text into word embeddings and positional embeddings. Then, it analyses 
the contextual relationships between words through a multi-layer Transformer encoder, 
thus outputting the contextual embedding vectors for each word. These embedding vec-
tors contain the semantic understanding of each word in the text in its context and are the 
basis for subsequent processing. 

The GCN module is used to capture nonlinear word relationships that are unique to an-
cient texts. Although GujiBERT can capture contextual dependencies, word relationships in 
ancient texts often go beyond linear order, such as inversions or metaphors. GCN constructs 
a graph structure by treating each word as a node, and the edges represent the dependencies 
between words. The representation of a node is updated by aggregating the features of its 
neighboring nodes, and this process is unfolded by a multilayer convolution operation so that 
each node not only contains its information but also integrates the features of its neighboring 
nodes. GCN performs a feature transformation with the following formula: 

( )( 1) ( ) ( )ˆl l lH AH Wσ+ =  (1) 

In Equation (1), 
( )lH  is the layer 𝑙 node characteristic matrix, 

( )lW  is the learnable 
weight matrix of the layer 𝑙, and σ  is the activation function ReLU. 

After GujiBERT’s contextual understanding, GCN’s complex relationship capture, and 
LSTM’s long-distance dependency processing, the model generates a final representation 

Figure 1. Structure of GujiBERT‑GCN‑LSTM model.

Firstly, the model takes the ancient text as input and afterword segmentation and
encoding, and it is fed into the GujiBERT model. GujiBERT is based on the Transformer
architecture, which has powerful bidirectional encoding capability and captures the se‑
mantic information of each word in context through the self‑attention mechanism. It first
transforms the text into word embeddings and positional embeddings. Then, it analyses
the contextual relationships between words through a multi‑layer Transformer encoder,
thus outputting the contextual embedding vectors for each word. These embedding vec‑
tors contain the semantic understanding of each word in the text in its context and are the
basis for subsequent processing.

The GCN module is used to capture nonlinear word relationships that are unique to
ancient texts. Although GujiBERT can capture contextual dependencies, word relation‑
ships in ancient texts often go beyond linear order, such as inversions or metaphors. GCN
constructs a graph structure by treating each word as a node, and the edges represent the
dependencies between words. The representation of a node is updated by aggregating
the features of its neighboring nodes, and this process is unfolded by a multilayer convo‑
lution operation so that each node not only contains its information but also integrates
the features of its neighboring nodes. GCN performs a feature transformation with the
following formula:

H(l+1) = σ

(
ˆ
AH(l)W(l)

)
(1)

In Equation (1), H(l) is the layer l node characteristic matrix, W(l) is the learnable
weight matrix of the layer l, and σ is the activation function ReLU.

AfterGujiBERT’s contextual understanding, GCN’s complex relationship capture, and
LSTM’s long‑distance dependency processing, the model generates a final representation
vector for each word. To classify the text, the model generates the overall text represen‑
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tation by average pooling and then classifies the text by fully connected layers and the
Softmax function. Ultimately, the error between the predictions and the true labels is cal‑
culated using the cross‑entropy loss function, and the model is optimized using backprop‑
agation, constantly updating the parameters in GujiBERT, GCN, and LSTM. In this way,
the model is able to comprehensively understand ancient texts from multiple levels of se‑
mantics, structure, and dependencies, thus achieving more accurate text classification.

3.2. Phase Two: Improved Entropy‑SkipBERT Model for Classical Chinese
Adependency analysis refers to obtaining the dependency relationship betweenwords

in a sentence, which is a directed unequal relationship between a central word and its re‑
lated words, in which the core word dominates its related words, and the related words
depend on the core word. The open‑source Natural Language Processing (NLP) library
SpaCy (https://spacy.io (accessed on 7 November 2024)) provides dependency‑parsing ca‑
pabilities, enabling a syntactic analysis of sentences.

The dependency syntactic analysis of ancient texts using SpaCy to generate depen‑
dency syntactic trees is complicated because there are 22 common types of relations, and
more types of relationsmay lead to the problem ofmodel overfitting. Therefore, the depen‑
dency relations were filtered after the annotation was completed, and only eight types of
dependency relations were retained: the subject–predicate, verb–object, definite–medium,
parallel, punctuation, modifier, dependency marker, and compound structure.

SkipGram is a Word2Vec model for generating word embedding architecture from
text. Compared with CBOW [15], another architecture in Word2Vec, SkipGram handles
rare words better. As opposed to CBOW, which predicts the central word given the con‑
text, SkipGram is a selected central node that predicts the surrounding context nodes, and
through the context node’s Conditional Probability Learning word vectors, calculating the
conditional probability of the target word given the context word‑specific formula is as
shown in Formula (2), where the target word is wO, given the context word wI ; vwI is
the vector representation of the input word; vwO is the vector representation of the output
word; and W is the total number of words in the vocabulary.

