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Abstract: Place recognition plays a crucial role in tasks such as loop closure detection and re-
localization in robotic navigation. As a high-level representation within scenes, semantics enables
models to effectively distinguish geometrically similar places, therefore enhancing their robustness to
environmental changes. Unlike most existing semantic-based LiDAR place recognition (LPR) methods
that adopt a multi-stage and relatively segregated data-processing and storage pipeline, we propose
a novel end-to-end LPR model guided by semantic information—SG-LPR. This model introduces
a semantic segmentation auxiliary task to guide the model in autonomously capturing high-level
semantic information from the scene, implicitly integrating these features into the main LPR task,
thus providing a unified framework of “segmentation-while-describing” and avoiding additional
intermediate data-processing and storage steps. Moreover, the semantic segmentation auxiliary task
operates only during model training, therefore not adding any time overhead during the testing phase.
The model also combines the advantages of Swin Transformer and U-Net to address the shortcomings
of current semantic-based LPR methods in capturing global contextual information and extracting
fine-grained features. Extensive experiments conducted on multiple sequences from the KITTI and
NCLT datasets validate the effectiveness, robustness, and generalization ability of our proposed
method. Our approach achieves notable performance improvements over state-of-the-art methods.

Keywords: LiDAR-based place recognition; semantic-guided; auxiliary task; swin transformer; U-Net

1. Introduction

Place Recognition (PR) technology fundamentally involves the feature-encoding of
environmental information observed by sensors, followed by the retrieval or matching
of identical locations within a global place feature database or map. According to this
definition, PR technology is categorized under global localization for mobile robots and
serves as an auxiliary tool for existing navigation methods. It is primarily applied in the
closure loop detection module of Simultaneous Localization and Mapping (SLAM) systems
or the re-localization module for long-term navigation tasks. This is crucial for reducing
cumulative localization errors and achieving reliable localization [1,2].

Vision-based Place Recognition (VPR) has undergone early development and reached
a relatively mature stage. However, for outdoor mobile robot applications, the widespread
utilization of VPR is constrained by its sensitivity to variations in illumination, weather, and
seasons. In contrast, LiDAR offers advantages such as long-range sensing, high accuracy,
and resilience to illumination changes, making LiDAR-based Place Recognition (LPR) a
growing research focus.

Unlike images that contain rich texture features, raw 3D point clouds primarily consist
of geometric information, making LPR challenging [3]. Consequently, researchers have
developed various deep learning models to extract features from raw 3D point clouds
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and their sparse voxels or 2D projections, aiming to effectively represent places [4–8].
Recent studies have demonstrated that incorporating semantic information from scenes can
significantly enhance the robustness of LPR models against challenges such as occlusion
and viewpoint changes, while also enhancing their generalization ability [3,9–11]. Hence,
semantic-based LPR methods are gaining increasing attention.

Most existing semantic-based LPR methods rely on semantic labels during both the
training and testing phases. These labels must be extracted from the raw point clouds
using an additional semantic segmentation model [10,12–14]. The extracted labels typically
undergo preprocessing, constructing semantic graphs or other types of intermediate features,
which are then stored locally. Subsequently, graph-based methods [10,14,15] or graph-free
methods [9,11,16] encode these intermediate features to generate feature descriptors that
effectively represent places. Therefore, the process from raw 3D point cloud input to the final
place feature descriptor output is not end-to-end but is completed in stages involving explicit
segmentation and processing of semantic labels. We refer to this process as “segmentation-
then-describing”, as illustrated in Figure 1a. This framework has several limitations: (1) the
quality of the extracted semantic information heavily depends on the performance of the
chosen semantic segmentation algorithm; (2) unnecessary errors or disturbances may be
introduced during intermediate data-processing or storage stages; (3) the relatively segmented
process design impedes the end-to-end training of the entire framework.
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Figure 1. Comparison of system frameworks for semantic-based LPR methods. (a) represents
the prevalent “segmentation-then-describing” framework employed by most existing semantic-
based LPR methods. This framework comprises multiple distinct stages. (b) depicts our proposed
“segmentation-while-describing” framework, which implicitly provides high-level semantic features
into the primary LPR task through an auxiliary semantic segmentation task (indicated by the yellow
dashed box, which is active only during model training).

Furthermore, existing semantic-based LPR methods primarily rely on label-level
semantic information, semantic graphs, or other handcrafted intermediate features. This
manual classification and processing inevitably lead to the loss of local information beyond
the semantic categories of interest. At the same time, these methods also exhibit limitations
in capturing global context and extracting fine-grained features.

To address the aforementioned issues, we propose a novel semantic-guided LPR model
termed SG-LPR. Specifically, by introducing a semantic segmentation auxiliary task, we
enhance the model’s capacity to capture semantic information from scenes and implicitly
integrate high-level semantic features into the primary place recognition task. The semantic
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segmentation auxiliary task branch is trained jointly with the place recognition main task
branch, with the segmentation branch functioning solely during the training phase.

It is important to note that, in the field of robotic navigation and localization, many
studies have leveraged auxiliary tasks to enhance the performance of the primary task.
For instance, MapLocNet [17] uses perception tasks as an auxiliary objective for pose
prediction, enabling a reliable and human-like re-localization method without requiring
high-precision maps. The methods most similar to ours are CGiS-Net [18], and AEGIS-
Net [19], which introduce a semantic segmentation auxiliary task to provide implicit
semantic information for the place recognition task. They use self-attention mechanisms to
integrate this information with color and geometric features, significantly improving indoor
place recognition performance. However, these methods mainly focus on indoor place
recognition tasks using RGB-D camera data, and their model training process is divided
into two stages: first, training the semantic encoder-decoder, followed by training the
feature embedding for place recognition. In contrast, our study targets LiDAR-based place
recognition for large-scale outdoor scenes, and we jointly train the semantic segmentation
auxiliary task and the primary place recognition task, avoiding the need for separate
training processes.

Therefore, we establish a unified framework that directly processes raw input data
through a deep learning model to generate place feature descriptors, therefore circum-
venting the need for explicit extraction, processing of semantic information, and storage
of intermediate data during testing or inference phases. This framework implements a
“segmentation-while-describing” system architecture, as illustrated in Figure 1b. Further-
more, during the model design process, we integrated the strengths of the classic Swin
Transformer [20] and U-Net to enhance the model’s performance in capturing global con-
textual information and fine-grained feature extraction. To accommodate the model’s
structural characteristics while balancing scale and computational efficiency, we employ
the 2D bird’s-eye view (BEV) projection of 3D point clouds as the model input.

