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Abstract: Energy-efficient and cost-effective localization systems are attractive for large-scale track-
ing and localization of goods. In this paper, we propose a room-level localization system using
energy-harvesting BLE tags to track the targets. We introduce the Dempster–Shafer (D–S) evidence
theory combined with fingerprinting technology for location estimation. To reduce the estimation
complexity, we divide the indoor environment into clear areas and fuzzy areas. The D–S algorithm is
employed to locate the target in the clear areas when the targets are only detected by the anchor nodes
within a single room. Conversely, fuzzy areas are characterized by RSSI signals detected by anchor
nodes across multiple rooms. Then, the system integrates fingerprint matching to ensure superior
positioning accuracy across the deployment. Extensive experiments demonstrate that the proposed
system maintains a room-level positioning accuracy above 99% under standard test conditions within
an area of approximately 2000 m2 with lots of rooms.

Keywords: indoor localization; energy harvesting; BLE; Dempster–Shafer evidence theory

1. Introduction

Over the last decade, a wide array of indoor positioning technologies has emerged,
and their widespread acceptance and application across society are increasing [1–3]. Cur-
rently, the most utilized indoor positioning technologies encompass Wi-Fi [4–6], Bluetooth
low energy (BLE) [7–9], and ultra-wide band (UWB) [10–13]. UWB technology, known
for its high accuracy and strong anti-interference capabilities, has received considerable
attention for indoor positioning, though it is limited by its inability to cover large areas
and high costs associated with hardware and deployment [14,15]. Wi-Fi-based indoor
positioning benefits from extensive existing infrastructure, which can help reduce costs
but suffers from high power consumption, short battery life, and increased susceptibility
to interference from other Wi-Fi devices [16,17]. After the introduction of BLE technology,
it has drawn wide attention in the field of indoor positioning because of its low power
consumption, widespread range, and low cost [18]. Nevertheless, despite the considerable
advancements made by these technologies, the domain of indoor positioning continues to
encounter a number of pivotal challenges, including the trade-off between accuracy and
cost, energy efficiency, environmental adaptability, and scalability. The DSFP algorithm
proposed in this paper seeks to address these challenges and achieve a high-precision,
low-cost, and energy-efficient indoor positioning solution by integrating D–S evidence
theory and fingerprint positioning technology.

Within indoor positioning research, primary observational metrics include time of
arrival (TOA) [19], time difference of arrival (TDOA) [20], angle of arrival (AOA) [21],
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and received signal strength indicator (RSSI) [18]. Although TOA, TDOA, and AOA can
achieve high-precision positioning, they have high requirements for equipment, complex
deployment, and high cost [13]. Due to these factors, they may not be the best fit for
applications that require tracking personnel or managing logistics, where cost-effectiveness
and ease of implementation are crucial. In the management of fixed assets, positioning
tags attached to equipment allow for the real-time tracking and management of each
item. This capability enables the precise localization of each asset, thereby automating
inventory processes [22]. For instance, it is possible to verify whether tool carts are correctly
positioned in warehouses or to locate various devices in hospitals that are essential for
delivering medical services and conducting clinical care, which supports emergency care
management. Additionally, the system can monitor the movements of portable assets; for
example, it can trigger alerts when a tool cart exits the premises to ensure that it is used
only within authorized areas [23]. In such scenarios, we only need to estimate the location
of the positioning target at the room level to meet the requirements at the lowest cost.

The goal of this paper is to achieve room-level accuracy positioning and tracking. RSSI
has the advantages of low implementation cost, low equipment requirements, and wide
applicability [24]; thus, it is suitable to use RSSI for the observations. However, existing
RSSI-based positioning systems encounter a number of challenges, including signal in-
stability resulting from environmental changes, positioning errors caused by multipath
effects, and the difficulty of maintaining high accuracy in large-scale deployments. For the
room-level indoor localization problem, the target may frequently be estimated in a wrong
room, because the coverage area of an anchor is not as same as the actual room. In this
case, the estimation accuracy is not improved, even with a higher accurate localization
algorithm, in which the MSE is rather small.