P(wo | wI) =
exp

(
vT

wo vwI

)
W
∑

w=1
exp(vT

wvwI )

(2)

The SkipGrammodel trains word vectors bymaximizing conditional probability, typ‑
ically producingmore accurate and enriched word embeddings during training. The Skip‑
Gram model processes each target context separately, enabling it to capture complex lex‑
ical relationships better. The structure of the SkipGram is shown in Figure 2. In Figure 2,
taking a sentence of eight words as an example, each word is denoted as w. Selecting w(3)
as the center word, it serves as the input for the SkipGram model. This center word is
mapped to a word vector through the projection layer, embedding the semantic informa‑
tion of the word. Using the word vector of the center word, the model predicts its context
words, specifically w(1), w(2), w(4), and w(5). The SkipGram model optimizes the word
vectors by maximizing the conditional probability of the context words given the center
word, enabling the vectors to represent the relationships between words better.

When training a neural network, the weights are adjusted with training. Therefore,
the computational size of the weight matrix during the training of the SkipGram model
will be significant, consuming a large amount of computational resources and slowing
down the training speed. To address this problem, the negative sampling technique [16] is
used to optimize the training process. Negative sampling enhances training efficiency and
reduces computational complexity by updating only a subset of weights. This is carried
out by incorporating a few negative samples along with the positive ones and updating
only the selected samples rather than the entire word list.

https://spacy.io
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In this paper, we enhance the SkipGrammodel by incorporating dependencyweights
and distance factors to refine the probability distribution of context words. The depen‑
dency relationships are processed using SpaCy, and we implement an entropy weight‑
ing method to assign these weights based on the identified dependencies. This entropy
weighting approach allocates weights objectively by analyzing the information associated
with each indicator. Specifically, a low information entropy for an indicator suggests more
significant variability across different contexts, warranting a relatively high weight. Con‑
versely, a high information entropy indicates less variability, leading to a lower
weight assignment.

Initially, we conduct a dependency analysis of the ancient texts, calculating the fre‑
quency of each dependency type. These frequencies are normalized such that their total
sums are one. The formula for calculating the frequency of each dependency is as follows:

pi =
fi
N

(3)

where fi is the number of occurrences of dependency di in the dataset and N is the total
number of all dependencies in the dataset.

The uncertainty of the dependencies is measured by calculating the entropy value,
which is calculated as follows:

H = −∑
i

pi log(pi) (4)

where pi is the frequency of the ith dependency.
After obtaining the entropy value, the weight of each dependency is calculated. The

higher the weight, the greater the importance of the dependency in the whole sentence
structure, and its weight is calculated by the formula

wi =
1

1 − H
(5)

The weights obtained are normalized to achieve the weights, and the formula is spec‑
ified as follows:

w′
i =

wi

∑
j

wj
(6)
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Dependency weights were calculated for historical texts, as shown in Table 1, and for
non‑historical texts, as shown in Table 2.

Table 1. Historical category dependency weights.

Dependency Relationship Weights

punct 0.0199
dobj 0.0467
conj 0.0618

advmod 0.0616
nsubj 0.0606
amod 0.1649
acl 0.2462

nummod 0.3383

Table 2. Non‑historical category dependency weights.

Dependency Relationship Weights

punct 0.0492
dobj 0.0543
conj 0.0813

advmod 0.0662
nsubj 0.0559
amod 0.1519
acl 0.2119

nummod 0.3293

Dependency weights are introduced into the SkipGram model so that the stronger
the dependency with the central word in the sentence, the higher the probability of being
generated. The Entropy‑SkipBERT conditional probability formula is as follows: where wt
is the central word, wc is the context word; vwt and vwc are the word vectors of the central
word and the context word, respectively; V is the vocabulary list; and β is the weights of
the dependency.

P(wc | wt) =
eσ(βr)(vwc ·vwt )

∑
w′∈V

eσ(βr)(vw′ ·vwt )
(7)