It is well known that the 2D BEV projection of 3D point clouds inevitably results in
the loss of vertical scene information. However, the incorporation of semantic information
can partially alleviate the negative impact of this information loss on model performance.

Our main contributions can be summarized as follows:

• We propose a unified semantic-guided LPR framework, characterized by a “segmentation-
while-describing” structure, which eliminates the need for additional intermediate
data-processing and storage steps.

• Based on this framework, we design the SG-LPR model, integrating the advantages
of Swin Transformer and U-Net in capturing global contextual information and fine-
grained feature extraction.

• Experimental results on the KITTI and NCLT datasets demonstrate the effectiveness
of the proposed framework, with the model outperforming comparative baseline
algorithms in terms of place recognition performance and generalization ability.

2. Related Work

Current LPR methods can be categorized into handcrafted feature-based methods
and deep learning-based methods. In this section, we only introduce a few representative
works. For a more comprehensive overview, the readers may refer to [1,2,21].

2.1. Handcrafted Feature-Based Methods

Early researchers typically relied on manually designed rules to convert 3D point
clouds into 2D feature maps, histograms, or other structures, effectively extracting geo-
metric information to construct local or global place feature descriptors. Methods such as
the Scan Context series [3,22] and LiDAR Iris [23] utilize polar coordinate transformations
to obtain a BEV representation of the 3D point cloud, encoding height and other relevant
information to describe the scene. M2DP [24] projects the raw 3D point cloud onto six
different planes, counting point density within sector grids on each plane to construct a
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global feature descriptor. Methods like NDT-histogram [25] divide the 3D point cloud
space into spherical grids and build statistical histograms based on various attributes of
each grid. Bosse et al. [26] leverage keypoint features and geometric consistency from
the 3D point cloud to construct place feature descriptors. SegMatch [27] utilizes segment
features extracted from the 3D point cloud for place recognition.

Handcrafted feature-based methods are characterized by human-defined feature con-
struction rules, which generally provide better interpretability. However, these methods
are often limited to specific platforms or types of LiDAR sensors, exhibiting restricted
generalization capabilities and sensitivity to viewpoint changes and occlusions [28]. With
the rapid advancement of deep learning technology, deep learning-based LPR methods
have demonstrated significant advantages in accuracy and efficiency, gradually becoming
the mainstream approach.

2.2. Deep Learning-Based Methods

Such methods typically utilize deep neural networks to encode input data into high-
dimensional feature descriptors. Depending on the data structure input to the neural
network, these methods can be further categorized into those based on raw 3D point clouds
or its voxels, those based on 2D projections, and those based on semantics.

Methods based on 3D points or 3D sparse voxels. Pioneering work in this category in-
cludes PointNetVLAD [7], which directly utilizes PointNet [29] to extract local features from
3D point clouds and aggregates these features into a global descriptor using NetVLAD [30].
Methods such as PCAN [31] and SOE-Net [32] introduce attention mechanisms to enhance
the model’s capacity to encode local features. DH3D [4] incorporates multi-level spatial
context information and channel feature correlations into local features based on point
convolution and attention mechanisms. DAGC [33] aggregates multi-level neighborhood
features of each point using graph convolution, effectively mining the geometric structure
information of the local neighborhood. PPT-Net [34] employs a pyramid point-Transformer
to capture spatial relationships between local features of point clouds at different resolu-
tions. The original 3D point cloud often contains local details important for fine-grained
tasks such as segmentation and detection; however, these details may be unhelpful for
LPR tasks and could even be perceived as outliers or noise, therefore burdening LPR
models in understanding the scene. By voxelizing the original point cloud, it is possible
to reduce irrelevant local details while retaining the overall structural information of the
scene and decreasing data volume [35]. MinkLoc3D [5] designs a feature pyramid network
to encode features from 3D sparse voxels. SVT-Net [35] utilizes Transformers to learn both
short-range local features and long-range contextual features within 3D voxels. Methods
such as LCDNet [36], LoGG3D-Net [8], and CASSPR [37] fuse features derived from both
points and voxels.

Although methods based on 3D points or voxels maximize the retention of original
point cloud information, they exhibit limitations in computational efficiency due to the
sparsity, disorder, and large scale of point cloud structures [38].

Methods based on 2D projection. This category of methods projects the original 3D
point clouds into relatively compact 2D image structures. Common projection techniques
include spherical projection, BEV projection, cylindrical projection, and sinogram projection.
Methods such as OverlapNet [16] and OT [39] are designed to create corresponding rotation-
invariant neural network models that account for the structural characteristics of range
images. DiSCO [40] and BEVPlace [6,41] focus on feature-encoding for BEV images to
obtain global feature descriptors with rotation invariance. To address the issue of sparse
features in single-frame point clouds and enhance the model’s robustness to occlusions
and viewpoint changes, Cao et al. [42] utilized cylindrical projection to transform the 3D
point clouds into 2D images that capture prominent geometric structures of the scene.
Furthermore, to solve the global localization problem based on sparse places, Lu et al. [43]
designed a RING descriptor based on radon sinogram projection that provides a compact
and unified representation of places while maintaining direction and translation invariance.
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CVTNet [44] and MVSE-Net [45] integrate features from both spherical projection and BEV
projection perspectives.

2D projection data typically exhibit lightweight and structurally regular character-
istics, allowing the retention of certain features from the original 3D point clouds, such
as local geometric structures and yaw rotation invariance, while ensuring relatively high
computational efficiency. Therefore, this paper employs the 2D BEV projection of 3D point
clouds as the input for the model.

Methods based on semantic. OverlapNet [16] demonstrated that incorporating se-
mantic category information into the model’s input can enhance the accuracy of LPR.
SGPR [10] is a graph convolutional network that relies on semantic graph representation
and graph matching. SSC [3] is a global descriptor for LPR based on semantic informa-
tion. RINet [13] is a structurally rotation-invariant siamese network that uses semantic
information and improves the robustness of global descriptors against viewpoint changes.
Locus [14] formulated a global descriptor by aggregating multi-level features related to
semantic components in a scene. SL_LPR [12] is a chained cascade network with the
consistency of semantic information to eliminate the influence of dynamic objects on the
LPR task.

