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Abstract: Open-world object detection (OWOD) focuses on training models with partially known class
labels, enabling the detection of objects from known classes while concurrently identifying objects
from unknown classes. Current models often perform suboptimally in generating pseudo-labels
for unknown objects based on objectness scores due to inherent biases towards known classes. To
address this issue, we propose a cross-modal learning model named Text-Guided Unknown Pseudo-
Labeling for Open-world Object Detection(TGOOD) building on the Featurized Query R-CNN
(FQR-CNN) framework. Specifically, we introduce a module called Similarity-Random-Similarity
(SRS) to guide the model in detecting unknown objects during training. Additionally, we replace
the one-to-one label assignment strategy in FQR-CNN with a one-to-many (OTM) label assignment
strategy to provide more supervisory information during training. Moreover, we propose the ROI
features Refinement Module (RRM) to enhance the discriminability of all objects. Experimental
evaluations on the PASCAL VOC, MS-COCO, and COCO-O benchmarks demonstrate TGOOD’s
superior open-world detection capability.

Keywords: open-world object detection; cross-modal learning; pseudo-labeling

1. Introduction

Deep learning has made significant advancements in object detection. However, con-
ventional object detection methods operate under a closed-set assumption, where all target
classes seen during testing must also be present during training. In contrast, real-world
scenarios involve a diverse array of objects and the continuous emergence of new categories,
complicating object detection tasks. While effective in closed-set frameworks, traditional
methods often struggle to handle open-world scenarios. Recently, researchers have made
substantial progress in developing methods capable of detecting unseen object classes.

The first open-world object detection (OWOD) method, ORE, introduced by Joseph [1],
addresses the critical challenge of enabling models to recognize previously unseen object
categories as the “unknown” class while continuing to detect known categories. Recent
advancements in OWOD can be classified into two main approaches. The first focuses
on learning feature-level distributions for both known and unknown object categories
during training [2–5]. The second involves generating pseudo-labels for unknown class
objects during the training phase and treating the unknown class as a distinct “known
class” for joint learning [1,6–12]. The former often requires defining a threshold to classify
predictions as the unknown class, while the latter relies on pseudo-labeling unknown class
objects to guide model learning during training. However, this method often depends
on limited statistics from known classes, such as objectness scores, which can introduce
bias. Specifically, as illustrated in Figure 1a, during pseudo-labeling, proposals that include
parts of known-class objects are prone to being mislabeled as the unknown class. This
mislabeling undermines the model’s ability to differentiate between known and unknown
classes, thereby compromising overall detection performance.
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Our primary objective is to reduce the bias towards known classes in current pseudo-
labeling methods. Leveraging advancements in cross-modal tasks, we can seamlessly
integrate information from diverse modalities, including images, text, audio, and other
forms of data. We propose that while images provide detailed visual information through
shapes, textures, and colors, language provides abstract semantic information, offering
more comprehensive guidance. Building on the FQR-CNN framework [13], we have
developed a simple yet effective pseudo-labeling strategy for OWOD, termed TGOOD
(Text-Guided Unknown Pseudo-Labeling for Open-World Object Detection). During
training, we apply a novel module called Similarity-Random-Similarity (SRS) to label
candidate boxes as unknown when they do not match any ground truth (gt). Additionally,
we adopt a one-to-many (OTM) matching strategy during training, combined with Non-
Maximum Suppression (NMS) during inference, as a replacement for the original one-to-
one algorithm used in FQR-CNN. This modification resolves the problem of insufficient
supervision [14,15]. High-quality feature representation of foreground objects is critical for
the training of object locators and classifiers. To enhance the model’s ability to recognize
objects across all categories, we introduce the ROI features Refinement Module (RRM).

Our main contributions are summarized as follows:

• TGOOD: We propose an OWOD detector, TGOOD, built upon the FQR-CNN frame-
work [13], which incorporates the SRS module, OTM technique, and RRM module.
TGOOD leverages the strengths of both Faster R-CNN-style and DETR-style OWOD
detectors, leading to a streamlined and efficient detection approach.

• Benchmark Performance: Extensive evaluations on OWOD benchmarks, including
PASCAL VOC [16] and MS-COCO [17], demonstrate TGOOD’s ability to effectively
adapt to open-world environments. It maintains high performance on known classes
while exhibiting strong capabilities in detecting unknown objects.

• Cross-Domain Generalization: Comparative analysis on COCO-O [18], which in-
cludes images from diverse real-world domains, reveals that TGOOD not only excels
in generalizing across different classes but also performs exceptionally well across
diverse domains, underscoring its robustness and superiority.
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Figure 1. Comparison of pseudo-labeling methods using the objectness score (a) and TGOOD (b).
Green boxes represent ground-truth objects of known classes, while red boxes denote candidate boxes
that the model identifies as potentially containing an unknown object. The symbol # indicates the
objectness score, and @ denotes the similarity score of ROI features with the embedding of the word
“cat”. The method using the objectness score tends to misclassify boxes containing fractional-known-
class objects as unknown. In contrast, TGOOD provides more accurate labels of unknown-class
objects guided by text.
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2. Related Work
2.1. Open-World Object Detection

Joseph pioneered the task of open-world object detection, which involves a model’s
ability to both recognize previously unknown objects and progressively acquire the capa-
bility to detect new known objects. They introduced ORE [1] as a solution to this complex
challenge, building upon Faster R-CNN [19]. A key difficulty in this task is the accurate
identification of unknown-class objects due to the lack of labels. The use of pseudo-labels
has gained substantial attention and is now a commonly employed technique [1,6–10,12].
Several studies, including ORE [1], OW-DETR [7], RandBox [9], UC-OWOD [10], and
SA [11], leverage objectness scores of candidate proposals to generate pseudo-labels for
unknown instances. Additionally, other works, such as Open World DETR [12], CAT [8],
and RE-OWOD [12], utilize supplementary proposal generation techniques (e.g., selective
search [20]) to improve the selection of potential candidates for unknown classes. These
well-developed pseudo-label methods for unknowns have demonstrated considerable
effectiveness in real world applications. In contrast, there are other methods that do not
use pseudo-labels. Like OW-RCNN [2], 2B-OCD [3], OCPL [4], PROB [5] and Ann [21],
they try to distinguish between known- and unknown-class objects in the feature space.
Our primary focus is on OWOD algorithms that leverage pseudo-labeling, with the goal of
developing a simple yet robust approach for generating pseudo-labels.