In this paper, the SkipGram model that introduces the entropy weighting method
is referred to as Entropy‑SkipGram. Entropy‑SkipGram and GujiBERT are two different
word vector training models. GujiBERT is a language model based on the Transformer
architecture, which performs large‑scale, unsupervised training through the mechanism
of self‑attention and can capture more complex semantic and contextual dependencies.
The word vectors generated by GujiBERT usually have higher dimensionality, which can
cover deeper semantic information. After Entropy‑SkipGram and GujiBERT have been
trained separately, they can be directly spliced and fused into a newword vector. Entropy‑
SkipGramword vectors andGujiBERTword vectors of the sameword are spliced in vector
dimensions to form a higher dimensional word vector. We refer to the overall module as
Entropy‑SkipBERT. Through this direct splicing operation, it is possible to retain the fea‑
tures and semantic information of the two models simultaneously, forming a richer rep‑
resentation of the word vector. This newly generated word vector is used as the input
embedding layer. When receiving this fused word vector, the machine translation model
can take advantage of the local contextual information captured by Entropy‑SkipGram
and the global semantic representation generated by GujiBERT, thus enhancing the trans‑
lation effect. This combination of multi‑source information makes the model more com‑
prehensive and precise when dealing with word meanings, context dependencies, and
sentence structure.
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3.3. The Overall Framework of the Two‑Stage Ancient Language Translation Model
The overall structure of the two‑stage model is shown in Figure 3.
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The overall process of the two‑stage ancient text translation model mainly consists
of two stages: ancient text classification and ancient text translation. The first stage is the
ancient text categorization stage. The ancient text is input into GujiBERT‑GCN‑LSTM to
obtain two categories of text files translated: the historical class and non‑historical class.
The second stage is the ancient text translation stage. The history and non‑history class
datasets are machines translated using their respective Transformer model as the basis.
Since the language styles and expressions of the historical and non‑historical texts may dif‑
fer significantly, training the Transformer translation model separately for each text class
can improve translation adaptability and accuracy. To further enhance the word repre‑
sentation ability of the model, Entropy‑SkipBERT is introduced into the translation model
as a word vector training model to improve the semantic representation of word vectors.
Documents from historical and non‑historical texts are inputted into the respective trained
Transformer translation models to generate the corresponding translations into modern
Chinese. Through this categorized translation strategy, the model can process different
types of texts more accurately so that the historical texts can retain their unique style and
context. In contrast, the non‑historical texts can be more closely adapted to modern Chi‑
nese expression habits. Such a phased approach makes the model more effective in gener‑
ating fluent and accurate translations while considering the characteristics of ancient texts.

4. Experiments
4.1. Dataset

The dataset used for the experiment is from a publicly available dataset, Classical‑
Modern (https://github.com/NiuTrans/Classical‑Modern (accessed on 9 November 2024)).
Due to the small amount of non‑historical literature data, there is more historical data than
non‑historical data, which can lead to bias in the model’s text classification. The specific

https://github.com/NiuTrans/Classical-Modern
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manifestation is that the recall rate is high, but the accuracy is low. The model tends to
predict the input text as historical, thereby improving the recall rate of recognizing his‑
torical text. However, due to insufficient non‑historical data samples, the model finds it
difficult to effectively learn the features that distinguish between the two types of data,
resulting in an increased misjudgment rate and a decrease in accuracy when classifying
non‑historical text. Although the model can comprehensively recognize historical texts,
it is easy to misclassify non‑historical texts as historical. When training machine trans‑
lation models for non‑historical texts, the model cannot thoroughly learn the features of
non‑historical texts during training, resulting in unstable translation performance. This
makes it difficult for the model to generalize widely to non‑historical texts, resulting in
poor performance in practical applications when faced with unseen non‑historical expres‑
sions. To solve this problem, a data enhancement technique is used to enhance the data of
non‑historical documents. The data augmentation process involves synonym replacement
and incorporates a selection of bilingual ancient poems from the open‑source Chinese Po‑
etry dataset (https://github.com/chinese‑poetry/chinese‑poetry (accessed on 9 November
2024)). When enhancing synonym data for non‑historical texts in ancient texts, the first
step is to establish a synonym library, replace synonyms through context‑based automatic
replacement functions, and use SpaCy to perform a dependency analysis on sentences to
ensure that the syntactic structure remains unchanged after replacement. By combining
the manual review and optimization of the generated results, we ensure that the data qual‑
ity conforms to ancient texts’ style and semantic consistency, providing richer and more
authentic training data for ancient text machine translation models.

The preprocessing of the bilingual dataset mainly includes corpus cleaning, word
splitting, and building word lists. Corpus cleaning mainly includes three operations,
namely, removing duplicated data, removing empty lines, and removing bilingual pairs
containing book titles. Most modern texts containing book titles reference other allusions
to translate ancient texts, which will impact model learning and the establishment of word
lists. Therefore, the bilingual pairs containing book titles need to be removed. Segmen‑
tation is divided into ancient text segmentation and modern text segmentation. Ancient
texts are usually simple in style; each word contains important semantic information, and
ancient texts have the characteristics of multiple meanings of words. Therefore, word‑by‑
word segmentation is used for ancient text segmentation, while BPE [17] is used formodern
text segmentation. The dataset is split into two sections, one for training the classification
model and the other for the translation model. The results of the data division are shown
in Table 3.

Table 3. Results of the segmentation of the dataset from the classification model.

Datasets Number of Sentences

Historical training set 14,400
Non‑historical training set 14,400
Historical validation set 1800

Non‑historical validation set 1800
Historical test set 1800

Non‑historical test set 1800

The results of the datasets used to train the translation model division are shown in
Table 4.

Table 4. Results of the dataset division.