However, most existing semantic-based LPR methods adopt a “segmentation-then-
describing” framework, which consists of multiple distinct stages, as depicted in Figure 1a.
To address these issues, we propose a “segmentation-while-describing” system framework,
as illustrated in Figure 1b. By introducing an auxiliary semantic segmentation task, we
implicitly integrate high-level semantic information into the primary LPR task, effectively
eliminating the need for additional intermediate data-processing steps.

3. Preliminaries
3.1. Data Representation

In this work, we use BEV representations of 3D point clouds as inputs for our model,
which includes BEV images and corresponding ground-truth semantic maps sharing the
same pixel resolution. It should be noted that the ground-truth semantic maps are exclu-
sively used to train the auxiliary semantic segmentation task and do not participate in
encoding place features or the final testing phase.

Let P be a 3D point cloud, with each point denoted as pi(x, y, z). The corresponding
BEV image and ground-truth semantic map of P are designated as BI and BS, respectively,
both with size of (H, W). The pixel coordinates of pi in BI and BS are calculated as follows:

u =
W
2

+ ⌊ x
r
⌋,

v =
H
2
− ⌊y

r
⌋ − 1,

(1)

where (u, v) denotes the pixel coordinates corresponding to point pi in BI and BS, while r
signifies the projection resolution, and the operation ⌊·⌋ represents the floor function. The
pixel value of BI at position (u, v) indicates the number of points projected at that location,
whereas the pixel value of BS at (u, v) corresponds to the semantic label value of the last
point projected at that position.

It should be clarified that the semantic categories adopted in this study are derived from
the fusion of semantic categories defined in the Semantic-KITTI dataset [46]. Specifically, we
condense and merge the original 34 semantic categories into 20 categories as RINet [13].

3.2. Problem Definition

Let DP = {Pi | i = 1, . . . , M} denote a pre-collected database of 3D point clouds
defined with respect to a fixed reference frame, and its corresponding BEV database can
be represented as DB = {(BI

i , BS
i ) | i = 1, . . . , M}. Each dataset frame is geotagged with a

Universal Transverse Mercator coordinate at its centroid using GPS/INS. Given a query
point cloud QP with its corresponding BEV representation QB(BI

q, BS
q ), the objective of
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the LPR task is to retrieve a point cloud D∗
P from DP that is structurally similar to QP. To

tackle this problem, we design a neural network that learns a function f (·) to map BI
i to a

fixed-size global feature descriptor FBI
i
. The goal is to identify a BEV image BI∗ ∈ DB such

that the Euclidean distance between the global descriptors f (BI∗) and f (BI
q) is minimized:

BI∗ = arg min
BI

i ∈DB

∥ f (BI
q)− f (BI

i )∥2 = arg min
BI

i ∈DB

∥FBI
q
−FBI

i
∥2, (2)

where ∥ · ∥2 represents the ℓ2-norm. Ultimately, the corresponding point cloud D∗
P can be

obtained according to BI∗.

4. Methodology

Adhering to the proposed “segmentation-while-describing” framework, we design
the SG-LPR model, which integrates the strengths of both the Swin Transformer [20] and
U-Net in capturing global context information and fine-grained features.

4.1. Overall Architecture

The architecture of SG-LPR is illustrated in Figure 2 and consists of three modules:
the feature extraction module, the LPR task branch, and the semantic segmentation task
branch. During the model training process, we employ a triplet-based training scheme
by inputting an anchor point cloud along with its corresponding positive and negative
samples. It is important to note that the ground-truth semantic map Sg is utilized solely for
training the semantic segmentation task and does not participate in the processing of the
feature extraction module. Furthermore, the semantic segmentation task branch operates
only during the training phase, aiming to guide the feature extraction module in acquiring
the ability to extract high-level semantic features from BEV images, which is not required
during inference. Therefore, unlike other semantic-based LPR methods, SG-LPR does not
require Sg or its post-processed data during the inference or testing phases.
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Figure 2. Overview of the proposed SG-LPR architecture. It consists of a shared feature extractor
(blue area), followed by two parallel branches: one for the LPR task (yellow area) and another for
the semantic segmentation task (gray area). These branches are jointly trained to implement the
“Segmentation-while-describing” framework. Notably, the semantic segmentation branch is active
only during training and incurs no additional computational cost during testing.

4.1.1. Feature Extraction Module

This module converts 2D BEV images into high-dimensional embeddings enriched
with deep semantic features for subsequent primary LPR tasks. To improve its capacity to
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capture global context and fine-grained features, we leverage the complementary strengths
of Swin Transformer [20] and U-Net architectures, constructing this module’s framework
based on Swin-Unet [47], as shown in Figure 3a. Swin-Unet, inherently a transformer-
based U-shaped encoder-decoder architecture, was originally conceived for medical image
segmentation. Within Swin-Unet, the Swin Transformer block utilizes a local window self-
attention mechanism and facilitates inter-window information exchange through sliding
window techniques. The structure of its fundamental building block is illustrated in
Figure 3b, with the detailed computation process described as follows:

ẑl = W-MSA(LN(Zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl ,

ẑl+1 = SW-MSA(LN(zl)) + zl ,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1,

(3)

where ẑl and zl represent the outputs of the (S)W-MSA module and the MLP module
for the lth block, respectively. The terms W-MSA and SW-MSA refer to window-based
multi-head self-attention utilizing regular and shifted window partitioning configurations,
respectively. The computation of self-attention is defined as [47]:

A(Q, K, V) = So f tmax(
QKT
√

d
+ B)V, (4)

where Q, K, V ∈ RM2×d denote the query, key and value matrices. Here, M2 and d represent
the number of patches within a window and the dimensions of the query or key, respectively.
The values in B are derived from the bias matrix B̂ ∈ R(2M−1)×(2M+1).
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Figure 3. Architecture of the Feature Extraction Module. We construct this module based on Swin-
Unet [47], with the semantic segmentation task branch guiding it to extract feature tensors that are
rich in high-level semantic information from raw BEV images.
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Similar to U-Net, Swin-Unet integrates skip connections to merge multi-scale features
from the encoder with up-sampled features form the decoder, effectively mitigating the
loss of spatial information that typically occurs during down-sampling.