2.2. Class-Agnostic Object Detection

In open object detection tasks, it is crucial for models to learn to detect unknown
objects. The class-agnostic object detection task aims to enhance the capability of object
detection models to identify objects without considering their specific class. This paradigm
depends on a finite set of known-class training datasets to develop a detector that can rec-
ognize all foreground objects within an image, regardless of class distinctions. WACV [22]
highlights that in certain real-world scenarios, accurately determining the presence and
precise location of objects is more critical than classifying them into specific categories, thus
introducing the challenge of class-agnostic object detection. Methods such as OLN [23],
SIBGRAPI [24], LDET [25], and GOOD [26] focus on improving the model’s detection
capabilities at the image level. MAVL [27] noted that prior methods often lack supervision
from easily interpretable semantic signals. To address this, they utilized a multi-modality
visual transformer trained on aligned image–text data, leading to improved performance
in detecting unknown objects. Being inspired by this, we propose to use semantic infor-
mation as a guiding signal to assist the model in detecting objects of unknown classes
during training.

2.3. Pre-Trained Visual–Language Models

In recent years, pre-trained vision–language models have garnered significant atten-
tion in both computer vision and natural language processing. These models, trained on
extensive text and image datasets, acquire comprehensive semantic and visual representa-
tions, serving as powerful feature extractors for a wide range of downstream tasks. For
example, CLIP [28] utilizes contrastive learning on a dataset of 400 million image/text pairs
sourced from the internet. By aligning the features of images and their corresponding text
in the feature space, CLIP produces highly robust image and text encoders, demonstrating
exceptional performance across various downstream tasks, such as semantic segmenta-
tion [29], object detection [30], image editing [31], image generation [32], and video com-
prehension [33]. Contemporary computer vision research primarily employs CLIP-based
methodologies, where text features from the CLIP text encoder are used as substitutes for
traditional classifiers. However, in our approach, we leverage CLIP to align visual and text
features within the feature space. We use embedded text information as high-level semantic
guidance, allowing the model to be directed without bias. Consequently, we enhance the
model’s detection capabilities across all objects in an image, including both known and
novel classes.
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3. Method
3.1. Preliminary: Formulation for OWOD

OWOD consists of a series of subtasks, represented as T = {T1, T2, T3, . . .}. The
corresponding training data can be divided into D = {D1, D2, D3 . . .}. The set of categories
for all annotated objects in D is C = {C1, C2, C3 . . .}, where Ci contains all annotated
categories in Di, and it satisfies Ci ∩ Cj = ∅, i ̸= j. To maintain consistency with the
existing literature, in this study, the sizes of sets T, D, and C are all set to 4 to simulate a
realistic open environment. As the training data is sequentially fed, the model learns each
subtask step by step. Assuming the initial model is represented as Model0, after completing
the training for task T1 on D1, the model will be updated to Model1, and so on, following
this pattern. During the Ti phase, the categories in Ci are referred to as the currently known
classes, which are the classes included in the annotated data during model training. The set
C = C1, . . . Ci−1 is referred to as the previously known classes, while the set C = Ci+1, . . .
is referred to as the currently unknown classes, which will be gradually learned in the
subsequent incremental learning process. Assume there are KN annotated objects in an
image from Di, with each object’s label containing category information and bounding
box coordinates, denoted as {Y1, Y2, . . . , YKN}, where Ykn = [ckn, xkn1, ykn1, xkn2, ykn2] and
kn ∈ {1, 2, . . . , KN}. Here, ckn ∈ Ci represents the category to which the object belongs,
and xkn1, ykn1, xkn2, ykn2 indicate the positional coordinates of the object in the image. After
completing the learning phase of each subtask Ti, we evaluate the current model Modeli on
a test dataset that contains all categories (both known and unknown). We are constantly
working to enhance the model’s ability to generalize, allowing it to accurately detect objects
from unknown categories while maintaining exceptional detection performance for known
categories in diverse and dynamic real-world detection environments.

3.2. Overall Architecture

TGOOD is implemented using the FQR-CNN framework due to its advantageous
trade-off between accuracy and speed, achieved by incorporating the query mechanism
from DETR [34] into the R-CNN-like detector. The overall training process follows the
standard paradigm of existing OWOD methods like [1]. After each subtask, the model is
fine-tuned on a small dataset containing a few samples from previously known classes.

As illustrated in Figure 2, the main training process of TGOOD is divided into the fol-
lowing five steps: (1) Feature extraction: for a given image and its description, the backbone
network, QGN [13], and ROI Align [35] modules are used to extract queries (Q) and region
of interest (ROI) features from the image. Nouns are extracted from the description, and the
text embeddings (E) are obtained by the CLIP text encoder. (2) Feature interaction: the ROI
features from step (1) are firstly enhanced through the RRM module, allowing the query
features to better capture the discriminative information of the foreground objects. By the
Query-based RCNN Head [13], we successfully derive the query features (Qimg), which
have undergone interaction with the augmented ROI features (Raug). (3) One-to-many label
assignment: in this phase, at least one candidate query is assigned to each gt, ensuring
sufficient supervision signals. (4) Text-guided pseudo-labeling: after label assignment for
known-class objects, candidate queries with high similarity to novel text embeddings are
selected as pseudo-labels for unknown objects in an unbiased manner. (5) Loss calculation:
the corresponding box loss and classification loss are computed for known classes, while
only the classification loss is calculated for unknown classes.

During the inference stage, text input is not required, nor is it necessary to set separate
threshold boundaries for detecting unknown objects. The model treats unknown-class
objects as a distinct category, labeled “unknown”, and detects them in the same manner as
known-class objects.
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Figure 2. The architecture of our proposed TGOOD. The symbol ⊕ represents an addition operation.
TGOOD consists of five main steps: (1) image/text feature extraction and queries generation; (2) the
interaction between queries and enhanced ROI features; (3) one-to-many label assignment; (4) text-
guided pseudo-labeling; (5) loss calculation.