Datasets Number of Sentences

Training 21,600
Validation 2700

Test 2700

https://github.com/chinese-poetry/chinese-poetry
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4.2. Experimental Parameter Setting
All of the models in this article are implemented using the Pytorch 2.3.1+cu118 frame‑

work. The learning rate of the classification model is 2 × 10−5, the maximum sequence
length is 38, and the hidden layer size is 768. For the SkipGram model, the word embed‑
ding dimension is 150, the window size is 5, and the learning rate is 0.01. The translation
model uses the OpenNMT [18] toolkit with a learning rate of 0.1, 4 layers each for the
encoder and decoder, and 8 multi‑attention heads.

4.3. Experimental Results of the Classification Model
The classification model evaluation metrics are accuracy, recall, and the F1 score.

Figure 4 shows the confusion matrix for the classification results.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 20 
 

 

Table 3. Results of the segmentation of the dataset from the classification model. 

Datasets Number of Sentences 
Historical training set 14,400 

Non-historical training set 14,400 
Historical validation set 1800 

Non-historical validation set 1800 
Historical test set 1800 

Non-historical test set 1800 

The results of the datasets used to train the translation model division are shown in 
Table 4. 

Table 4. Results of the dataset division. 

Datasets Number of Sentences 
Training 21,600 

Validation 2700 
Test 2700 

4.2. Experimental Parameter Setting 
All of the models in this article are implemented using the Pytorch 2.3.1+cu118 frame-

work. The learning rate of the classification model is 2 × 10−5, the maximum sequence 
length is 38, and the hidden layer size is 768. For the SkipGram model, the word embed-
ding dimension is 150, the window size is 5, and the learning rate is 0.01. The translation 
model uses the OpenNMT [18] toolkit with a learning rate of 0.1, 4 layers each for the 
encoder and decoder, and 8 multi-attention heads. 

4.3. Experimental Results of the Classification Model 
The classification model evaluation metrics are accuracy, recall, and the F1 score. Fig-

ure 4 shows the confusion matrix for the classification results. 

 
Figure 4. Classification model confusion matrix. 

Figure 4 shows the confusion matrix results of the GujiBERT-GCN-LSTM model on 
the test set. From the confusion matrix, it can be seen that the GujiBERT-GCN-LSTM 
model performs better on history texts, with 727 samples correctly classified as history 

Figure 4. Classification model confusion matrix.

Figure 4 shows the confusion matrix results of the GujiBERT‑GCN‑LSTM model on
the test set. From the confusion matrix, it can be seen that the GujiBERT‑GCN‑LSTM
model performs better on history texts, with 727 samples correctly classified as history and
100 history texts incorrectly classified as non‑history. For non‑historical texts, a total of
705 samples were correctly classified, and 68 samples were incorrectly classified. The con‑
fusionmatrix shows that the GujiBERT‑GCN‑LSTMmodel performswell in classifying the
history class texts, but there are still some misclassifications in the non‑history class texts.

To verify the effectiveness of the GujiBERT‑GCN‑LSTM model proposed in this pa‑
per, BERT [19], TextCNN [20], TextRNN [21], FastText [22], DPCNN [23], BERT‑CNN [24],
BERT‑RNN [25], BERT‑GCN‑LSTM, BERT‑BiGRU‑CNN [26], TextMGNN [27], SA‑SGR
U [28], and VGCN [29] were selected for the comparison experiments in this paper.

(1) BERT: Based on a bidirectional Transformer structure, it is capable of capturing con‑
textual information.

(2) TextCNN: Based on a Convolutional Neural Network (CNN), local features of the
text are extracted through convolutional layers.

(3) TextRNN: Based on a Recurrent Neural Network (RNN), it captures sequential and
dependency information in the text.

(4) FastText: It is a lightweight model that uses averaged word embeddings as input for
a simple fully connected layer.

(5) DPCNN: It is a Deep PyramidConvolutional Neural Network (DPCNN) that extracts
deep features layer by layer, suitable for long texts.
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(6) BERT‑CNN: It combines BERT and CNN structures, utilizing BERT’s contextual fea‑
tures and CNN’s local feature extraction capabilities.

(7) BERT‑RNN: It combines BERT and RNN structures, leveraging BERT’s contextual
features and RNN’s sequential processing capabilities.

Models (1)–(7) are all realized by project https://github.com/649453932/Chinese‑Text‑
Classification‑Pytorch (accessed on 10 November 2024).

(8) BERT‑GCN‑LSTM: Thismodel replacesGujiBERTwith BERT based on theGujiBERT‑
GCN‑LSTM structure proposed in this study. It combines BERT, GCN, and LSTM to
extract graph structural and sequential features.

(9) BERT‑BiGRU‑CNN: Proposed by [26], this model integrates BERT’s sentence‑level
feature representations, Bidirectional GRU (BiGRU) for global sequential features,
and CNN for local feature extraction, forming an end‑to‑end text classificationmodel.

