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Abstract: Polarimetric measurement has been proven to be of great importance in various appli-
cations, including remote sensing in agriculture and forest. Polarimetric full waveform LiDAR is
a relatively new yet valuable active remote sensing tool. This instrument offers the full waveform
data and polarimetric information simultaneously. Current studies have primarily used commercial
non-polarimetric LiDAR for tree species classification, either at the dominant species level or at
the individual tree level. Many classification approaches combine multiple features, such as tree
height, stand width, and crown shape, without utilizing polarimetric information. In this work, a
customized Multiwavelength Airborne Polarimetric LiDAR (MAPL) system was developed for field
tree measurements. The MAPL is a unique system with unparalleled capabilities in vegetation remote
sensing. It features four receiving channels at dual wavelengths and dual polarization: near infrared
(NIR) co-polarization, NIR cross-polarization, green (GN) co-polarization, and GN cross-polarization,
respectively. Data were collected from several tree species, including coniferous trees (blue spruce,
ponderosa pine, and Austrian pine) and deciduous trees (ash and maple). The goal was to improve
the target identification ability and detection accuracy. A machine learning (ML) approach, specifi-
cally a decision tree, was developed to classify tree species based on the peak reflectance values of the
MAPL waveforms. The results indicate a re-substitution error of 3.23% and a k-fold loss error of 5.03%
for the 2106 tree samples used in this study. The decision tree method proved to be both accurate
and effective, and the classification of new observation data can be performed using the previously
trained decision tree, as suggested by both error values. Future research will focus on incorporating
additional LiDAR data features, exploring more advanced ML methods, and expanding to other
vegetation classification applications. Furthermore, the MAPL data can be fused with data from other
sensors to provide augmented reality applications, such as Simultaneous Localization and Mapping
(SLAM) and Bird’s Eye View (BEV). Its polarimetric capability will enable target characterization
beyond shape and distance.

Keywords: remote sensing; LiDAR; polarimetric LiDAR; full waveform; classification; machine
learning; decision tree

1. Introduction

Global climate change has become a pressing issue. The Sixth Assessment Report
from the Intergovernmental Panel on Climate Change shows that the global average
surface temperature in the past decade (2011–2020) was 1.09 ◦C higher than the average
temperature between 1850 to 1900 [1,2]. The United Nations General Assembly approved
the 2030 agenda, which urges the world to take urgent actions to address climate change
and its impacts [3]. As a major source of carbon sink, vegetation and forest help reduce
greenhouse gases and slow down climate change. Hence, mapping the forests on both
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the global and local scale is necessitated. Classifying and mapping vegetation is also
needed in order to understand how climate change affects ecosystems and to predict future
changes in vegetation distribution due to altered temperature and precipitation patterns.
It allows scientists to monitor and study how plant life responds to climate change by
determining which vegetation types are expanding, shrinking, or migrating to new areas [4].
In addition, species diversity is essential for the provision of environmental services and
ecosystem health.

Not surprisingly, therefore, many metrics have been developed to accurately map the
vegetation distribution. These metrics should be statistically rigorous, show monotonic
relationships, be sensitive to species’ appearance and disappearance, be comparable and
invariant across different scales, be affordable, and, most importantly, be easy to under-
stand [5]. There have been a variety of sensors and platforms developed to meet these
requirements. Remote sensing is an effective option for vegetation monitoring over large
areas. It has been used in many fields, including geophysics, geography, land surveying,
and most earth science disciplines. Recent technological advances have provided vast
amounts of remote sensing data to meet the ever-increasing demands [6].

Light detection and ranging (LiDAR) is a remote sensing technique that measures dis-
tance by using a pulsed or continuous laser wave to aim at an object and counting the time
it takes for the light to return to the receiver [7]. LiDAR can be used on the ground, or in an
airborne manner, or satellite-borne [8,9]. Based on the sampling strategy, pulsed LiDAR
systems can be categorized as discrete return systems, full waveform systems, photon-
counting systems, and synthetic aperture LiDAR systems. In vegetation research, capturing
the true canopy profile can provide crucial information. The full waveform LiDAR has its
advantage in measuring the canopy distribution [10,11]. In addition, polarimetric discrimi-
nation plays an important role in target classification. Therefore, a polarimetric LiDAR is
warranted, and it has the ability to measure the polarization state of the backscattered laser
beam from the target [12,13]. Polarimetric measurements have been used in a variety of
fields, including astronomy, chemistry, and food and beverage production, in addition to
the vegetation classification in agricultural and forest remote sensing [14–17].