3.2.1. SRS: Text-Guided Pseudo-Label Generation Strategy

As shown in Figure 2, part (4), following the label assignment process in part (3),
the SRS module is applied to obtain candidate queries for unknown classes from those
that do not match any known class gt. Figure 3 illustrates the flowchart of the SRS mod-
ule. Two pseudo-label generation strategies are explored: a standard version and an
enhanced version.

������

��×�
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    Known labels                                  Novel nouns

���������

     ����                                              ����  

“unknown”
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0.03

0.44

0.01

(4) SRS: Text-guided pseudo-label generation strategy 

Figure 3. Diagram of text-guided pseudo-label generation strategy.
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Firstly, the query features Qimg = {qimg1 , qimg2 , . . . , qimgN}, with N representing the
number of queries, are mapped to the CLIP text feature space for dimensional alignment. A
feature projector Proj : Rdimg → Rdtxt , consisting of linear layers and an activation layer, is
designed to perform this mapping, as shown in Equation (1). The dimensions of the query
features before and after mapping are denoted by dimg and dtxt, respectively.

qtxti = Proj(qimgi ), i ∈ 1, 2, . . . , N (1)

Then, the queries projected into the CLIP text feature space are divided into two groups:
(1) the queries matching the known-class targets (the yellow hollow circles in Figure 3),
denoted as Qm

txt, with a quantity of M; (2) the remaining queries, denoted as Qu
txt, with a

quantity of U, where M + U = N. For Qm
txt, a loss function combining cosine similarity

and Euclidean distance is applied to minimize the distance between the query and the
corresponding text embedding in the feature space. As shown in Equation (2), ei represents
the text embedding feature corresponding to the known class. The first term of Lclose
represents the Euclidean distance, while the second term represents the cosine distance.

Lclose =
M

∑
i=1

{ 1
dtxt

∥qtxti − ei∥2 + [1 − sim(qtxti , ei)]} (2)

For Qu
txt, we use it to generate pseudo candidates for unknown classes. After removing

information related to known-class objects from the image caption, the remaining nouns
are likely to represent unknown-class objects. These nouns are referred to as novel texts,
and the corresponding text embedding features are expressed as Enovel = {e1, e2, . . . , eO},
where O represents the number of novel texts. It is hypothesized that if the features of
candidate queries show similarity above a certain threshold to any novel text feature, they
may correspond to potential candidate boxes for unknown objects. Therefore, the similarity
matrix between Qu

txt and Enovel is computed, resulting in a matrix Matrix ∈ RU×O. The
maximum value along the last dimension of the matrix is then used to represent the
similarity score Similarity ∈ RU .

1. The standard version:
In the standard version, the pseudo-labeling process is conducted according to the rule
outlined in Equation (3), where bg means background, and lqi denotes the label of the
i-th candidate query, which will be regarded as an unknown class if its similarity score
exceeds the threshold δ1 and ranks highly among all similarity scores. SimilaritytopK ∈
RK contains the topK scores from Similarity ∈ RU . Empirically, the value of K was
set to 5.

lqi =

{
unknown, SimilaritytopK[i] > δ1

bg, SimilaritytopK[i] ≤ δ1
, i ∈ 1, 2, . . . , K (3)

2. The enhanced version:
Since the text encoder used in this study is trained on 400 million image/text pairs,
while the dataset employed in our experiments consists of only 80 common categories,
the CLIP text features and unknown text features may exhibit some similarity. This
could introduce a degree of interference in the labeling process, potentially leading
to the generation of false labels. To mitigate this, we propose an enhanced pseudo-
labeling strategy combined with random de-biasing. The overall framework of this
strategy aligns with the standard version, but the decision-making process based on
the similarity score is divided into three steps: (1) initially applying a small threshold
δ1 to filter out most candidate queries containing bg class; (2) randomly selecting r
candidate queries from the remaining pool; and (3), finally, using a larger threshold
δ2 to filter out low-quality candidate queries and generate the final unknown-class
pseudo-labels.
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3.2.2. OTM: One-to-Many Label Assignment

The FQR-CNN framework we utilize adopts a decoding structure similar to DETR.
It employs the Hungarian algorithm [36] for label matching, which follows a one-to-one
matching mode. While this retains the end-to-end detection advantages by eliminating
post-processing operations like NMS, it often lacks sufficient supervisory information.
To address this issue, we implement a one-to-many matching strategy using the optimal
transport algorithm [37]. During inference, NMS is applied as a post-processing step. Since
the number of candidate boxes in the FQR-CNN framework is considerably smaller than
that in traditional R-CNN-based frameworks, the computational cost of applying NMS
remains minimal.

Following OTA [38], we employ the concept of optimal transport to achieve one-to-
many label assignment. For each image, let S represents the labels (both known and bg
classes) as suppliers, where each supplier si can provide ki labels. The N candidate query
boxes act as demanders, with each requiring a label. The value of ki for the known class is
dynamically determined based on the overlap between the target box and all candidate
query boxes, as in OTA [38]. The total number of labels provided by all known classes
is ∑ ki, while the bg class provides N − ∑ ki labels. The element cij in the cost matrix
represents the cost of assigning one label (one of the ki labels) from supplier si to the j-th
query, which is calculated as shown in Equation (4), where gt represents the target label
and α is a moderator. If it is a known class, cij is composed of the classifier’s predicted
loss and the locator’s predicted loss; for the bg class, cij only includes the classifier’s
predicted loss.

cij =

{
Lcls(pj, gti) + α · Lbox(pj, gti), i f gt is known class

Lcls(pj, gti), i f gt is bg
(4)

The goal of the optimal transport algorithm is to find an optimal assignment plan
π∗ ∈ RS×N that minimizes the overall matching cost. The symbolic expression is provided
in Equation (5).

min
π

S

∑
i=1

N

∑
j=1

cij · πij,

s.t.
S

∑
i=1

πij = dj,

N

∑
j=1

πij = si,

S

∑
i=1

si =
N

∑
j=1

dij,

πij ≥ 0

(5)

The classical solution for finding π∗ involves multiple iterations using the Sinkhorn–Knopp
algorithm [39]. However, to enhance computational efficiency, we did not employ this
iterative algorithm to find the optimal π∗. Instead, after determining ki and cij, the labels of
the known class are assigned to the ki candidate queries with the lowest matching cost. If a
candidate query is matched with multiple gt labels, it is assigned to the gt with the lower
matching cost.