In this paper, we propose a Bluetooth-based indoor positioning system that enables
room-level localization and real-time tracking of targets. The BLE target consists of a solar
panel which supports the energy-harvesting capability and long-term operation. This
system requires only a single anchor node device in each room to facilitate room-level
localization of BLE tags, eliminating the need for complex and expensive configurations.
The primary contributions of this work are as follows:

(1) We developed a cost-effective real-time indoor positioning and tracking system using
Artificial Intelligence of Things (AIoT) devices, capable of synchronously localizing
multiple energy harvesting BLE tag devices within complex environments. This sys-
tem integrates hardware, databases, and algorithms to facilitate a highly customized
platform. It features a front-end interface connected to the database, enabling the real-
time display of positions and identification of different targets across various rooms.

(2) We introduce an algorithm named DSFP, which combines the D–S theory of evidence
and fingerprint-based positioning to achieve efficient and accurate location estimation.
DSFP divides the indoor environment into clear areas and fuzzy areas. The clear
areas indicate that each room is equipped with a unique anchor. For fuzzy areas, it is
difficult to classify the anchors into the specific rooms. The D–S algorithm is employed
for positioning within clear areas. For fuzzy areas, the fingerprinting technique is
utilized to ensure reliable localization. The D–S theory has been applied to represent
and combine conflicting RSSI information for positioning [25]. The implementation
concept of the D–S algorithm is to regard each room as a hypothesis, and the measured
value of the target RSSI in each room as evidence. The confidence level is set according
to the distance and area size between different rooms. The algorithm calculates the
probability of each hypothesis based on the confidence level and the evidence of the
target in each room, and the hypothesis with the maximum probability value is used
as the position estimation result. For fingerprint-based positioning, we evaluated and
compared three machine learning algorithms: k-nearest neighbors (KNN), random
forest (RF), and support vector machine (SVM).
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Our proposed system is evaluated via extensive experiments. The results demonstrate
that the DSFP can achieve highly accurate room-level estimation, maintaining positioning
accuracy above 99% under standard test conditions.

This paper is organized as follows: Section 2 presents an overview of the various
methodologies and technologies employed to achieve room-level positioning. Section 3
provides an overview of the system architecture. Section 4 delves into the methods and
algorithms employed for location estimation. Section 5 presents the experimental results
that validate the proposed scheme. Finally, Section 6 summarizes the conclusions drawn
from this work.

2. Related Work

Among the various indoor positioning technologies, RSSI-based methods have gained
widespread adoption due to their ease of implementation and cost-effectiveness [18]. These
systems typically employ one of following three methods for positioning:

Ranging-based methods: This approach leverages the principle that radio signal
strength is degrading with the increased propagation distance. By measuring the received
signal strength, an estimate of the distance between the device and the Bluetooth beacon
can be obtained, which is then used to calculate the device’s position [26]. Rida et al.
proposed an indoor positioning system with an average error ranging from 0.5 to 1 m [27].
This system operates by selecting the three anchor nodes with the strongest signal strength
when a target enters their coverage area. The target’s location is then estimated using a
trilateration algorithm developed by the authors. The effectiveness of this method relies
on a model that accounts for transmitter power and environmental path loss. However,
the complexity of indoor environments, particularly the presence of multipath effects, can
significantly reduce positioning accuracy. Furthermore, achieving room-level accuracy
using trilateration necessitates at least three anchor nodes, which increases deployment
costs. Additionally, the inherent instability of RSSI signals makes real-time target tracking
challenging [28].