After acquiring the LiDAR measurement data, data analysis is performed to make
informed decisions to improve processes and gain competitive advantage. With the expo-
nential growth in the availability of acquired data and the advancement in experimental
and computational techniques, researchers can now obtain valuable insights from large
and complex datasets. A variety of interconnected data analysis methods have become
available, including statistical techniques, machine learning (ML), deep learning (DL), neu-
ral networks (NNs), data mining, and artificial intelligence (AI), each of which intersects
and overlaps with the others and can be used to extract meaningful information from
datasets [18,19]. ML-based classification is a predictive modeling process in which the
model attempts to predict the correct label for input data. In classification, the model is
trained using the training data, validated using validation data, evaluated using test data
with an error function, and, finally, used to make predictions on new, unseen data. Due to
the powerful capabilities of classification and clustering algorithms in ML, ML has been
widely used in many fields, including vegetation classification, land cover classification,
and yield prediction in agriculture and forestry [20–24].

In this study, a customized Multiwavelength Airborne Polarimetric LiDAR (MAPL)
system was developed. Four different LiDAR channels at dual wavelengths and dual
polarization—near infrared (NIR) co-polarization, NIR cross-polarization, Green (GN)
co-polarization, and GN cross-polarization—were designed to improve the identification
ability and measurement accuracy. The MAPL was designed primarily for vegetation
remote sensing [25]. Field experiments were conducted using the MAPL to collect data
from a variety of different trees. Then, a decision tree approach was developed to classify the
different species of trees based on the peak intensity values from the MAPL waveforms. This
approach has not previously been applied to the unique MAPL dataset. The effectiveness
of the proposed method is evaluated to guide future classification efforts.
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2. MAPL System

The LiDAR system used in this study is the MAPL system. The MAPL has four receiv-
ing channels and is used for forest remote sensing [25]. It consists of three main subsystems:
the laser source—an optical receiver assembly, and the data acquisition and processing
hardware and software. The system employs an Nd: YAG laser that simultaneously emits
radiation at two wavelengths: 1064 nm (NIR) and 532 nm (GN). Both laser beams are highly
linearly polarized with an extinction ratio of 100:1. The beam divergence is approximately
4 mrad, which will produce a laser footprint of approximately 4 m in diameter at a distance
of 1000 m. The laser source has a pulse repetition frequency of 10 Hz and a pulse width of
10 ns, yielding a range resolution of 1.5 m. The receiving aperture is 25 mm in diameter
and the receiver optics are designed to be simple to reduce any possible modifications to
the polarization state of the backscattered light. The maximum laser output power is 30 mJ
per pulse and can be adjusted to meet the detection needs. The receiver has four channels,
allowing dual-wavelength and dual-polarization detection, namely, the co-polarization
and cross-polarization at the NIR and GN wavelengths, respectively. The laser pulses are
backscattered by the vegetation or other targets and received by the four photomultiplier
tube detectors. The precise timing capability of the digital delay generator is used to control
the transmission and reception of the laser pulses, which improves the ranging accuracy
and helps to obtain precise LiDAR waveforms that contain information about the vegetation
canopy structure. The MAPL system, including the laser, the receivers, and data storage,
is controlled by a self-developed LabVIEW program [7]. The data are stored in a hard
drive and post-processed using MATLAB. The MAPL system is capable of performing both
vegetation canopy structure studies and the characterization of vegetation polarimetric
reflectance and depolarization. This configuration has proven to be able to improve target
classification [16]. The block diagram of the MAPL is shown in Figure 1a, and Figure 1b
shows a photograph of the receiver package with the laser head and four receivers.
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The LiDAR equation describing the relationship between the transmitted laser power
and the received laser power is as follows [7]:

PR =
πPTρT D2

16R2 ·TA
2·ηT ·ηR, (1)
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where PR is the LiDAR received power, PT is the LiDAR transmitted power, R is the one-
way distance from the LiDAR to the target, D is the optical detector aperture diameter, ρT
is the target reflectivity, TA is the one-way atmospheric transmission coefficient from the
LiDAR to the target, ηT is the transmitter transmission efficiency, and ηR is the receiver
transmission efficiency. As is seen, the received power is reversely proportional to the
range squared for the extended target.