Suppose an image contains two known target objects, which can provide k1 = 2 and
k2 = 1 labels, respectively, and the number of candidate queries is 5. This means the bg
class provides 5 − 2 − 1 = 2 labels. The pairs formed by the one-to-one matching method
and the one-to-many matching method are illustrated in Figure 4. The one-to-one matching
algorithm only assigns Q1 to GT1. In the one-to-many matching mode, 2, 1, and 2 candidate
queries are assigned to GT1, GT2, and the bg class, respectively. For GT1, both Q1 and Q4 are
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candidate queries with a high matching degree, thereby providing a more comprehensive
supervisory signal.
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Figure 4. One−to−one vs. one−to−many matching mechanism. GT: ground truth, BG: background,
Q: query.

3.2.3. RRM: ROI Features Refinement Module

To enable the query to better capture information related to foreground objects, allow-
ing the classifier and locator to make more accurate decisions, we introduce an ROI feature
refinement module based on the attention mechanism. The rationale is that a single ROI
feature conveys limited information. By taking a more holistic view and incorporating rele-
vant nearby information, the representational capacity of the ROI features can be enhanced.
Specifically, an improved self-attention mechanism is applied to the ROI features before
their interaction with the queries. While the attention mechanism effectively enhances
the relevant information near the ROI features, directly applying attention to these high-
dimensional features can result in excessive computational complexity. To address this, we
employ a pooling operation to retain key information while reducing the dimensionality of
the ROI features.

Figure 5 illustrates the overall process of foreground feature enhancement using an
attention mechanism. As shown in Equation (6), the original ROI features, ROIori, are
processed through max pooling and flattened into a one-dimensional vector, which serves
as the input Q for the attention module. Meanwhile, ROIori are average pooled and
flattened into a one-dimensional vector, and used as the inputs K and V for the attention
module. Due to the inevitable introduction of noise when absorbing information from
others, Ref. [40] used the Weights Normalized Convolutional kernel to reduce noise
around the object. Inspired by this, we propose applying an average pooling operation
to the attention matrix before performing the softmax operation (Equation (6)) to retain
only the most salient information, thus minimizing noise. After passing through the
attention module, the results are restored to the original dimensionality of ROIori using
rearrangement and upsampling operations. Finally, they are subsequently fused with
ROIori via residual connections to get the refinement ROI features ROIaug.

Q = Flatten(MaxPool(ROIori)),

K, V = Flatten(AvgPool(ROIori)),

ROIaug = ROIori + Upsample(Reshape(Attention(Q, K, V)))

(6)
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Figure 5. Feature enhancement module based on attention mechanism.

4. Experiments and Results
4.1. Datasets and Metrics
4.1.1. Datasets

The datasets used in this study include MS-COCO [17], Pascal VOC [16], and
COCO-O [18]. The current mainstream OWOD dataset configurations include OWOD
SPLIT, proposed in ORE [1], and MS-COCO SPLIT, proposed in OW-DETR [7]. These two
configurations address open-world object detection with category increments but overlook
the fact that many real-world scenarios involve significant distribution shifts—referred
to as domain increments. To account for this, we propose a third dataset configuration,
COCO-O SPLIT, which evaluates the model’s domain generalization capability under these
conditions. The following sections introduce these three dataset configurations in detail:

OWOD SPLIT: In this setup, the MS-COCO [17] and Pascal VOC [16] datasets were
first combined, with all objects belonging to categories in Pascal VOC designated as known
categories for task 1. The remaining 60 categories in MS-COCO [17] were then divided into
three groups, with each group containing 20 categories of objects, which were designated
as known categories for tasks 2, 3, and 4. Since the images in Pascal VOC do not include
description information, meanwhile, BLIP [41], a large model pre-trained on a vast amount
of data, demonstrates strong performance across multiple visual–language tasks. So, we
used BLIP to randomly generate a caption for each image in Pascal VOC.

MS-COCO SPLIT: Superclass data leakage occurs in OWOD SPLIT, with task 1
predominantly featuring classes from the vehicle and animal categories, while task 2
introduces related subclasses like truck, elephant, bear, zebra, and giraffe. The MS-COCO
SPLIT partitioning method was proposed by Gupta et al. [7] to address the issue of
superclass information leakage that may occur in the OWOD SPLIT configuration. It uses
only the MS-COCO [17] dataset and organizes the known categories for each task based on
a superclass partitioning strategy, with nearly 20 classes in each task.

COCO-O SPLIT: COCO-O SPLIT utilizes distribution shift data from COCO-O [18] to
assess the model’s performance in diverse domains. COCO-O, proposed by [18], is a test
dataset derived from the MS-COCO validation set and includes six natural distribution
shifts: weather, painting, handmade, cartoon, tattoo, and sketch. These six types of data are
regarded as unknown domain data derived from the original images in MS-COCO.

4.1.2. Metrics

The evaluation metrics we used align with the mainstream evaluation criteria of
existing methods [1]. For the detection performance of known classes, mean Average
Precision (mAP) is used, including metrics for previously known classes (pre mAP), the
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current task’s known classes (cur mAP), and all known classes up to the current task (both
mAP). To assess the detection ability of unknown-class objects, the Unknown Recall (UR) is
the key metric. Additionally, Absolute Open Set Error (A-OSE) and the Wilderness Impact
(WI) factor, proposed by [1], are used to evaluate the model’s overall ability to detect both
known- and unknown-class objects. A-OSE represents the absolute number of errors where
the model mistakenly classifies unknown objects as known classes, while WI quantifies
how the model’s ability to detect unknown-class objects impacts its detection performance
on known classes.