Fingerprint-based methods: This approach involves two distinct phases: offline train-
ing and online estimation. During the offline phase, RSSI measurements are collected at
various points within the target area to construct a fingerprint database, often referred to as
a “radio map”. In the online phase, real-time RSSI measurements are compared against
the radio map to estimate the user’s location [1]. Fingerprint-based methods offer several
advantages over ranging techniques. They eliminate the need for complex infrastructure
and, with appropriate fingerprint matching algorithms, exhibit greater resilience to tempo-
ral fluctuations in RSSI. However, deploying these systems across large areas necessitates
extensive upfront effort for fingerprint data collection. Additionally, any environmental
changes may alter the radio map, requiring recalibration or retraining [29]. Akram et al.
presented a framework for room-level positioning using Wi-Fi fingerprinting and a random
forest ensemble classifier [6]. Their approach achieved an accuracy of 89% when validated
with a Wi-Fi fingerprint dataset. Lazaro et al. developed a room-level positioning sys-
tem based on LoRa signals [30]. They employed the Linear Discriminant Analysis (LDA)
algorithm and achieved a notable accuracy of 89.7%.

Proximity positioning methods: A target device is simply identified as being within
the vicinity of an anchor node if its RSSI value exceeds a predefined threshold when it
enters the anchor node’s range. Kyritsis et al. developed a room-level positioning algorithm
based on thresholding, where the threshold calculation takes into account both the RSSI
measurements and the geometric shape of the room containing the beacon [31]. Their
algorithm specifically focused on analyzing and refining the boundary points between
rooms, resulting in an impressive overall accuracy of 90.1%. However, the algorithm
prioritizes larger rooms, leading to improved accuracy for most locations but at the expense
of reduced accuracy in smaller rooms. Bianchi et al. introduced a method based on the
receiver operating characteristics (ROCs) to assess the optimal placement of anchor nodes,
the number of RSSI measurements required, and the appropriate threshold values [32]. Al-
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though the system implementation is relatively complex, it achieves a remarkable accuracy
rate of up to 98%.

After reviewing the above positioning systems and algorithms, we found that there
are some challenges with the existing positioning systems (as summarized in Table 1).
In systems using fingerprint recognition (scene analysis), it requires the creation of a
comprehensive fingerprint map (radio map) of the target environment, which is a labor-
intensive and time-consuming process. Systems using multilateral positioning algorithms
require higher deployment costs and cannot achieve real-time positioning. Some systems
use proximity algorithms in conjunction with fingerprint recognition algorithms but cannot
achieve high-accuracy position estimation.

Table 1. Comparison of indoor positioning methods.

Method Advantages Disadvantages Accuracy

Range-based Simple implementation Highly affected by
multipath effects 0.5–1 m error

Fingerprint-based Strong environmental
adaptability

Requires extensive
preliminary work 89%

Proximity-based Low computational
complexity Lower precision 90.1–98%

DSFP High precision, low cost,
energy efficient

Requires fingerprint
database initialization Close to 100%

The DSFP method proposed in this paper combines the advantages of D–S theory and
fingerprint positioning. While maintaining high accuracy, it reduces system complexity
and energy consumption, providing a new and effective solution for indoor positioning.
Our proposed system boasts several advantages, including room-level accuracy, cost-
effectiveness, ease of maintenance, and real-time positioning capabilities. By leveraging
existing infrastructure and Bluetooth beacons, we achieve a positioning accuracy above 99%
within each room. Furthermore, we evaluate the impact of sample size and computational
complexity on the training of three machine learning algorithms: KNN, RF, and SVM.
We also compare the accuracy of the D–S algorithm alone against the combined D–S and
fingerprint approach employed in DSFPS. Lastly, we conduct a moving trajectory tracking
test to assess the system’s performance in dynamic scenarios.