(10) TextMGNN: Proposed by [27], this model enhances text classification by introducing
multi‑granularity topic nodes into the text graph.

(11) SA‑SGRU: Proposed by [28], this model combines an improved self‑attention mecha‑
nism with a Skip‑GRU (SGRU) structure.

(12) VGCN: Proposed by [29], this model introduces a variational structure into GCN to
learn latent representations of text data.

The ablation experiments are shown in Table 5, and the results of the comparison
experiments of the classification model are shown in Table 6.

Table 5. Ablation experiments.

Model Accuracy Recall F1

GujiBERT 0.845 0.940 0.890
GujiBERT‑GCN 0.876 0.868 0.872

GujiBERT‑GCN‑LSTM 0.895 0.914 0.896

Table 6. The comparison of the results of the classification model.

Model Accuracy Recall F1

BERT 0.867 0.859 0.863
TextCNN 0.839 0.827 0.833
TextRNN 0.831 0.793 0.811
FastText 0.854 0.780 0.815
DPCNN 0.816 0.835 0.825

BERT‑CNN 0.867 0.864 0.866
BERT‑RNN 0.768 0.770 0.769

BERT‑GCN‑LSTM 0.873 0.848 0.860
BERT‑BiGRU‑CNN 0.864 0.902 0.870

TextMGNN 0.830 0.861 0.837
SA‑SGRU 0.857 0.869 0.860
VGCN 0.824 0.834 0.828

GujiBERT‑GCN‑LSTM 0.895 0.914 0.896

From Table 5, we can see that GujiBERT has the highest recall and is suitable for ap‑
plication scenarios that need to identify as many samples of the positive class as possible.
Still, its accuracy is lower, and there are more misclassifications. GujiBERT‑GCN achieves
a better balance between accuracy and recall and is suitable for scenarios that require a
balance between misclassifications and missed detections. GujiBERT‑GCN‑LSTM has the
highest accuracy, and the primary goal of this topic is ancient text classification to reduce
misclassification. Gujibert‑GCN‑LSTM is the optimal choice, and its F1 value also indicates
its better overall performance.

As shown in Table 6, the GujiBERT‑GCN‑LSTM model achieves the highest perfor‑
mance across all metrics in classifying ancient literature types. This model’s superior

https://github.com/649453932/Chinese-Text-Classification-Pytorch
https://github.com/649453932/Chinese-Text-Classification-Pytorch
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results suggest that integrating BERT, GCN, and LSTM layers effectively captures com‑
plex semantic relationships within ancient texts, outperforming other architectures such
as BERT, TextCNN, and TextRNN.

BERT’s powerful language representation makes it reliable for general classification.
However, it lacks the additional structural and sequential layers that provide GujiBERT‑
GCN‑LSTM with an advantage in capturing the complex linguistic features of the ancient
literature. TextCNN and TextRNN classify moderately well, reflecting CNN’s proficiency
in local feature extraction and RNN sequence processing. Nonetheless, these models lack
the pre‑trained language understanding and deeper contextualization provided by BERT,
which is crucial for nuanced literary genres. FastText has relatively high accuracy but low
recall, suggesting a high degree of accuracy but an inability to capture all relevant instances.
The DPCNN operates with balanced metrics with the help of its deeper network structure
but still lacks the pre‑training context provided by the structural insights of BERT and
GCN. Hybrid models integrating BERT with other layers show enhanced performance.
BERT‑CNN maintains competitive performance close to the BERT baseline, while BERT‑
BiGRU‑CNN achieves high recall due to BiGRU’s ability to capture bidirectional context
and CNN feature extraction. The BERT‑RNN model performs poorly, and the RNN layer
may not be sufficient to utilize BERT’s context embedding effectively. TextMGNN and A‑
SGRU show competitive results. TextMGNN achieves high recall but low accuracy, which
means it performswell in recognizing relevant instances but with low precision. SA‑SGRU
has a good balance of performance but lacks the fine‑grained context sensitivity of the
GujiBERT‑GCN‑LSTM.

4.4. Experimental Results of the Translation Model
4.4.1. Concat Options

There are several different strategies for splicing Gujibert and Entropy‑SkipGram
word vectors, and to explore which splicing method is more effective, the following stan‑
dard splicing methods were chosen for comparative experiments: simple concatenation,
weighted sum, self‑attention fusion, gated mechanism fusion, nonlinear combination, and
convolutional layer function. We uniformly set beam size to be 5. The experimental results
are measured by the BLEU value.

The results in Tables 7 and 8 provide an insightful comparison of the different fusion
methods used to combine Entropy‑SkipGram and GujiBERT embeddings, which are an‑
alyzed by the BLEU scores for the historical and non‑historical datasets. For both types
of data, simple concatenation consistently provides the highest BLEU scores, 29.5 for the
historical data and 21.0 for the non‑historical data, suggesting that directly connecting the
two embeddings without any complex transformations tends to retain the most helpful
information, thus improving translation performance.