The received power is in two polarization directions, i.e., the co-polarization PRCO and
the cross-polarization PRX . The cross-polarization ratio is defined as follows [25]:

δ =
PRX

PRCO
. (2)

The cross-polarization ratio is an important parameter used to quantify the target laser
scattering property and has been used in various applications to characterize various
targets [26].

3. Data Collection and Processing

The main objective of this study is to characterize the peak reflectance intensity from
the trees captured by the MAPL system toward species classification. To achieve this
objective, several steps need to be taken, starting with data collection and data preparation,
followed by data analysis, and, finally, the interpretation of the findings. A flowchart is
provided in Figure 2, detailing the steps of the proposed classification approach.
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3.1. Data Collection

The purpose of selecting individual trees was to ensure that trees with different
biophysical characteristics from a variety of representative forest groups were included.
The tree species selected for this study were grouped into coniferous trees (blue spruce,
ponderosa pine, and Austrian pine) and deciduous trees (ash and maple) based on their
leaf structure, crown shape, and crown size. Generally, coniferous species are a group of
plants with needle-like leaves and cone-shaped crowns. Whereas deciduous species are
broad-leaf trees that shed their leaves annually to save energy, and the crown is generally
more spherical in shape. These species are commonly found in eastern South Dakota.
There are large amounts of coniferous and deciduous trees and shrubs, including a range
of species native to the Mid-Eastern United States. The study sites are home to many
different tree species with varying canopy structures. The presence of individual trees
detected at each location in the study makes them suitable field sites for studying forest
parameters at the individual tree level. In general, canopy overlapping is not an issue in
field data collections, as the trees have been managed and are well-separated from each
other. Consequently, the collected MAPL waveform contains information on tree canopy
polarimetric scattering property, tree morphological structure, tree canopy size, etc.

All field data collections were carried out under clear weather conditions close to
midday. This is a data consistency measure in order to minimize such effects of tree diurnal
change and solar radiation change on the collected data. In addition, data collections
were carried out in July during the leaf-on season. Our interest is the tree canopy and how
canopy data can be used to discover different tree characteristics, and, potentially, tree stress
or health conditions. Further, meteorological data were collected using a tripod-mounted
weather station (Kestrel 4000 Pocket Weather Tracker). Wind speeds at each study site
were acquired from the same weather station. As wind is a potential factor in altering
the LiDAR waveform, all data collection was carried out with a wind speed of less than
3 mph. Field data were collected at various locations around the Brookings area in eastern
South Dakota. The distance between the trees and the MAPL system was maintained at
about 500 m. Before each tree measurement, a canvas tarp was set up close to the tree
as a calibration standard. The MAPL laser was first aimed at the canvas to collect the
calibration data; subsequently, it was aimed at the tree canopy for tree data collection. The
same procedures were carried out for all trees. In our case, the green laser is visible and the
near-infrared laser is collocated with the green laser by design, ensuring that the correct
target is measured.

3.2. Processing of LiDAR Waveform Data

A LabVIEW program was written to control the MAPL hardware and the data col-
lection [7]. It also displays the real-time waveform on the monitor. The output data were
stored and post-processed by MATLAB. The sampled LiDAR waveforms of an Austrian
Pine tree captured by the MAPL system are shown in Figure 3.