4.2. Implementation Details

The implementation is carried out using Python 3.7, with model training and inference
performed in the PyTorch deep learning framework on two GeForce RTX 3090 GPUs. The
backbone network is ResNet-50, initialized with ImageNet [42] pre-trained weights. The
number of queries, N, is set to 100 with a feature dimension of 256. During training, the
number of pseudo-candidate boxes randomly selected for unknown classes, r, is set to 5.
Two similarity thresholds δ1 and δ2 are 0.5 and 0.8, respectively. In the inference stage,
the threshold of NMS is set to 0.6 by default, aligning with the standard practice reported
in [38].

4.3. Main Results

This section presents a detailed comparative analysis of TGOOD against various
OWOD algorithms. To maintain fairness in comparison, we follow prior work by removing
the energy evaluation module from ORE, denoting the modified version as ORE-EBUI.
For OWOD SPLIT dataset, we categorize those models into two groups: those that utilize
pseudo-labels and those that do not. Tables 1 and 2 summarize the comparison results
for these two categories. Table 3 presents the performance comparison between TGOOD
and existing models on the MS-COCO SPLIT dataset. Table 4 shows the performance
comparison of TGOOD with classic OWOD methods relying on objectness scores to select
pseudo-labels on the COCO-O SPLIT. A downward arrow (↓) indicates that lower values
signify better model performance, while an upward arrow (↑) indicates that higher values
are preferred. Best results are marked in red, with the next results indicated in blue.

Table 1 compares TGOOD with existing pseudo-label-based OWOD methods under
the OWOD SPLIT.

Table 1. Performance comparison of TGOOD vs. methods with pseudo-labels (OWOD SPLIT).

Task IDs Task 1 Task 2 Task 3 Task 4

WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR mAP (↑)

(↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both

ORE-EBUI 0.0621 10,459 56.00 4.9 0.0282 10,445 52.70 26.00 39.40 2.9 0.0211 7990 38.20 12.70 29.70 3.9 29.60 12.40 25.30
OW-DETR 0.0571 10,240 59.20 7.5 0.0278 8441 53.60 33.50 42.90 6.2 0.0156 6803 38.30 15.80 30.80 5.7 31.40 17.10 27.80
SA 0.0417 4889 56.20 1.9 0.0213 2546 53.39 26.49 39.94 0.8 0.0146 2120 38.04 12.81 29.63 0.1 30.11 13.31 25.91
UC-OWOD 0.0136 9294 50.66 2.4 0.0117 5602 33.13 30.54 31.84 3.4 0.0073 3801 28.80 16.34 24.65 8.7 25.57 15.88 23.14
RandBox 0.0240 4498 61.80 10.6 0.0078 1880 - - 45.30 6.3 0.0054 1452 - - 39.40 7.8 - - 35.40
RE-OWOD 0.0449 - 59.70 9.1 0.0330 - 54.11 37.26 45.64 9.9 0.0241 - 43.06 24.64 37.59 11.4 37.99 28.66 35.66
CAT 0.0581 7070 59.90 21.8 0.0263 5902 54.00 33.60 43.80 18.6 0.0177 5189 42.10 19.80 34.70 23.9 35.10 17.10 30.60

TGOOD (ours) 0.0620 4995 60.31 23.1 0.0253 2598 51.92 34.31 43.12 18.7 0.0157 1978 41.06 23.10 35.07 22.1 35.06 19.02 31.05

Among all the comparative methods, ORE-EBUI, OW-DETR, SA, UC-OWOD, and
RandBox all employ pseudo-label strategies based on objectness scores. A common defi-
ciency of these methods is their weak detection capability for unknown-class objects, as
indicated by their low UR values. Particularly, RandBox, despite achieving an advantage
in detection accuracy for known classes with its diffusion model-based detection frame-
work, only achieved recall rates of 10.6%, 6.3%, and 7.8% for unknown classes in tasks
1, 2, and 3, respectively. We attribute the insufficiency of these models in detecting un-
known classes primarily to the mechanism of pseudo-label generation. Since the learning
of objectness scores is based on labeled known-class objects, models tend to misjudge can-
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didates containing parts of known classes as unknown-class objects when selecting labels
based on objectness scores, thereby diminishing the model’s ability to distinguish between
known- and unknown-class objects and resulting in an inability to efficiently identify true
unknown-class objects. In contrast, TGOOD, through its SRS module, generates unbiased
pseudo-labels for unknown classes under textual guidance, significantly enhancing the
model’s detection capability for unknown-class objects, achieving recall rates of 23.1%,
18.7%, and 22.1% for unknown classes in tasks 1, 2, and 3, respectively.

Additionally, RE-OWOD and CAT, which employ additional pseudo-label generation
strategies such as selective search [20], also demonstrate decent detection performance.
Compared to these methods, TGOOD shows comparable or superior performance. Al-
though RE-OWOD’s detection accuracy for known classes is slightly higher than that of
TGOOD in tasks 2, 3, and 4, its recall rate for unknown-class objects is almost half that
of TGOOD. Overall, TGOOD has achieved a better balance between the detection perfor-
mance of known and unknown classes among all comparative methods, especially excelling
in the recall rate of unknown classes. However, there is still room for improvement in
the model’s performance on the WI and A-OSE metrics, indicating that there is further
research potential in enhancing the model’s ability to distinguish between known- and
unknown-class objects, which will become one of the focal points of future research.

Table 2 presents a performance comparison between TGOOD and existing OWOD
methods that do not use pseudo-labels under the OWOD SPLIT. Among those methods,
OCPL aims to reduce the overlap between known- and unknown-class distributions in the
feature space to construct more discriminative feature representations; 2B-OCD employs an
object-centered calibrator to identify candidate boxes with scores above a certain threshold
in the bg as unknown classes; PROB utilizes class-agnostic Gaussian distributions to model
object features; Ann adopts a label transfer learning paradigm to decouple features of
known- and unknown-class objects. The essence of these methods is to enhance the
separability of known- and unknown-class objects in the feature space. Compared to
the classic objectness score-based pseudo-label methods, approaches that do not rely on
pseudo-labels indeed achieve higher recall rates for unknown classes. This indirectly
confirms the bias problem towards known classes in objectness score-based pseudo-label
methods. However, the proposed TGOOD in this paper, with the synergistic effect of
multiple modules, has achieved optimal or near-optimal results in both the detection
accuracy of known classes and the recall rate of unknown classes in all task phases.