3. System Architecture

The system comprises four primary components: hardware, database, algorithmic
processing, and frontend interface, which are illustrated in Figure 1. The hardware config-
uration consists of target nodes and anchor nodes. The BLE target nodes, which are also
called tags, are equipped with solar panels for energy harvesting and continuously provid-
ing the signals to the anchors. The anchors are typically the AIoT nodes which can detect
the signals from the BLE targets and process the data locally. The database component
stores not only the transmitted data from the anchor nodes, including each node’s ID and
timestamps, but also the calculated RSSI values from target nodes. This process involves
decoding the beacon data and applying the DSFP algorithm to ascertain precise locations in
the following process. Finally, the frontend interface retrieves and displays these location
data from a MySQL database, offering real-time and historical tracking of target positions
as well as compiling information about targets encountered in each room.

The experimental deployment overview illustrates the DSFP positioning system,
as depicted in Figure 2. In each room, an anchor node is installed to facilitate the localization
of several undetermined targets within the vicinity. These nodes capture and transmit
signal data to a centralized database via Wi-Fi APs. Subsequently, the DSFP algorithm is
executed on a computer, processing these data to derive accurate positional estimates for
various targets. These results are then presented on the user interface.
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Figure 1. The overall system processing flow.

Figure 2. System deployment architecture.

Given that signals can be detected via various anchors in the complicated indoor
environment, we classify the environment into clear areas and fuzzy areas. Fuzzy areas
indicate the scenarios where a target is located at the boundary between Room A and
Room B as depicted in Figure 3. In this case, the RSSI values received from the target
in both rooms are similar. Relying solely on the anchor node that captures the strongest
signal for determining the target’s location can result in significantly inaccurate estimation.
This exemplifies the need for more sophisticated approaches in areas where signal overlap
complicates straightforward location estimation. On the contrary, clear areas indicate that
each anchor can only detect the signals from solo specific room. In this case, the D–S theory
can be directly used to locate the target to the related room. To more clearly distinguish
between clear areas and fuzzy areas, we define them as shown in Table 2:
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Table 2. Definition of clear and fuzzy areas.

Area Type Definition Characteristics Positioning Method

Clear Area

Area where the target is
mainly detected by
anchor nodes within a
single room

RSSI values from a single
anchor are significantly
stronger than others

Direct use of D–S
algorithm for position
estimation

Fuzzy Area

Area where the target is
detected by anchor nodes
from multiple rooms
with similar signal
strengths

RSSI values from
multiple anchors are
similar, making it
difficult to directly
determine the target’s
room

Combination of D–S
algorithm and fingerprint
positioning technique for
more accurate position
estimation

Figure 3. Illustrations of clear areas and fuzzy areas.

3.1. Energy Harvesting BLE Target Node

The target node consists of a solar panel as an energy harvesting module, which is
shown in Figure 4. The signals are periodically transmitted via the Bluetooth module,
which is depicted in Figure 4c. The principle of the energy harvesting module circuit is
shown in Figure 5, and the real component is depicted in Figure 4a. The main working
procedure of the target is as follows: when the toggle switch is set to the output gear,
the super capacitor is used as the input voltage of the circuit, and when the voltage is
greater than 1.8 V, the buck/boost converter TPS63900 starts to work. By adjusting the
resistance value of RCFG1 and RCFG2, the output voltage is set to 3.3 V. When the toggle
switch is set to the charging gear, the device focuses on charging the super capacitor by
collecting solar energy. The solar panel (Figure 4b) measures 37 mm × 22 mm × 1 mm for
capacitor charging. The Bluetooth module ATK-MW579D is debugged through the serial
port, and its working mode is set to iBeacon mode, while the identification markers Major
and Minor are set to broadcast Bluetooth signals at a frequency of 1 Hz.
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(a) Circuit module (b) Solar panel (c) BLE module
Figure 4. Target node module.
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3.2. Anchor Node

Here, we use the ESP32-C3 development board, which is a typical AIoT programmable
node platform, as the anchor node with the objective of scanning and recognizing the Blue-
tooth data broadcast by the target node. The anchor node contains the signal detection,
processing, and communication capabilities. The deployment of an anchor node in each
room allows for the acquisition of information pertaining to the target node currently
situated therein. The anchor nodes situated in all rooms collectively form a sensor network,
the purpose of which is to obtain information regarding the target’s movements. The work-
flow of the anchor node is illustrated in Figure 6. Initially, the parameters for connecting
to Wi-Fi are configured, and then the scanning process for Bluetooth devices is initiated.
Upon detecting a Bluetooth signal that matches the iBeacon data format, the Major and
Minor values are examined to ascertain whether the signal originates from the target node
that has been previously deployed. The data format is illustrated in Table 3.