Data processing starts with radiometric calibration, range calibration, and then out-
lier removal. Firstly, radiometric calibration is achieved by using the canvas calibration
standard. As mentioned previously, the MAPL system measures the canvas calibration
standard before collecting any tree data [7]. A previous in-lab measurement of the canvas
revealed that the canvas has a reflectivity of 7.1% at GN and 11.8% at NIR, and a cross-
polarization ratio of 55% at GN and 65% at NIR, respectively. Four calibration constants
for the four MAPL channels are then calculated based on the field canvas data to make
sure that the field data agree with the in-lab measurement. And these constants are then
used to calibrate the subsequent tree data through rescaling. This radiometric calibration
ensures the tree data are consistent with the canvas standard. Therefore, any effect on the
data caused by noise such as laser output power variation can be removed. Secondly, as
the trees are not always the same distance away from the MAPL, a longer range will yield
a weaker signal return as shown in Equation (1). Therefore, range calibration is performed
to remove the effect of the range difference. This is carried out by normalizing all LiDAR
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data with respect to the range. In this case, the LiDAR return data are multiplied by the
range squared. Finally, during data collection, there may be many sources introducing
random noise into the data. Some noisy data are too far away from the mean and are
considered as outliers by using a three standard-deviation from the mean criterion for
each individual tree data. Any waveform with the peak value falling outside the three
standard-deviation range is removed from further data processing. In our case, the outlier
does not happen very often. Typically, there would be one outlier in several hundred
samples. After outlier removal, we have a total number of 2106 datasets from all trees, in
Table 1, which translates to a total of 8424 LiDAR waveforms. Table 1 also lists the number
of valid datasets for each tree species. As is revealed in Figure 3, the waveforms from
different channels are different, and so are the peak reflectance values. Therefore, in this
study, the peak reflectance values at dual wavelength and dual polarization were selected
as the feature for the subsequent classification.
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Table 1. The tree species and their corresponding number of datasets used in this study.

Tree Species Dataset

Blue Spruce 244
Ash 277

Ponderosa Pine 795
Austrian Pine 318

Maple 472
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4. Decision-Tree-Based ML Classification

Classification methods have wide applications in ML and data analysis. They provide
effective tools to categorize data into predefined classes or groups based on specific features
or attributes. Classification algorithms return predictions based on captured and processed
data. A decision tree is a type of predictive modeling algorithm, which uses the divide-and-
conquer strategy to obtain a hierarchical data structure. It is an effective nonparametric
method for classification and regression [27,28]. The decision tree method has been used in
LiDAR data classification. For instance, the LiDAR point cloud density and the standard
deviation of the intensity/elevation have been used to classify water and nonwater at
an Arctic region [29] or road boundaries for intelligent transportation [30]. Other efforts
involve the use of deep learning to classify trees using the point cloud [31]. Comprehensive
reviews on using ML for LiDAR data feature selection [32] and tree species classification
are also available [33]. However, as the MAPL data are unique with polarization and
full waveform information, the feature selection and classification are therefore different
from these in the literature. Essentially, the polarimetric scattering property of the target is
used for the classification in the case of MAPL data, instead of the commonly used LiDAR
point cloud.

4.1. Decision Tree Classification

In this study, the peak values of the LiDAR waveforms, as shown in Figure 3, were
first identified as the features/attributes. Then, a set of predefined tree class labels or
classifiers, in this case, blue spruce, ash, ponderosa pine, Austrian pine, and maple, were
assigned to each input data. Then, the decision tree algorithm assigns class labels using
a tree-like structure, in which each internal node represents a “test” on an attribute, each
branch represents the outcome of the test, and each leaf node represents a class label. The
paths from root to leaf represent classification rules which are used for the tree classification
analysis. The approach was validated using re-substitution validation and k-fold cross-
validation [34].

In order to directly view the relationships between different tree species and the tree
feature distribution within their respective groups, a scatter plot matrix is grouped together
to visualize the bi-variate relationships between the MAPL data. Figure 4 depicts the
scatter plot matrix of the peak reflectance intensity captured by the MAPL four channels
from five different tree species, where the blocks from left to right and from top to bottom
represent Ch1 to Ch4, respectively. A preliminary analysis of Figure 4 shows that the
maple data (green cross in the figure) are distinctly separated from other tree species.
This facilitates the accurate and fast identification of the maple tree. In contrast, other
species exhibit some degree of overlapping patterns in all plots and it will be more difficult
to classify.