Our main modification to Swin-Unet involves the addition of an output head posi-
tioned before the final linear projection layer. This newly introduced head is intended to
deliver high-dimensional feature embeddings enriched with high-level semantic informa-
tion for the primary LPR task module. Meanwhile, the original output head of Swin-Unet
continues to function as the input for the auxiliary semantic segmentation task.

4.1.2. LPR Task Module

This module is essentially a channel-space attention-enhanced NetVLAD layer de-
signed to process the high-dimensional feature embeddings output by the feature extraction
module, generating a global feature descriptor that effectively represents the place, as illus-
trated in Figure 4. Inspired by CBAM [48], we first apply spatial and channel attention to
weight the high-dimensional feature embeddings, preserving the key information within
the input tensor while suppressing noise and irrelevant details at both the spatial and chan-
nel levels without significantly increasing the complexity of the network. Subsequently,
three convolutional layers are employed to reduce the spatial resolution of the weighted
feature tensor while increasing its channel dimensionality. Finally, the classic NetVLAD
layer [30] aggregates the features to produce a compact low-dimensional global feature
descriptor, facilitating subsequent tasks such as storage and place retrieval.
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Figure 4. Architecture of the LPR task branch. We construct this module based on Swin-Unet [47],
with the semantic segmentation task branch guiding it to extract feature tensors that are rich in
high-level semantic information from raw BEV images.

4.1.3. Semantic Segmentation Task Module

The semantic segmentation auxiliary task branch aims to establish a mapping rela-
tionship between the 2D BEV images and the semantic information within the scene. The
architecture of our feature extraction module is built based on Swin-Unet [47], a renowned
model in medical image segmentation. While capable of capturing semantic information,
its direct relevance to the primary LPR task is limited. To enhance the module’s capability in
capturing semantic information relevant to the LPR task, we introduce a semantic segmen-
tation auxiliary task module, as depicted in the gray area in Figure 2. This task directs the
module’s attention to salient semantic information within the scene, implicitly providing
precise semantic cues for the subsequent primary LPR task module. This design maintains
consistency with our proposed “segmentation-while-describing” framework for the entire
model architecture. Subsequent experiments validate the effectiveness and necessity of this
auxiliary task module. Notably, ground-truth semantic maps are used exclusively to train
the semantic segmentation auxiliary task during the model training phase.

4.2. Loss Functions

Our comprehensive loss function comprises a lazy triplet loss, denoted as Llt, which
primarily facilitates the LPR task. Additionally, it incorporates a cross-entropy loss, repre-
sented as Lce, and a dice loss, symbolized as Ldice, both supporting the semantic segmenta-
tion auxiliary task. In the following paragraphs, we provide a detailed explanation of these
loss functions.
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4.2.1. Lazy Triplet Loss

For the LPR task, we adopt the commonly used lazy triplet loss [7], defined as follows:

Llt(T ) = max
i

([m + δp − δni ]+), (5)

where T = (FBI
q
, {FBI

p
}, {FBI

n
}) denotes a training tuple, and for one query descriptor FBI

q
,

we utilize kp positive descriptors {FBI
p
} and kn negative descriptors {FBI

n
}, respectively.

[·]+ signifies the hinge loss, m is a margin value, δp represents the distance between the
global feature descriptors of the anchor sample Ba and its structurally similar (“positive”)
sample, while δni stands for the distance between the global feature descriptors of Ba and
its structurally dissimilar (“negative”) sample. We adhere to the training strategy outlined
in [7] and consider two point clouds to be structurally similar if their geometric distance is
less than ϵ meters.

4.2.2. Cross-Entropy Loss

For the semantic segmentation auxiliary task, we utilize the cross-entropy loss function
to assess the disparity between predicted semantic labels and the ground-truth semantic
labels, which is defined as:

Lce(Y, Ŷ) = − 1
N

N

∑
i=1

C

∑
c=1

yc
i · log(ŷc

i ), (6)

where Y and Ŷ represent the predicted semantic label map and its corresponding ground-
truth semantic label map, respectively. N denotes the number of pixels in a sample, C
signifies the number of classes, yc

i indicates the probability of pixel i belonging to class c,
and ŷc

i corresponds to the ground-truth label of class for pixel i.

4.2.3. Dice Loss

BEV images generated from 3D point clouds often contain extensive non-informative
background regions, while the distribution of semantic categories within meaningful
foreground areas may exhibit imbalances. Categories such as dynamic or static objects
tend to have relatively low proportions. To mitigate the adverse effects caused by the
imbalance between foreground and background regions and the uneven distribution of
semantic categories, we adopt the configurations detailed in [47] and incorporate the dice
loss function into the semantic segmentation task. The formula for calculating the dice loss
is presented below:

Ldice(Y, Ŷ) =
1
C

C

∑
c=1

wc

(
1 −

2 ∑N
i=1 ∑N

j=1(y
c
ij × ŷc

ij) + ϵ

∑N
i=1 ∑N

j=1(y
c
ij)

2 + ∑N
i=1 ∑N

j=1(ŷ
c
ij)

2 + ϵ

)
, (7)

where C signifies the total number of classes, (M, N) is the resolution of the input BEV
image, yc

ij denotes the predicted class number at the specific position (i, j) within the
predicted semantic label map, correspondingly, ŷc

ij represents the ground-truth semantic
label at the same position, wc stands for the weight of the dice coefficient corresponding to
the c-th class and is set to 1.0, ϵ is a smoothing term, introduced to prevent the denominator
from being zero, which is set to 10−5 in our study.

4.2.4. Joint Loss

Our network is optimized jointly using a weighted sum of the LPR loss and the
semantic segmentation loss, defined as:

L = Llt + λceLce + λdiceLdice, (8)
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where λce and λdice are scalar hyperparameters representing the weights assigned to differ-
ent loss terms, respectively.

5. Experiments and Results
5.1. Dataset and Experimental Settings
5.1.1. Dataset

KITTI [49]. This dataset includes 22 sequences of LiDAR scans from a Velodyne HDL-
64E. For LPR, the first 11 sequences with precise ground-truth poses are typically used.
We adopt the leave-one-out cross-validation strategy used in SGPR [10] and RINet [13] for
model training on the KITTI dataset. Specifically, for each sequence in sequences 00-10, we
designate one sequence as the test set while using the remaining sequences for training. In
the actual experiments, we select sequences 00, 02, 05, 06, 07, and 08, which contain loop
closures, as the test set. Notably, sequence 08 includes reverse loops, while the others are in
the same direction.