Table 3. BLE target data format.

Field Name Size Description

UUID 16 bytes A unique identifier for the device or application.

Major 2 bytes Further specifies a specific iBeacon and use case. For example, this
could define a sub-region within a larger region defined by the UUID.

Minor 2 bytes Allows further subdivision of region or use case.
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3.3. Database Component

We design a distributed data collection and processing system based on the MQTT
protocol, which consists of an anchor node, an MQTT Broker, and a back-end server for
collecting, transmitting, and processing data from target nodes in real-time.

The anchor node, as an MQTT client, encapsulates the collected target node data
into MQTT messages and publishes them to predefined custom topics through the MQTT
Broker. The MQTT Broker receives these messages and routes them to corresponding
subscribers based on subscription relationships. The backend server subscribes to the
relevant topics through the MQTT client to receive real-time anchor node data and processes
them. The processed data are stored by the server in the iBeacon_xx database table, which
is used by the front-end to retrieve the historical trajectory of the target. Subsequently,
for each anchor identified by its unique ID, a dedicated table named scanner_xxx is created
for storing and retrieving the MAC address and RSSI value of the detected targets in each
room, and the iBeacon_time table serves as a dynamic table recording the last time when
each target is scanned by the anchor node. This timestamp information is used by the
front-end to display the target’s path timing in different rooms. The predicted_rooms
table stores predicted room information including timestamps, addresses, anchor nodes,
and algorithm sources, which are used for display and discrimination acquired by the
front-end. The relationship of the data tables is as shown in in Table 4.

Table 4. Database table relationships.

ibeacon_xx Stores data of a specific targets device (xx represents the device ID)

ibeacon_scannerxxx Stores data of a specific anchor (xxx represents the anchor ID)

ibeacon_time Stores the time when the target was last scanned

predicted_rooms Stores predicted room information, including timestamp, address, scanner,
and source

4. DSFP

After collecting the RSSI data from the anchors, we employ the DSFP algorithm
which combines the D–S algorithm and fingerprinting localization for the entire area.
The DSFP algorithm uses the D–S algorithm for clear areas while employing fingerprinting
localization for targets in fuzzy areas.

The DSFP algorithm possesses environmental adaptability. It divides the indoor
space into distinct clear areas with obvious signal characteristics and complex fuzzy areas,
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and then adopts the optimal positioning strategy accordingly. This dynamic area division
method enables the algorithm to flexibly respond to different environmental features. DSFP
achieves a balance between accuracy and efficiency. The algorithm uses the computation-
ally efficient D–S algorithm in clear areas, while employing more precise fingerprinting
technology in signal-complex fuzzy areas. This ensures overall positioning accuracy while
avoiding unnecessary computational overhead. The algorithm is adept at handling uncer-
tainty. By introducing D–S theory, DSFP can effectively manage uncertainty information
in RSSI measurements, thereby enhancing the reliability of positioning results. DSFP
demonstrates good scalability, making this method easy to extend to large, multi-room
complex environments.

4.1. Dempster–Shafer Theory in Indoor Positioning

D–S evidence theory is employed to aggregate multiple sources of evidence to derive
more reliable conclusions, especially useful in environments where individual evidence
sources may not be entirely dependable. The D–S algorithm is based on the D–S theory
reasoning, where we consider the RSSI values of the targets captured by the anchor nodes
in each room as independent evidence, and using the evidence aggregation rules of the
theory, the algorithm combines the signal strengths of the individual anchor nodes and the
room area characteristics. By deploying a decision rule for the trust function, it constructs
a probability profile for each room. The D–S algorithm then determines the estimated
location of the beacon by selecting the room with the highest probability of existence.
The steps are as follows:

4.1.1. Define the Recognition Framework

Different rooms are considered as different hypotheses and the recognition framework
is the set of all rooms L = {L1, L2, . . . , Ln}.