Table 2. Performance comparison of TGOOD vs. methods without pseudo-labels (OWOD SPLIT).

Task IDs Task 1 Task 2 Task 3 Task 4

WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR mAP (↑)

(↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both

OCPL 0.0423 5670 56.64 8.3 0.0220 5690 50.65 27.54 39.10 7.7 0.0162 5166 38.63 14.74 30.67 11.9 30.75 14.42 26.67
2B-OCD 0.0480 - 56.37 12.1 0.0160 - 51.57 25.34 38.46 9.4 0.0137 - 37.24 13.23 29.24 11.7 30.06 13.28 25.82
PROB 0.0569 5195 59.50 19.4 0.0344 6452 55.70 32.20 44.00 17.4 0.0151 2641 43.00 22.20 36.00 19.6 35.70 18.90 31.50
Ann 0.0604 8332 56.67 12.8 0.0269 9454 51.96 29.13 40.55 5.0 0.0157 6635 40.82 14.56 32.07 9.8 31.68 13.09 27.03

TGOOD (ours) 0.0620 4995 60.31 23.1 0.0253 2598 51.92 34.31 43.12 18.7 0.0157 1978 41.06 23.10 35.07 22.1 35.06 19.02 31.05

Table 3 compares TGOOD with existing OWOD methods under the MS-COCO SPLIT.
The experimental results demonstrate that TGOOD also significantly enhances the model’s
detection performance on the more challenging MS-COCO SPLIT dataset. Specifically,
TGOOD excels in detecting unknown classes, achieving recall rates of 29.4%, 29.0%, and
35.1% for tasks 1, 2, and 3, respectively, surpassing all comparative methods. However,
we observed that in task 1, although TGOOD showed substantial improvement in the
detection accuracy of known classes compared to ORE-EBUI, its performance was still
behind methods employing the Deformable DETR framework [43], such as OW-DETR,
PROB, and CAT. We attribute this gap to the basic framework used. The FQR-CNN
framework adopted by TGOOD is more lightweight compared to Deformable DETR.
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However, as the tasks progress, TGOOD demonstrated superior performance in both
known-class detection accuracy and unknown-class recall in tasks 2, 3, and 4. Notably, a
significant issue common to comparative methods is that the model’s detection capability
for current known classes is markedly lower than for previously known classes, with the
cur-mAP value significantly lower than the pre-mAP value. TGOOD effectively reduced
this discrepancy and achieved the optimal value in overall detection accuracy (both mAP).
We believe this is due to our proposed RRM module, which enables the model to learn more
discriminative foreground object features, thereby enhancing the model’s generalization
and robustness across different tasks.

Table 3. Performance comparison of TGOOD with open-environment object detection methods
(MS-COCO SPLIT).

Task IDs Task 1 Task 2 Task 3 Task 4

WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR mAP (↑)

(↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both

ORE-EBUI - - 61.40 1.5 - - 56.50 26.10 40.60 3.9 - - 38.70 23.70 33.70 3.6 33.60 26.30 31.80
OW-DETR 0.0458 19,815 71.50 5.7 0.0499 19,749 62.80 27.50 43.80 6.2 0.0248 9233 45.20 24.90 38.50 6.9 38.20 28.10 33.10
CAT 0.0234 2126 70.65 24.5 0.0330 4441 65.83 35.54 50.68 22.2 0.0208 3545 51.09 32.82 45.00 25.0 45.48 34.90 42.84
PROB 0.0196 1915 73.85 17.3 0.0307 3400 66.15 36.19 50.42 22.1 0.0170 1552 47.72 30.27 41.91 24.5 42.80 31.72 40.03

TGOOD (ours) 0.0443 2490 63.81 29.4 0.0244 1367 54.23 48.87 51.55 29.0 0.0174 1405 49.96 43.00 47.64 35.1 47.46 45.02 46.85

Table 4 compares the detection performance of TGOOD with traditional methods,
ORE-EBUI and OW-DETR, which use objectness scores for pseudo-labeling, on the COCO-
O SPLIT dataset. The average performance across the six domain datasets shows that
TGOOD’s ability to detect known classes is comparable to or slightly better than ORE-EBUI
and OW-DETR. Notably, TGOOD maintains superior unknown-class recognition capabil-
ities across unseen domains, outperforming the comparison methods. This is attributed
to the effective guidance provided by text information containing abstract semantics. The
general nature of semantic information in the text helps TGOOD sustain high generalization
performance even with detection data from various domain fields.

Table 4. Performance comparison of TGOOD with classic OWOD methods (COCO-O SPLIT).

Task IDs Task 1 Task 2 Task 3 Task 4

WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR WI AOSE mAP (↑) UR mAP

(↓) (↓) Cur (↑) (↓) (↓) Pre Cur Both (↑) (↓) (↓) Pre Cur Both (↑) Pre Cur Both

ORE-EBUI 0.1115 1518 20.77 15.3 0.0482 1525 19.19 14.89 17.04 11.8 0.0252 1066 14.93 7.47 12.44 10.4 12.42 8.85 11.53
OW-DETR 0.1245 5590 4.68 28.9 0.0625 4076 4.13 0.55 2.34 28.8 0.0307 2243 1.72 3.54 2.32 23.9 0.05 1.07 0.30

TGOOD (ours) 0.1380 678 19.07 52.8 0.0518 401 14.42 19.28 16.85 48.5 0.0274 221 14.87 9.66 13.13 55.0 14.16 12.73 13.80

4.4. Ablation Study

Extensive ablation experiments were conducted to validate the effectiveness of TGOOD.
Unless stated otherwise, these experiments were performed on task 1 using the OWOD
SPLIT dataset setting.

4.4.1. Components of TGOOD

To evaluate the effectiveness of each module in TGOOD, we conducted ablation
experiments for each module individually. The results are presented in Table 5. The
baseline, shown in the first row, is the FQR-CNN model without any enhancements. This
baseline highlights that the basic FQR-CNN detection model lacks the capability to detect
objects of unknown classes.