NCLT [50]. This dataset was collected on the North Campus of the University of
Michigan and encompasses both indoor and outdoor scenes. Point cloud data were acquired
using a Velodyne HDL-32 LiDAR over a 15-month period. Consequently, it captures a
diverse range of variations in seasons, weather conditions, lighting, viewpoints, and scene
appearances. Additionally, the dataset contains a substantial number of dynamic objects,
which pose greater challenges to the performance of LPR models. For evaluation purposes,
We select sequences as outlined in [41], including “2012-01-15”, “2012-02-04”, “2012-03-17”,
“2012-06-15”, “2012-09-28”, “2012-11-16”, and “2013-02-23”.

5.1.2. Implementation Details

The proposed network is implemented using the PyTorch framework (v. 1.14.0) and
trained from scratch on a single Nvidia A6000 GPU with 48 GB of memory. Following [10],
we determine whether two point clouds represent the same place based on ground-truth
poses. Specifically, point clouds are considered positive pairs if their Euclidean distance
is less than 3 m; otherwise, they are negative pairs if the distance exceeds 20 m. When
projecting a 3D point cloud onto the BEV plane, we use a grid size r of 0.2 m and a projection
radius of 11.2 m, resulting in a BEV image size of 224 × 224 pixels. It should be noted that
the ground-truth semantic map corresponding to the BEV image is only used to guide the
training of the semantic segmentation auxiliary task and is not required during the testing.
For each training tuple, we set kp = 1 and kn = 10. The parameters of the backbone of the
feature extraction module adhere to the specifications outlined in Swin-Unet [47]. For the
NetVLAD layer, we set the number of clusters to 64 and the output feature dimension to
256. During model training, we employ the Adam optimizer with an initial learning rate of
0.00001, along with an exponential scheduler for learning rate decay. The coefficients in the
joint loss function L are configured as λce = 0.4 and λdice = 0.6. Additionally, we apply
random rotations around the z-axis on the point clouds for data augmentation during the
training process.

5.1.3. Evaluation Metrics

We evaluate the performance of LPR models using the maximum F1 score, recall rate
at top-1 (Recall@1) retrieval, the precision–recall (PR) curve, and top 1 retrieval along the
trajectory. The maximum F1 score and Recall@1 are quantitative metrics, reflecting the
overall performance of the model and its ability to correctly identify the target location in
the first retrieved result, respectively. The PR curve and Top 1 retrieval along the trajectory
are qualitative metrics, providing visual comparisons of the model’s performance against
other methods, as well as the discrepancy between the model’s Top 1 retrieval result and
the ground-truth of the loop closure. The F1 score is defined as the harmonic mean of
precision (P) and recall (R):
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P =
TP

TP + FP
,

R =
TP

TP + FN
,

F1 = 2 × P × R
P + R

,

(9)

where TP, FN, TN, and FP represent true positive, false negative, true negative, and false
positive, respectively. As previously mentioned, the thresholds for classifying samples as
positive or negative are based on distances of 3 m and 20 m.

5.2. Comparison with State-of-the-Art

This section presents a quantitative and qualitative comparison of the proposed
method with other state-of-the-art methods on multiple raw sequences of the KITTI
dataset. The compared methods include non-semantic approaches (M2DP [24], Scan
Context (SC) [22], LiDAR Iris (LI) [23], PointNetVLAD (PNV) [7], OverlapTransformer
(OT) [39], DiSCO [40], LoGG3D-Net [8], and BEVPlace [6]), as well as semantic-based meth-
ods (Semantic Scan Context (SSC) [3], SGPR [10], Locus [14], RINet [13], and SC_LPR [12]).
The results for M2DP, SC, LI, PNV, SSC, SGPR, and RINet are taken from the RINet pub-
lication, while the results for DiSCO, LoGG3D-Net, and Locus are obtained from their
respective original papers. Additionally, we replicate OT and BEVPlace under identical
training parameter settings, where the input for OT is the range image data provided by
the official source, with a resolution of 64 × 900.

5.2.1. Quantitative Results

Comparison with Non-semantic Methods. Among the compared non-semantic
methods, M2DP, SC, and LI are based on handcrafted features, while the others utilize deep
learning-based approaches. Table 1 shows that the proposed method outperforms other
non-semantic methods in terms of both the maximum F1 score across all sequences and
the average maximum F1 score. Specifically, in terms of the average maximum F1 score,
our method achieves an 18.5% improvement compared to the best-performing handcrafted
feature-based method, SC, and a 2.1% increase compared to the best-performing deep
learning-based method, BEVPlace. These results indicate that our method significantly
outperforms other non-semantic methods, primarily due to the incorporation of a semantic
segmentation auxiliary task. This auxiliary task enables the feature extraction module to
focus more on the semantic information within scenes. Additionally, the LPR main task
branch further guides the model to extract semantic features that are beneficial for the LPR
task. These semantic features are implicitly encoded into the global place feature descriptor,
therefore enabling a more efficient and discriminative representation of places.

Comparison with Semantic-based Methods. Among the compared semantic-based
methods, SSC is classified as a handcrafted feature-based approach, while the others are
deep learning-based. According to the comparative results presented in Table 1, it is evident
that our method achieves a maximum F1 score of 100% on sequences 06 and 07, and the
average maximum F1 score is improved by 1.9% compared to the second-best method.
Overall, our method outperforms other approaches in terms of both maximum F1 score
and average maximum F1 score across most sequences. This superiority can be attributed
to: (1) Our model’s “segmentation-while-describing” pipeline minimizes potential errors or
disruptions by avoiding extra data-processing or storage steps; (2) Leveraging the strengths
of Swin Transformer and U-Net, our SG-LPR excels in capturing global contextual informa-
tion and fine-grained features; (3) SG-LPR utilizes high-dimensional feature embeddings
rich in semantic information, preserving more detailed information without spatial or
channel compression, unlike methods [3,10,12–14] that rely on low-level or label-level
semantic information or their post-processed data.
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Table 1. F1 max scores on raw KITTI dataset.