4.1.2. Assign Quality Function

For each anchor point Sj, the RSSI values within a time window are accumulated and
denoted as Esum

j . The accumulated RSSI value Esum
j is then multiplied by the room area A′j

to obtain the un-normalized quality value for each room as illustrated in Equation (1).

mj(Lj) =
Esum

j · A′j
∑
|L|
i=1 Esum

i · A′i
, (1)

where
mj(Li): Belief mass for location Li based on evidence from anchor Sj,
A′i: Normalized room area for location Li,
Eij: RSSI value received at location Li from anchor Sj.

4.1.3. Evidence Fusion and Decision Making

The mass functions of all anchor points are merged to obtain the final mass function m:

m(Li) =
1

1− K ∑
A,B⊆L

A∩B={Li}

m1(A) ·m2(B), (2)

where
m(Li): Combined belief for location Li,
m1 and m2: Two mass functions to be combined,
K = ∑

A,B⊆L
A∩B=∅

m1(A) ·m2(B) represents the conflict factor.
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Then, the room with the largest mass value is selected as the final localization result:

L̂ = arg max
Li∈L

m(Li). (3)

The detailed algorithm of D–S approach is illustrated in Algorithm 1.

Algorithm 1 Indoor localization using a simplified D–S approach with room size

Require: L: Set of possible locations
Require: S : Set of anchors
Require: E: RSSI values received at each location from the target
Require: A′: Normalized room area for each location
Ensure: L̂: Estimated location

for each anchor Sj in S do
mj ← 0
for each location Li in L do

mj(Li)←
Esum

j ·A′i
∑
|L|
k=1 Esum

k ·A′k
▷ Calculate mass by (1)

end for
Normalize mj such that ∑Li∈L mj(Li) = 1
m← Combine m and mj by (2)

end for
L̂← arg maxLi∈L m(Li) ▷ Select location with highest mass

4.2. Fingerprinting in Fuzzy Zones

In fuzzy zones, where targets’ signals overlap across multiple rooms, it is essential
to employ robust location estimation methods to accurately determine a target’s position.
To address this challenge, a specialized fingerprinting approach is used. This method
leverages a fingerprinting database alongside sophisticated machine learning algorithms,
e.g., random forest (RF), k-nearest neighbors (KNN), and support vector machines (SVMs),
to analyze RSSI distribution patterns and predict the target’s location. The fingerprint
database captures the unique characteristics of RSSI data within these zones, providing a
critical foundation for the effective application of these algorithms.

The steps of the fingerprinting localization algorithm are divided into three steps:

4.2.1. Data Preprocessing

The raw RSSI data (denoted as X) are subjected to sliding average filtering and
normalization. These steps are essential to reduce noise and standardize the data format,
making it suitable for further analysis by machine learning models.

4.2.2. Model Training

A fingerprint localization model is trained on a subset of the preprocessed data X′.
The model learns to map RSSI features to latent locations L = {L1, L2, . . . , Ln}, which allows
it to predict the most likely location of new RSSI readings.

4.2.3. Location Prediction

Given new RSSI data x ∈ X′, the fingerprint model predicts the most likely location by
matching with the data in the fingerprint database to find the most similar fingerprint (L̂).