“Obj1” refers to selecting a candidate query with the highest objectness score as the
unknown-class object, similar to the pseudo-labeling method used in ORE-EBUI. The
results in the second row demonstrate that “Obj1” allows our basic detection model to
exhibit some capability in detecting unknown-class objects. However, it is insufficient
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for effectively distinguishing between known and unknown categories, as indicated by
the relatively high A-OSE score. “Obj5” involves selecting the top five candidate queries
with the highest objectness scores as unknown-class objects, akin to the pseudo-labeling
method used in OW-DETR. The third row of results shows that increasing the number of
pseudo-labeled candidates enhances the model’s ability to identify unknown-class objects,
with the UR value improving from 10.0% to 13.7%. Nevertheless, this approach significantly
degrades the accuracy of known-class object detection, with the mAP decreasing from
56.42% to 55.87%.

Table 5. Ablation experiments of TGOOD components.

Line ID Baseline Obj1 Obj5 SRS OTM RRM WI (↓) AOSE (↓) mAP (↑) UR (↑)

1 ✓ 0.0718 79,516 57.06 0
2 ✓ ✓ 0.0761 77,927 56.42 10.0
3 ✓ ✓ 0.0755 72,358 55.87 13.7
4 ✓ ✓ 0.0756 15,169 56.33 22.8
5 ✓ ✓ ✓ 0.0637 5143 59.96 22.8
6 ✓ ✓ ✓ ✓ 0.0620 4995 60.31 23.1

“SRS” refers to the pseudo-label generation module proposed in this paper. The results
in the fourth row demonstrate that this module significantly enhances the recall rate for
unknown-class objects, with a UR rate 2.28 times higher than that of “Obj1”. Additionally,
“SRS” effectively mitigates the issue of mistakenly identifying unknown-class objects as
known-class objects, reducing the A-OSE score from 77,927 to 15,169 compared to “Obj1”.
“OTM” stands for replacing the one-to-one label matching algorithm with a one-to-many
label matching algorithm. As illustrated in the fifth row, assigning multiple candidate
queries to each gt during training strengthens the supervisory signal, thereby improving
the model’s performance in detecting known-class objects. Furthermore, the integrated
“RRM” module enhances the prominent features of foreground objects. As shown in the
sixth row, this module further improves the model’s ability to detect all foreground objects,
including both known- and unknown-class objects. In Figure 6, we can intuitively perceive
the influence of TGOOD’s various components on the model’s performance in terms of
mAP and UR metrics.

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6
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Figure 6. mAP and UR metrics under different configurations of TGOOD components.
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4.4.2. The Versatility of SRS

For the pseudo-label generation module SRS proposed in this paper, we evaluated
the effectiveness of its various substructures through comparative experiments. Figure 7
provides an overview of these results: Item A demonstrates the standard version of the
text-guided pseudo-label generation strategy. It achieves a UR value of 19.4%, significantly
outperforming existing pseudo-label methods that rely on objectness scores. Item B shows
that incorporating the random de-biasing scheme further improves the UR value by an
additional 3.5%. This indicates that random selection effectively reduces the model’s bias
towards known-class objects. Item C illustrates the enhanced version of the text-guided
pseudo-label generation strategy. Applying the secondary filtering with a higher similarity
threshold results in higher-quality pseudo-labels. This enhancement improves the model’s
detection performance for both known and unknown classes.

A B C
60.0

60.1

60.2

60.3

60.4

60.5

m
AP 60.24

60.02

60.31

mAP

19

20

21

22

23

24

UR

19.4

22.9
23.1

UR

Figure 7. Ablation of substructures in SRS. (A) denotes the standard version of the SRS, (B) signifies
the enhanced version of the SRS, excluding step (3), and (C) indicates the enhanced version of
the SRS.

Additionally, since the basic target detection framework used in this paper differs
from traditional OWOD methods based on objectness scores (e.g., ORE-EBUI), we tested
the cross-framework effectiveness of the proposed SRS module by applying it to ORE-EBUI.
During training, for candidate boxes that did not match any gt, those with extremely low
objectness scores were excluded, and the fifty candidate boxes with the highest objectness
scores were retained. This step aimed to reduce noise in the pseudo-labeling process.
Subsequently, the SRS module was applied.

Table 6 presents the comparison results. “ORE-EBUI+SRS” denotes the integration of
SRS with ORE-EBUI, while “ORE-EBUI+Obj5” represents the replacement of “Obj1” with
“Obj5” in the original ORE-EBUI. The results indicate that simply increasing the number
of pseudo-labels for unknown classes negatively impacts the detection performance for
known classes, with “Obj5” causing a drop in known-class detection accuracy from 56.00%
to 18.31%. In contrast, the SRS module not only maintains but also enhances the detection
performance for known-class objects, and improves the recall rate for unknown-class
objects from 4.9% to 7.6%. Furthermore, the SRS module significantly improves the WI
and A-OSE indicators, which assess the model’s comprehensive detection capabilities in
open environments.
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Table 6. Framework-agnostic validation of SMS on ORE-EBUI.

Strategies WI (↓) AOSE (↓) mAP (↑) UR (↑)

ORE-EBUI 0.0621 10,459 56.00 4.9
ORE+Obj5 0.0480 17,345 18.31 7.1
ORE+SMS 0.0528 12,120 56.03 7.6

4.4.3. Different Methods for ROI Refinement

To assess the effectiveness of the RRM module proposed in this paper, we compared it
with the “RoIAttn” module from [44] and two other commonly used feature enhancement
strategies. The comparison results are presented in Table 7, where “TGOOD-RRM” refers
to the TGOOD model without any enhancement module. One comparison method is an
LSTM network. In this study, all ROI features are treated as a sequence, and the average of
the encoded bidirectional LSTM sequences is taken to generate the enhanced ROI features.
The results of this approach are shown in the “BiLstm” row. Additionally, we adopted a
graph convolutional neural network (GCN) as another comparison method. In this method,
the ROI features are treated as nodes in a graph, with edges formed based on the cosine
similarity between the ROI features. To reduce computational complexity, the enhanced
features are obtained after performing a single graph convolution update, and the results
are shown in the “GCN” row.