# Methods 00 02 05 06 07 08 Mean

1

M2DP [24] 0.708 0.717 0.602 0.787 0.560 0.073 0.575
SC [22] 0.750 0.782 0.895 0.968 0.662 0.607 0.777
LI [23] 0.668 0.762 0.768 0.913 0.629 0.478 0.703

PNV [7] 0.779 0.727 0.541 0.852 0.631 0.037 0.595
OT [39] 0.952 0.853 0.909 0.987 0.330 0.256 0.715

DiSCO [40] 0.964 0.892 0.964 0.990 0.897 0.903 0.935
LoGG3D-Net [8] 0.953 0.888 0.976 0.977 1.000 0.843 0.939

BEVPlace [6] 0.979 0.900 0.974 0.991 0.906 0.894 0.941

2

SSC [3] 0.951 0.891 0.951 0.985 0.875 0.940 0.932
SGPR [10] 0.820 0.751 0.751 0.655 0.868 0.750 0.766
Locus [14] 0.957 0.745 0.968 0.948 0.921 0.900 0.907
RINet [13] 0.978 0.947 0.917 0.978 0.967 0.869 0.943

SC_LPR [12] 0.900 0.870 0.920 0.910 0.870 0.650 0.850

3 SG-LPR(Ours) 0.980 0.918 0.976 1.000 1.000 0.898 0.962
The best scores are marked in bold, and the second-best scores are underlined. #1, #2, and #3 denote experiments
on non-semantic methods, semantic-based methods, and our SG-LPR, respectively.

5.2.2. Qualitative Results

To intuitively demonstrate the performance of the proposed method, we compared
its PR curves with those of OT [39] and BEVPlace [6], as shown in Figure 5a–f. The results
indicate that our method exhibits more stable performance across six sequences in the
KITTI dataset. Furthermore, Figure 6 illustrates the qualitative performance of our model’s
top-1 retrieval results along the trajectory in various KITTI sequences. In this visualization,
red, black, and blue points represent true positives, false negatives, and true negatives,
respectively. The visualization results clearly indicate that our model can achieve accurate
detection across different types of sequences. Notably, we observed that most failure cases
occur at intersections or in repetitive scenes, as shown in Figure 6b,f. Such scenes often
exhibit significant geometric similarity, therefore imposing higher demands on model
performance. Additionally, Figure 7 shows the input BEV images of our model, the ground-
truth semantic maps, and the predicted semantic maps from the semantic segmentation
auxiliary task branch. As evident from Figure 7, the proposed model not only demonstrates
excellent performance in the primary LPR task but also achieves remarkable results in the
semantic segmentation auxiliary task.

5.3. Robustness Test

We follow the experimental setups of methods such as RINet [13] and SGPR [10] to
evaluate the robustness of the proposed model on multiple sequences of the KITTI dataset.
This experiment primarily focuses on investigating the impact of viewpoint variations on
the model’s robustness. In real-world scenarios, mobile robots may observe the same place
from different perspectives, leading to variations in the observed data. Since the model’s
training data cannot encompass all possible viewpoints, these variations may cause the
model to misidentify the same place as different places, a challenge known as the viewpoint
variation problem, which significantly impacts the model’s robustness.

To simulate this situation, we randomly rotate the point clouds from the KITTI dataset
around the z-axis and project it into 2D BEV images. The experimental results are presented
in Table 2. The results for BEVPlace [6] are reproduced by us, and the numerical metrics
for the other comparison methods are taken directly from the original paper of RINet [13].
The results show that, while our method outperforms others on sequences 05 and 07, it
is slightly outperformed by RINet on other sequences and on average, particularly on
sequences 02 and 08, where the maximum F1 scores are significantly lower than those of
RINet. This discrepancy is due to the fact that our model does not incorporate a specific
design for rotation invariance. Instead, we apply random rotation augmentation to the
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input data during training. In contrast, RINet is a rotation-invariant network, and its input
consists of handcrafted features that are inherently rotation-invariant.

(a) KITTI-00 (b) KITTI-02 (c) KITTI-05

(d) KITTI-06 (e) KITTI-07 (f) KITTI-08

Figure 5. The Precision–Recall curves on multiple sequences of KITTI dataset.

(a) KITTI-00 (b) KITTI-02 (c) KITTI-05

(d) KITTI-06 (e) KITTI-07 (f) KITTI-08

Figure 6. Qualitative performance at top-1 retrieval of SG-LPR on multiple KITTI sequences along
the trajectory. Red: true positives, black: false negatives, blue: true negatives.
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(a) (b) (c)

Figure 7. Qualitative performance for the auxiliary semantic segmentation task in SG-LPR. (a) shows
the original BEV image generated from 3D LiDAR point cloud, (b) displays the ground-truth semantic
map constructed from Semantic-KITTI [46], and (c) illustrates the predicted semantic map produced
by SG-LPR, guided by auxiliary semantic segmentation task during training.

Table 2. F1 max scores on random rotated KITTI dataset around z-axis.

# Methods 00 02 05 06 07 08 Mean Cmp *

1

M2DP [24] 0.276 0.282 0.341 0.316 0.204 0.201 0.270 −0.305
SC [22] 0.719 0.734 0.844 0.898 0.606 0.546 0.725 −0.052
LI [23] 0.667 0.764 0.772 0.912 0.633 0.470 0.703 0.000

PNV [7] 0.083 0.090 0.490 0.094 0.064 0.086 0.151 −0.444
DiSCO [40] 0.960 0.891 0.952 0.985 0.894 0.892 0.929 −0.006

BEVPlace [6] 0.979 0.900 0.974 0.991 0.906 0.894 0.941 0.000

2

SSC [3] 0.955 0.889 0.952 0.986 0.876 0.943 0.934 +0.002
SGPR [10] 0.772 0.716 0.723 0.640 0.748 0.678 0.713 −0.053
Locus [14] 0.944 0.726 0.960 0.927 0.911 0.877 0.891 −0.016
RINet [13] 0.992 0.942 0.954 1.000 0.990 0.962 0.973 +0.030

SC_LPR [12] 0.900 0.870 0.920 0.910 0.870 0.650 0.850 0.000

3 SG-LPR(Ours) 0.969 0.913 0.976 0.993 1.000 0.880 0.955 −0.007
* Cmp is the comparison with the standard results shown in Table 1.