Algorithm 2 details the operational steps of our room-level localization system, DSFPS,
for processing RSSI data to efficiently estimate indoor locations.
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Algorithm 2 Indoor Location Estimation

1: W ← 10 ▷ Window size for data segmentation
2: D ← {} ▷ Data windows for each address
3: C ← {} ▷ Count of data points for each address
4: S← {. . .} ▷ Mapping of device addresses to scanners
5: T ← {. . .} ▷ Trust values associated with each scanner
6: H ← T.keys() ▷ Set of hypotheses based on scanner IDs
7: Input: data, model
8: for row in Data(data) do
9: a, s, r ← ExtractData(row) ▷ Extract address, scanner, and RSSI

10: AddData(a, s, r, D, W)
11: Increment(a, C)
12: end for
13: if Sufficientdata(C, W) then
14: L← {} ▷ Dictionary to hold estimated locations
15: for a, d in D.items() do
16: g← GroupByScanner(d)
17: c← CountScanners(g)
18: if c == 1 then
19: L[a]← EstimateDS(g, H, T)
20: else
21: L[a]← EstimateRF(g, model)
22: end if
23: end for
24: return L
25: end if

5. Experiments

To assess the accuracy of our proposed system, we conduct several experiments,
and the specific experimental equipment is shown in Figure 7. The experiment takes
place in seven designated areas on the second floor of our college, covering an area of
approximately 2000 m2. Each area is equipped with an anchor node, the location is shown
in Figure 8. The environmental description of the test area is as shown in the Table 5. Ten
targets are deployed in each area, and the targets are launched once per second. The formula
for calculating accuracy is as follows:

Accuracy =
correct estimations

total estimations
(4)

This process requires collecting RSSI readings from each target, and then applying the
sliding window method with a window size of 10 to evaluate the position in turn according
to the RSSI data of each window, as shown in Table 6.

Based on the current deployment locations of targets, the regions associated with
targets b, c, e, and i are identified as regions of uncertainty. We compare the accuracy
of the D–S algorithm when used alone versus its combination with a fingerprinting po-
sitioning algorithm. Prior to this comparison, it is noteworthy that the fingerprinting
algorithm implemented in our system requires only a minimal set of location data to
achieve highly accurate determinations in these uncertain regions, as illustrated in Figure 8.
In Figure 8, targets b, c, e, and i are situated in the fuzzy areas. Subsequently, we conduct
an accuracy comparison between using solely the D–S algorithm and employing DSFP
location algorithms.

Prior to the comparative analysis, to validate the robustness of the DSFP algorithm,
we conducted training using 5, 10, 20, 30, 40, 50, 100, and 300 data points from each room
and evaluated the algorithm’s performance in situations of data scarcity. As depicted in
Figure 9, the accuracy of location estimates using different training set sizes shows that
each of the three algorithms reaches optimal accuracy when trained with 50 data points.
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Figure 10 illustrates the computational time required by various algorithms and models
trained with different data volumes, using approximately 2400 test data points. It is evident
that the SVM algorithm requires the least time for execution; however, the KNN algorithm
is able to produce a highly accurate model with just 10 training data points. Considering
running time, accuracy, and data requirements collectively, the KNN algorithm exhibits
superior performance.

Figure 7. Experimental equipment deployment diagram.

Figure 8. Test site environment.

Table 5. Characteristics of different rooms in the test environment.

Room No. Room Type Area Feature Main Characteristics

Room 1 Hall - Some concrete pillars

Room 2 Office A - Wooden partitions dividing spaces

Room 3 Laboratory A - Densely populated, high interference

Room 4 Laboratory B Spacious Less populated

Room 5 Laboratory C Small area Densely populated

Room 6 Office B Small area Wooden partitions dividing spaces

Room 7 Office C Small area Wooden partitions dividing spaces

Using a model trained with 50 data points, we assessed the accuracy of various
algorithms at different data window sizes. Figure 11 illustrates that setting the window
size to 10 yields the highest accuracy.
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Table 6. Scanner data example.