Table 7. Historical concat options.

Method BLEU

Simple Concatenation 29.5
Weighted Sum 29.3

Self‑Attention Fusion 29.4
Gated Mechanism Fusion 29.2
Nonlinear Combination 29.3

Convolutional Layer Function 29.1

In contrast, the more complex fusion techniques, weighted sum, self‑attention fusion,
and gated mechanism fusion, show slightly lower BLEU scores, although they allow for
more dynamic interaction between embeddings. For historical data, these methods hov‑
ered between 29.2 and 29.4; non‑historical data ranged between 20.7 and 20.9. This sug‑
gests that while these methods introduce more flexibility by adjusting the importance of
different features, they may not be as effective as simple joins for this particular task. Non‑
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linear combination and convolutional layer fusion produced the lowest BLEU scores, es‑
pecially in the non‑historical dataset, where they reached 20.7 and 20.8, respectively. This
suggests that adding additional layers of complexity through nonlinear transformations or
convolutional operationsmay dilute relevant information in the embedding rather than en‑
hance it. Therefore, this paper chooses the simple connection method to connect Entropy‑
SkipGram and GujiBERT vectors.

Table 8. Non‑historical concat options.

Method BLEU

Simple Concatenation 21.0
Weighted Sum 20.8

Self‑Attention Fusion 20.9
Gated Mechanism Fusion 20.9
Nonlinear Combination 20.7

Convolutional Layer Function 20.8

4.4.2. Beam Size Selection
By setting different beam sizes for themachine translation experiments of the Entropy‑

SkipGram, the beam size with the best translation effect was selected for the subsequent
experiments to achieve better translation performance. The beam sizes set for this exper‑
iment are 1, 2, 3, 4, and 5. Table 9 shows the beam size comparison experiments for the
historical dataset, and Table 10 shows the beam size comparison experiments for the non‑
historical dataset.

Table 9. Historical beam size comparison.

Beam Size BLEU

1 29.1
2 29.4
3 29.3
4 29.3
5 29.5

Table 10. Non‑historical beam size comparison.

Beam Size BLEU

1 20.9
2 21.0
3 21.1
4 21.2
5 21.0

As seen from Table 9, in the translation of historical texts, moderately increasing the
beam size will improve the BLEU value, and the BLEU value reaches the highest value of
29.5 when the beam size is 5. Through Table 10, in the translation of non‑historical texts,
the increase in the beam size has a relatively limited enhancement on the BLEU value, and
the BLEU value slightly decreases when the beam size is 5. This indicates that a beam size
that is too large is not conducive to improving the translation quality of non‑historical texts.
Therefore, the beam size of 5 was chosen for historical text translation, and the beam size
of 4 was selected for non‑historical text translation.

4.4.3. Contrast and Ablation Experiments
Translationmodel evaluationmetricswere adopted fromBLEU, andEntropy‑SkipBERT

selected comparison models were chosen as SkipGram, CBOW, RNNLM, and the Open‑
NMT default word vector training model.
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An analysis of the results presented in Figures 5 and 6 indicates that the Entropy‑
SkipBERT demonstrates superior efficacy in word vector training for ancient texts, mainly
showing significant improvement in elevated training steps. The improvement in the his‑
torical translation model is notably more critical than that of the non‑historical category.
This is because the linguistic structures in historical texts are more uniform, allowing the
model to capture word dependencies and contextual relationships more effectively. Fur‑
thermore, the historical translation model converges faster and achieves a higher BLEU
score than the non‑historical model, which can be attributed to data quality issues. Specif‑
ically, the average length difference between bilingual pairs is 15 in non‑historical docu‑
ments and also 15 in historical sentences. The average bilingual sentence pair length dif‑
ference for non‑historical documents is 15, and the average bilingual sentence pair length
difference for historical documents is 9. The large word count difference implies that there
is a large difference in the length of the source‑ and target‑language sentences, which can
make sentence alignment difficult. The model needs more time and resources to process
these asymmetric sentence pairs, which affects the efficiency and speed of the training.
Significant differences in word counts may cause problems with the syntax and fluency of
generated translated sentences and increase the inconsistency of lexical alignment. This
inconsistency affects the degree of matching of individual n‑grams in the BLEU score, de‑
creasing the BLEU score.
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To validate the effectiveness of this model, experiments were conducted on the fol‑
lowing machine translation models using the same dataset.

(1) Transformer [30]: Proposed by Vaswani et al., this model is based entirely on a self‑
attention mechanism. With multi‑head self‑attention and positional encoding, it pro‑
cesses sequences in parallel, capturing long‑range dependencies efficiently and with
high performance.