In conclusion, rotation invariance design is crucial for enhancing the model’s robust-
ness to viewpoint variations. We plan to address this limitation in future versions of
our model.

5.4. Generalization Ability

Due to the point clouds in the NCLT [50] and KITTI datasets being captured by differ-
ent LiDAR sensors, as well as the significant differences in the scenes, the generalization
performance test on the NCLT dataset primarily evaluates the model’s ability to adapt to
varied scenes and sensor types. We follow the experimental setup of BEVPlace++ [41] and
use Recall@1 as the performance evaluation metric, with the sequence “2012-01-15” used to
construct the database and the remaining sequences as the query set. It is important to note
that the model was trained solely on the KITTI dataset. The experimental results, shown in
Table 3, report numerical metrics for the comparison methods (M2DP [24], BoW3D [51],
CVTNet [44], LoGG3D-Net [8], BEVPlace [6], and BEVPlace++) as presented in the original
BEVPlace++ paper. The results demonstrate that our model outperforms other methods
across multiple sequences of the NCLT dataset, showcasing its strong generalization capa-
bility. This is primarily due to the model’s ability to effectively capture implicit semantic
features in the scenes. As illustrated in Figure 8, our model successfully focuses on regions
rich in semantic information in both the KITTI and NCLT datasets, further enhancing
feature-encoding precision.
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Table 3. Generalization performance on NCLT dataset using recall at top-1 metric.

Methods 2012-02-04 2012-03-17 2012-06-15 2012-09-28 2012-11-16 2013-02-23 Mean

M2DP [24] 0.632 0.580 0.424 0.406 0.493 0.279 0.469
BoW3D [51] 0.149 0.107 0.065 0.050 0.052 0.075 0.083
CVTNet [44] 0.892 0.880 0.812 0.749 0.771 0.803 0.818

LoGG3D-Net [8] 0.699 0.196 0.110 0.087 0.109 0.256 0.243
LCDNet [36] 0.605 0.542 0.442 0.349 0.317 0.109 0.394
BEVPlace [6] 0.935 0.927 0.874 0.878 0.889 0.862 0.894

BEVPlace++ [41] 0.953 0.942 0.902 0.889 0.913 0.878 0.913

SG-LPR (Ours) 0.947 0.936 0.931 0.916 0.914 0.913 0.926

Figure 8. Feature heatmaps comparison of SG-LPR outputs with and without the semantic segmen-
tation auxiliary task. SwinUnetVLAD is the SG-LPR variant without the semantic segmentation
auxiliary task branch. The heatmaps illustrate the differences in feature activation patterns, high-
lighting the influence of the auxiliary task on the model’s ability to capture regions with high-level
semantic features.

5.5. Ablation Study
5.5.1. Ablation of Key Components in LPR Task Module

We conduct three sets of experiments on multiple sequences from the KITTI dataset
to assess the impact of the spatial-channel attention module (essentially CBAM [48]) and
the NetVLAD [30] module on the LPR main task branch. The experimental results are
documented in Table 4: #1 indicates the removal of the CBAM and NetVLAD modules
from the LPR main task branch of the SG-LPR model, #2 retains only the NetVLAD module,
and #3 represents the complete SG-LPR model. The ablation results demonstrate that the
NetVLAD layer significantly contributes to the enhancement of the model’s performance,
while the inclusion of CBAM further improves this performance. These results validate
that our structural design for the LPR main task branch is both reasonable and effective.
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Table 4. Ablation study on the Effectiveness of CBAM and NetVLAD modules using F1 max scores
metric.

# Convs * CBAM NetVLAD 00 02 05 06 07 08 Mean

1 ✓ 0.926 0.836 0.878 0.991 0.224 0.716 0.762
2 ✓ ✓ 0.961 0.906 0.936 0.983 0.885 0.819 0.915
3 ✓ ✓ ✓ 0.980 0.918 0.976 1.000 1.000 0.898 0.962

* Convs represents multi-layer convolution.

5.5.2. Ablation of Semantic Segmentation Auxiliary Task Branch

We conduct two sets of experiments on multiple sequences from the KITTI dataset to
validate the effectiveness of the semantic segmentation auxiliary task module in our model.
The results are detailed in Table 5. Experiment #1 indicates the removal of the semantic
segmentation task branch from SG-LPR, termed SwinUnetVLAD, while experiment #2
retains this branch. The findings reveal that retaining the semantic segmentation task
branch results in a 12.2% improvement in the average maximum F1 score compared to its
removal. This enhancement can be attributed to the feature extraction module’s difficulty
in effectively mining semantic information from the original BEV images without the
semantic segmentation task branch. Adhering to the “segmentation-while-describing”
design principle, integrating the semantic segmentation auxiliary task branch during
training enables the model to focus on regions rich in semantic information that are relevant
to the main LPR task, as demonstrated by the feature heatmaps from both the KITTI
and NCLT datasets in Figure 8. This enhances the model’s capacity to represent place.
Ultimately, this ablation study underscores the importance of the semantic segmentation
auxiliary task branch in our model.

Table 5. Ablation study on the presence or absence of the semantic segmentation auxiliary task
branch using F1 max scores metric.

# seg_branch 00 02 05 06 07 08 Mean

1 0.932 0.842 0.903 0.975 0.604 0.785 0.840
2 ✓ 0.980 0.918 0.976 1.000 1.000 0.898 0.962

5.5.3. Ablation of Different Types of Input for the LPR Task Branch

According to the model architecture illustrated in Figure 2, the LPR task branch re-
ceives feature embeddings that are rich in high-level semantic information, output by the
feature extraction module. In contrast, methods such as SGPR [10] and RINet [13] input
low-level semantic information at the label or handcrafted feature level. This distinction
contributes to our model’s superior performance compared to other state-of-the-art meth-
ods. To validate this assertion, we conducted an ablation study assessing different input
types for the LPR task branch, with results detailed in Table 6. Specifically, experiment #1 in-
volves inputting only raw BEV images (RB), experiment #2 involves inputting ground-truth
semantic maps at the label level (RS), experiment #3 simultaneously inputs both raw BEV
images and ground-truth semantic maps (RB+RS), and experiment #4 inputs high-level
semantic features (HS). The experimental results indicate that providing only low-level
raw data or initial semantic maps at the label level leads to suboptimal model performance,
whereas significant improvements are observed with the inclusion of high-level semantic
information. This finding reinforces our argument. It is also important to note that the
subpar performance when inputting low-level raw data may arise from the relatively sim-
ple structural design of the LPR branch in our model, which limits its ability to effectively
extract meaningful features from raw data for place representation.
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Table 6. Ablation study on different types of input for the LPR task branch using F1 max scores
metric.