Table 7. Comparative experiments of different ROI feature enhancement modules.

Strategies WI (↓) AOSE (↓) mAP (↑) UR (↑)

TGOOD-RRM 0.0637 5143 59.96 22.8
BiLstm 0.0637 5068 60.22 22.9
GCN 0.0634 5074 60.06 23.0

RoIAttn 0.0633 5161 59.89 23.1
TGOOD 0.0620 4995 60.31 23.1

The use of an enhancement module positively impacts the model’s performance
compared to not using any ROI feature enhancement module. However, our RRM module
consistently demonstrates superior overall performance. The BiLSTM and GCN methods
increase mAP by 0.26% and 0.1%, and UR by 0.1% and 0.2%, respectively. In contrast, the
RRM module proposed in this paper achieves higher improvements, increasing mAP by
0.35% and UR by 0.2%. Notably, when detecting known-class objects, the “RoIAttn” module
negatively affects the model’s performance. This issue is likely due to inherent flaws in the
“RoIAttn” approach, which involves two additional memory units for clustering operations.
In an open environment, where unknown-class objects lack labels, this process is prone to
noise interference. In contrast, the RRM module enhances foreground object features by
leveraging the similarity between ROI features, thus avoiding this drawback.

4.4.4. Hyperparameter Analysis

In the SRS module proposed in this study, two key hyperparameters, δ1 and δ2,
were evaluated through ablation experiments, with results shown in Figure 8. To op-
timize the model’s ability to detect both known- and unknown-class objects, the final
values of δ1 and δ2 were set to 0.5 and 0.8, respectively, as these values provided the best
performance enhancement.
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Figure 8. Ablation of hyperparameters in SRS.

4.5. Visualization

To provide a more intuitive demonstration of TGOOD’s effectiveness, we present
several test results in Figure 9. After training on task 1, the test results of ORE-EBUI,
OW-DETR, and TGOOD are shown in the first, second, and third row, respectively.
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Figure 9. Visualization of TGOOD comparison with ORE-EBUI and OW-DETR. “unknown” in the
figure represents unknown-class object in current stage. The red boxes indicates objects of known
classes predicted by the model, while the blue boxes signifies objects of unknown classes predicted
by the model.

Superior Performance: TGOOD demonstrates superior performance in detecting both
known and unknown objects within images. First, TGOOD excels at accurately localizing
and predicting the categories of known objects with high confidence, even in cases of severe
occlusion. For example, TGOOD successfully identifies and classifies a chair leg in the
top-right corner of the images in the third column and a small, heavily occluded car in
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the top-left corner of the fourth column. In contrast, both ORE-EBUI and OW-DETR fail
to detect these objects. Second, TGOOD shows a strong ability to detect unknown-class
objects. For instance, in the first column, ORE-EBUI does not detect any unknown-class
objects, while OW-DETR incorrectly identifies the bg as an unknown object, generating
two nearly identical bounding boxes. TGOOD, however, correctly identifies unknown
objects such as a skateboard, shoes, and a board in the image. Although OW-DETR detects
more unknown objects in the third column (e.g., broccoli, carrot), it fails to delineate the
boundaries of these objects accurately and misses known-class objects. Furthermore, it
incorrectly labels two objects that do not belong to any known classes. In contrast, TGOOD
accurately locates unknown objects (such as a cup and rice) and correctly identifies all
known-class objects (dining table and chair).

Limitations: While the proposed method demonstrates superior object detection
capabilities for both known and unknown categories compared to existing methods relying
on objectness scores, it faces a limitation in the confidence level when identifying unknown-
category objects. The confidence is generally low, around 20%. This limitation arises from
the use of a single pseudo-label mechanism, which assigns the same label to all unknown-
category objects. As a result, the purity of the pseudo-labels may be compromised. One
of the key challenges for future research in open-environment object detection is how to
generate high-purity pseudo-labels for unknown objects that lack labels.

5. Discussion and Conclusions

In this paper, we propose TGOOD, a cross-modal learning object detection method
for open environments. The core idea behind TGOOD is to guide the model in generating
high-quality pseudo-labels for unknown classes during training through the use of text con-
taining high-level semantic information. This approach substantially reduces the model’s
bias towards known classes compared to traditional open-environment detection methods
based on objectness scores (e.g., ORE [1] and OW-DETR [7]). Specifically, we propose three
main improvement modules: (1) SRS, a pseudo-label generation module combining text
guidance with random de-biasing to address the bias of existing strategies towards known
classes; (2) OTM, a one-to-many label matching strategy that enriches supervisory signals
during the learning process of the query-based object detection model; and (3) RRM, an
ROI feature enhancement module that enhances the discriminability of foreground objects’
ROI features using an advanced attention mechanism.

Comparative experiments were conducted on TGOOD using established evaluation
benchmarks, such as OWOD SPLIT, MS-COCO SPLIT, and the COCO-O domain general-
ization benchmark newly proposed in this paper. These experiments assess the model’s
performance in detecting objects in open environments. These experiments evaluate the
model’s performance in detecting objects in open environments. While TGOOD demon-
strates superior performance in detecting unknown-class objects, the prediction scores
for these unknown classes remain lower than desired, as outlined in Section 4. Future re-
search will focus on generating higher-purity pseudo-labels to further improve the model’s
detection capabilities for unknown-class objects in open environments.
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Abbreviations
The following abbreviations are used in this manuscript:

R real space
E text feature
Q query feature
ROI region of interest
SRS Similarity-Random-Similarity,text-guided pseudo-label generation strategy
OTM one-to-many matching strategy
RRM ROI features Refinement Module
TGOOD Text-Guided Unknown Pseudo-Labeling for Open-world Object Detection
mAP mean Average Precision
UR Unknown Recall
A-OSE Absolute Open Set Error
WI Wilderness Impact
Obj1 selecting 1 candidate query with the highest objectness score as the unknown-class object
Obj5 selecting 5 candidate queries with the highest objectness scores as the unknown-class objects
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