(2) Transformer–PASCAL [31]: Proposed by Bugliarello et al., this model introduces a
parameter‑free Parent‑Scaled Self‑Attention (PASCAL)module into the Transformer’s
self‑attention mechanism, allowing the model to focus on the dependency parent
node of each word, thus incorporating syntactic information when encoding the
source sentence.

(3) DTCL [13]: Proposed by Zheng et al., this model combines dependency syntax trees
with LSTM, introducing syntactic structure information of the source language. Gen‑
erating dependency relationship matrices with dependency syntax trees and using
LSTM for positional encoding enhance the model’s ability to capture
sequential information.
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(4) GCN–AttentionMachine Translation Model [32]: Proposed by Chai et al., this model
combines attention mechanisms within a GCN to enhance semantic understanding.
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As shown by the BLEU scores in Table 11, the two‑stage ancient text translationmodel
proposed in this paper achieved the highest score, indicating that its word matching and
phrase selection are closer to the reference translation, making it well suited for the com‑
plexity of ancient text translation. In comparison, the base Transformer model has a lower
BLEU score due to its lack of deep syntactic structure modeling. Transformer + PASCAL,
with the addition of the PASCALmodule and DTCL, which incorporates dependency syn‑
tax trees, shows some improvements in capturing dependency relations but with limited
effect. The GCN–Attention model performs well in handling local relationships, with a
slight increase in the BLEU score. Overall, the two‑stage model better captures ancient
texts’ unique dependencies and complex semantics.

Table 11. Comparison experiment of machine translation models.

Model BLEU

Transformer 20.1
Transformer + PASCAL 20.8

DTCL 20.9
GCN–Attention Machine Translation Model 21.2
Two‑Stage Ancient Text Translation Model 22.8

The experimental results of the translation model are shown in Table 12, where T
denotes the Transformer model, E denotes the Entropy‑SkipBERT model introduced, and
G denotes the inclusion of the classification model.

As shown in Table 12, the two‑stage translation model achieves a 2.7‑BLEU‑point
improvement over the benchmark model. The translation model proposed in this paper
demonstrates its effectiveness in enhancing the translation of ancient texts. Furthermore,
incorporating the dependency matrix into word vector training for both types of literature
translation models results in increases of 0.7 and 0.4 BLEU points, respectively, indicating
that the dependency matrix contributes to improved translation performance. The trans‑
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lation performance of the historical literature translation model is higher than that of the
non‑historical literature. When conducting a thorough analysis of the dataset, it is evident
that the vocabulary and grammar of the historical literature exhibit a notable degree of
stability, which is conducive to learning the model.

Table 12. Ablation experiment.

Model BLEU

T‑mix 20.1
T + G‑mix 22.2

T + E + G‑mix 22.8
T‑histories 28.8

T + E‑histories 29.5
T‑non‑historical 20.8

T + E‑non‑historical 21.2

Compared to historical texts, the model faces distinct challenges in translating non‑
historical texts. Non‑historical texts exhibit greater lexical diversity, including modern
terminology, colloquial language, and specialized jargon, complicating accurate decod‑
ing and semantic interpretation. Additionally, these texts often use informal syntactic
structures—such as ellipses, inversions, and regional phrases—that challenge the model’s
parsing capabilities. Non‑historical texts also feature nuanced emotional and tonal shifts,
which complicate sentiment recognition, and their complex contextual structures frequently
include metaphors, subjective evaluations, and abrupt shifts, all of which require inferen‑
tial solid reasoning. Furthermore, ambiguous references are more common, making ref‑
erent resolution more difficult. These factors reduce the model’s accuracy and fluency in
translating non‑historical compared to historical texts.

4.4.4. Example Analyses
This paper introduces an example analysis, which is carried out on historical texts

and non‑historical texts, respectively, to evaluate the performance of the translationmodel
more comprehensively. For comparison, the translation results of the selected word em‑
bedding models are a random vector, CBOW, RNNLM, and Entropy‑SkipBERT. Table 13
shows the results of analyzing the historical examples, and Table 14 shows the results of
analyzing the non‑historical examples.

Table 13. Example analysis of history class.

Model Translation Results Translation Results in English

Original text 会参掌虽繁，教授不阙。
Though the palm of the Council is very complicated,
the professor does not have to do anything about it.

Original reference 虽然权会掌管的事情很多，但从不中断教书。
Although there are many responsibilities to
manage, teaching is never interrupted.

Random vector 恰巧参掌管虽然，教授不缺。
By coincidence, despite participation in

management, there is no shortage of teaching.

CBOW 恰逢参与掌管制度，教授没有缺。
Just in time to participate in the management
system, there is no shortage of teaching.

RNNLM 碰上参与掌繁琐，教授门不阙。
Encountering involvement in complex tasks, the

teaching does not fall short.

Entropy‑SkipBERT 适逢参与掌管繁琐的事务，教授不缺。
At the right time to participate in managing

intricate tasks, teaching is not lacking.
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Table 14. Example analysis of non‑history class.