# RB RS HS 00 02 05 06 07 08 Mean

1 ✓ 0.934 0.845 0.872 0.942 0.465 0.738 0.799
2 ✓ 0.955 0.859 0.926 0.975 0.936 0.721 0.895
3 ✓ ✓ 0.972 0.851 0.936 0.981 0.955 0.762 0.910
4 ✓ 0.980 0.918 0.976 1.000 1.000 0.898 0.962

RB represents the raw BEV image, where pixel values correspond to point density. RS denotes the raw semantic
map, with pixel values indicating semantic category labels, reflecting low-level semantic information. HS signifies
high-level semantic features, which are derived from the output of the feature extraction module of SG-LPR.

5.5.4. Ablation of Loss Function Terms

To investigate the impact of various components in the joint loss function on model
performance, we conduct four additional experiments, with detailed results presented in
Table 7. Experiment #1 employs only the triplet loss component λlt, which effectively corre-
sponds to the removal of the semantic segmentation auxiliary task branch. Experiments #2
to #4 examine the influence of the presence or absence of the cross-entropy loss function
Lce and the Dice loss function Ldice while retaining the semantic segmentation task branch.
The experimental results indicate that the model achieves optimal performance when all
components of the joint loss function are included. This improvement is attributed to
the cross-entropy loss facilitating rapid convergence and enhancing the overall category
prediction capability of the semantic segmentation auxiliary task branch, while the Dice loss
sharpens the model’s focus on critical regions, such as small objects or difficult-to-segment
areas. The combination of both loss functions ensures that the model addresses overall
classification accuracy during training while also prioritizing the segmentation quality of
each category, therefore implicitly enhancing the feature representation capability of the
LPR task module.

Table 7. Ablation study on the impact of the presence or absence of various loss components in the
joint loss function on model performance on raw KITTI using F1 max scores metric.

# λlt λce λdice 00 02 05 06 07 08 Mean

1 ✓ 0.932 0.842 0.903 0.975 0.604 0.785 0.840
2 ✓ ✓ 0.957 0.906 0.950 0.973 1.000 0.852 0.940
3 ✓ ✓ 0.965 0.907 0.950 0.985 1.000 0.809 0.936
4 ✓ ✓ ✓ 0.980 0.918 0.976 1.000 1.000 0.898 0.962

5.5.5. Ablation of the Number of Semantic Categories

During the experiments, to generate the ground-truth semantic maps, we adopted the
parameter settings of RINet [13], merging the 34 original semantic labels from the Semantic-
KITTI [46] point cloud data into 20 categories. The merging principle involves grouping
dynamic objects and their corresponding static counterparts into the same category; for
example, “bus” and “moving bus” were combined into one category. To investigate the
impact of different numbers of semantic categories on model performance, we conduct six
experiments, setting the category numbers to 0, 6, 15, 20, 25, and 34, respectively. Here,
34 represents all categories in Semantic-KITTI; 25 groups all dynamic objects into a single
category; and 15 assigns dynamic objects as unannotated, effectively excluding them from
the scene. The setting of 6 merges categories with similar attributes, such as combining
“person”, “moving-person”, “bicyclist”, and “moving-bicyclist” into a single category. A
setting of 0 indicates the absence of semantic labels, effectively removing the semantic
segmentation auxiliary task branch.

The experimental results on different sequences of the KITTI dataset are shown in
Figure 9. The results demonstrate that when the number of categories is 0, i.e., without the
semantic segmentation task branch, the model’s performance is the lowest. However, with
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the semantic segmentation task branch included, variations in the number of categories
have only a minor impact on overall model performance. This finding is consistent with the
results in Figure 7, where the semantic segmentation outcomes do not perfectly match the
ground-truth semantic maps, yet they do not significantly degrade the LPR performance.
Additionally, we observe that increasing the number of categories leads to higher computa-
tional costs during training. Balancing efficiency and performance, we ultimately adopted
the category configuration used in [13].

Figure 9. Ablation study on the number of semantic categories used for the training of our SG-
LPR model.

6. Conclusions

In this work, we propose a semantic-guided LPR model that introduces a simple
semantic segmentation auxiliary task to implement an end-to-end “segmentation-while-
describing” process, spanning from raw input data to place feature descriptors. The
LPR main task and the semantic segmentation auxiliary task are jointly trained, with
the latter only contributing during training to guide the model in learning how to ex-
tract high-level semantic features from the scene. During the testing phase, the semantic
segmentation branch is frozen, preventing any additional time overhead. Notably, our
model does not explicitly segment or process semantic information, therefore avoiding
extra intermediate data handling or storage and simplifying the workflow for semantic-
based LPR methods. Additionally, by leveraging the strengths of the Swin Transformer
and U-Net, we enhance the model’s ability to capture both global contextual information
and fine-grained features. A series of experiments conducted on the KITTI and NCLT
datasets validate the effectiveness, robustness, and generalization capacity of the proposed
method. Compared to state-of-the-art techniques, our approach demonstrates significant
performance improvements.

However, there remain several areas for future enhancement: (1) Rotation invariance
design: Due to the absence of a dedicated rotation invariance mechanism, the model’s
robustness to viewpoint variations has yet to reach its full potential; (2) Utilizing semantic
information in unannotated scenes: During training, we rely on ground-truth semantic
labels for joint training with the auxiliary segmentation task. However, many publicly avail-
able datasets and real-world applications lack accurate semantic annotations. Therefore, a
key direction for future work is exploring how to effectively utilize semantic information
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in scenes without labeled data; (3) Further enhancing generalization ability: Although
our model achieves the best average Recall@1 score on the NCLT dataset, there is still
substantial room for improvement, especially compared to the KITTI dataset. Enhancing
the model’s adaptability to different types of scenes and sensor configurations is another
important avenue for future research.
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