Timestamp S001 S002 S003 S004 S005 S006 S007

24 November 2023 21:24:38 −100 −100 −71 −100 −100 −100 −100

24 November 2023 21:24:43 −100 −100 −80 −100 −100 −100 −100

24 November 2023 21:24:45 −100 −87 −100 −100 −100 −100 −100

24 November 2023 21:24:48 −100 −86 −100 −100 −100 −100 −100

24 November 2023 21:24:49 −100 −100 −71 −100 −100 −100 −100

24 November 2023 21:24:50 −100 −100 −72 −100 −100 −100 −100

24 November 2023 21:24:51 −100 −100 −85 −100 −100 −100 −100

24 November 2023 21:24:59 −100 −85 −100 −100 −100 −100 −100

24 November 2023 21:25:00 −100 −100 −85 −100 −100 −100 −100

24 November 2023 21:25:01 −100 −100 −85 −100 −100 −100 −100

24 November 2023 21:25:02 −100 −100 −73 −100 −100 −100 −100

Figure 9. Outcomes of employing varying amounts of training data for fingerprinting positioning.

Figure 10. Computational time required for different algorithms and training sizes.
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Figure 11. Comparison of Algorithm Performance at Different Window Sizes.

Following the static accuracy evaluation, we proceed with mobile testing. The trajec-
tory for this testing is depicted in Figure 12. Figure 13 presents both the location estimates
derived solely from the D–S algorithm and those obtained with the DSFP algorithm.
The D–S algorithm results reveal that, during the transition from Room 3 to Room 2, the an-
chor node in Room 1 (hall) also detected the target signal, which compromises the accuracy
of the pure D–S algorithm. In contrast, the DSFP algorithm demonstrates its ability to
accurately determine the correct location of the target throughout the transition.

Figure 12. Testing trajectory.

Figure 13. Comparison of raw data trajectory and the correct trajectory after processing.
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Figure 14 shows the interface of the DSFP system, which allows users to view the
scanned target records in a selected room. After selecting a target, the system displays the
target’s current room on the floor plan and lists the most recent 10 location records along
with the algorithm used to derive those results. !"#$!%&'()"*++,$#*-. /-'(&'$0$1(-2+.$/+2-'3+.&4546785789$84:;9:<=$>$?@@A$6$BCDE4546797=$8=:59:5F$>$?@@A$6$BCDE4546797F$89:<6:<;$>$?@@A$6$BCDE/-'(&'$0$G++)$1(-2+.&<F:5H:4;:5;:5;:HF$>$?DDI:$>99$>$4546785789$84:;F:88<F:5H:4;:5;:5;:54$>$?DDI:$>H8$>$4546785789$84:;F:85<F:5H:4;:5;:5;:54$>$?DDI:$>H;$>$4546785789$84:;F:59JKKLMNMOPQRRS

JKKLMTJKKLMUJKKLMV

JKKLMW JKKLMX JKKLMY
Z[\]]̂_MN

Z[\]]̂_MTZ[\]]̂_MUZ[\]]̂_MV

Z[\]]̂_MW Z[\]]̂_MX Z[\]]̂_MY

Figure 14. Frontend of the DSFP system.

6. Conclusions

This paper proposes a room-level localization system, which employs the energy
harvesting Bluetooth tags as targets, the AIoT nodes as anchors, and the DSFP algorithm
to locate the targets. We introduce the D–S theory in conjunction with fingerprinting
techniques for an integrated solution to Bluetooth target positioning. Specifically, the
D–S theory facilitates the computation of the most probable location by analyzing beacon
RSSI values across different rooms. Meanwhile, the fingerprinting technique addresses the
issue of RSSI signal overlap in areas where room boundaries are indistinct. Extensive exper-
imental validation demonstrates that our system performs robustly in the test environment,
maintaining room-level positioning accuracy above 99% under standard test conditions.
This performance metric may fluctuate due to environmental changes, such as personnel
movement and equipment layout modifications, particularly in fuzzy areas. Nevertheless,
the system consistently provides reliable room-level positioning, meeting the requirements
for practical applications in industrial warehousing and medical equipment management.
Lastly, DSFPS implements a simple and easy-to-use front page.
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