Model Translation Results Translation Results in English

Original text 圣君独有之，故能述仁义于天下。
It is unique to the saintly ruler, so he is able to describe

benevolence and righteousness to the world.

Original reference 只有圣明的君主明白这个道理，所以他在天下能继承仁义。
Only an enlightened ruler understands this truth, so he

can uphold righteousness in the world.

Random vector 圣明的君主只是有这<unk>，所以能在于天下自称道仁义。 The enlightened ruler just has this <unk>, so he can claim
righteousness in the world.

CBOW 圣明君只有这种事，所以能够在天下的道义中。
The wise ruler has only this matter, so he can be in the

righteousness of the world.

RNNLM 圣贤的君主独自有它，所以能够对天下的道理。
The sage ruler alone has it, so he can follow the principles

of the world.

Entropy‑SkipBERT 圣贤的君主独自有此事，所以能够述周天下的仁义道。
The wise ruler alone has this matter, so he can spread the

path of righteousness around the world.

From the analysis of historical examples in Table 13, it can be seen that the original
text of ancient Chinese expressed the concept of uninterrupted teaching even with numer‑
ous management responsibilities. The reference translation emphasizes the importance of
teaching despite the heavy workload. The translation of the random vector model incor‑
porates the unnecessary element of “恰巧 (coincidental)”, causing the translation to lose
coherence and fail to express the core meaning that has never been ignored in teaching.
The translation of the CBOW model mentions “制度 (system)”, which is not mentioned
in the original text and fails to reflect the balance between teaching and management re‑
sponsibilities accurately. Although the RNNLM model retains the concept of “繁琐 (te‑
dious)” translation, its fluency is poor, and it does not fully convey the meaning of al‑
ways adhering to teaching. RNNLM translation is relatively smooth, but the translation of
words in sentences is not precise enough, resulting in a semantic deviation from the origi‑
nal text. The translation of the Entropy‑SkipBERT model accurately captures the meaning
of “参与管理繁琐事务 (participating in managing tedious affairs).” It expresses the mean‑
ing of teaching not being ignored, which is closer to the original text. Entropy‑SkipBERT
performs the best in accuracy and fluency and is closest to reference translation.

In Table 14, the original text emphasizes that only wise monarchs possess the unique
quality of spreading benevolence and righteousness, reflecting the importance of moral
leadership. The reference translation effectively conveys the monarch’s wisdom and the
ability to spread virtues. The <unk> symbol in the translation of the random vector model
damages the integrity of the sentence, and “自称道仁义 (claiming to be righteous and
benevolent)” carries a boastful connotation, misunderstanding the main purpose of the
monarch’s dissemination of benevolence and righteousness. The translation of the CBOW
model is relatively vague and fails to accurately reflect the unique quality of monarchs
actively spreading benevolence and righteousness. The translation of the RNNLMmodel
introduces the concept of “道理 (reason)”, deviating from the core meaning of “传播仁义
(spreading benevolence and righteousness)”, and only expressing the staticmeaning of the
ruler having certain characteristics. In contrast, the Entropy‑SkipBERT model accurately
reproduces the original text and represents the theme of monarchs spreading benevolence
and righteousness to the world through their unique qualities. It outperforms other mod‑
els in both accuracy and fluency.

The analysis of these two tables shows that the Entropy‑SkipBERTmodel performs the
best in capturing semantics and maintaining sentence fluency. In contrast, other models
often deviate from the original meaning, introduce redundant elements, or express them‑
selves unclearly.

5. Conclusions
This paper explores classification and machine translation methods for Chinese an‑

cient texts. First, the framework adopts the GujiBERT‑GCN‑LSTM model to classify and
predict ancient texts automatically, dividing them into historical andnon‑historical datasets
based on classification results and training separate translation models for each type. Us‑
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ing a neural network translation architecture, we introduced an entropy‑weighted Skip‑
Gram model, combined with the GujiBERT word vector model, to optimize the transla‑
tion model’s training process. Experimental results show that the GujiBERT‑GCN‑LSTM
model achieves high classification accuracy. Meanwhile, the Entropy‑SkipBERT model
demonstrates superior machine translation across both datasets by accurately capturing
semantic information, enhancing syntactic understanding, reducing noise word influence,
and adapting to text styles, ultimately contributing to improved translation quality. Over‑
all, our proposed two‑stage model significantly optimizes translation results compared to
traditional models.

This model can automatically translate ancient texts into modern Chinese by digitiz‑
ing ancient texts and building digital archives, greatly increasing translation efficiency and
reducing human effort. This process aids in preserving and disseminating the traditional
literature, providing accessible, modernized content for ancient text enthusiasts and ed‑
ucators. Considering the complex chapter structure and rich contextual associations of
ancient texts, future research can integrate this contextual information to further improve
the translation model’s architecture and overall performance in ancient text translation.
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