The scatter plot of Ch1 vs. Ch2 is further provided in Figure 5, where the distribution
of the five tree species, each occupying a certain region within the plot to form a rough linear
relationship, is revealed. However, for other pairs of variables, no obvious correlation
is observed as the data are scattered throughout the plot area. To further analyze this
initial visual observation, the cross-channel correlation coefficients were calculated and
listed in Table 2. It is seen that the correlation coefficient of Ch1 and Ch2 is 0.9227 while
the correlation coefficients between other channels are much lower. The high positive
correlation between Ch1 and Ch2 is yet to be explained.

Table 2. Cross-channel correlation coefficients.

Ch1 Ch2 Ch3 Ch4

Ch1 1.0000 0.9227 0.3258 −0.4050
Ch2 0.9227 1.0000 0.3537 −0.4343
Ch3 0.3258 0.3537 1.0000 −0.3435
Ch4 −0.4050 −0.4343 −0.3435 1.0000
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After running the decision tree program, Figure 6 graphically demonstrates the species
decision-making process, where the nodes are numbered from 1 to 71. Moreover, x1 to
x4 represent peak intensity values from Ch1 to Ch4, respectively. As is seen, for example,
when x1 ≥ 99.14, the decision-making process for the maple species is determined in a first
step. The classification processes for other species are much more complex due to their
overlapping as demonstrated in Figures 4 and 5.
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Figure 6. Graphical description of the decision-making process.

The decision tree text description structure helps convey the same information revealed
in Figure 6 with enhanced readability by emphasizing the specific branches that lead to the
decision or evaluation, as is listed below in node order:

1. if x1 < 99.14 then node 2 elseif x1 ≥ 99.14 then node 3
2. if x3 < 45.17 then node 4 elseif x3 ≥ 45.17 then node 5
3. class = Maple
4. if x2 < 96.13 then node 6 elseif x2 ≥ 96.13 then node 7
5. if x4 < 24.86 then node 8 elseif x4 ≥ 24.86 then node 9
6. if x4 < 27.46 then node 10 elseif x4 ≥ 27.46 then node 11
7. if x4 < 26.16 then node 12 elseif x4 ≥ 26.16 then node 13
8. if x3 < 45.75 then node 14 elseif x3 ≥ 45.75 then node 15
9. if x4 < 27.46 then node 16 elseif x4 ≥ 27.46 then node 17
10. if x4 < 25.18 then node 18 elseif x4 ≥ 25.18 then node 19
11. if x2 < 83.74 then node 20 elseif x2 ≥ 83.74 then node 21
12. class = Blue Spruce
13. class = Ash
14. if x2 < 94.42 then node 22 elseif x2 ≥ 94.42 then node 23
15. if x1 < 93.03 then node 24 elseif x1 ≥ 93.03 then node 25
16. if x4 < 25.83 then node 26 elseif x4 ≥ 25.83 then node 27
17. if x2 < 81.60 then node 28 elseif x2 ≥ 81.60 then node 29
18. class = Austrian Pine
19. class = Ash
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20. class = Ash
21. class = Ponderosa Pine
22. class = Austrian Pine
23. if x1 < 92.15 then node 30 elseif x1 ≥ 92.15 then node 31
24. if x2 < 93.56 then node 32 elseif x2 ≥ 93.56 then node 33
25. if x2 < 92.71 then node 34 elseif x2 ≥ 92.71 then node 35
26. if x1 < 92.15 then node 36 elseif x1 ≥ 92.15 then node 37
27. if x4 < 27.13 then node 38 elseif x4 ≥ 27.13 then node 39
28. class = Ash
29. class = Ponderosa Pine
30. class = Austrian Pine
31. if x2 < 96.98 then node 40 elseif x2 ≥ 96.98 then node 41
32. if x1 < 91.28 then node 42 elseif x1 ≥ 91.28 then node 43
33. class = Ponderosa Pine
34. if x2 < 90.15 then node 44 elseif x2 ≥ 90.15 then node 45
35. class = Ponderosa Pine
36. class = Austrian Pine
37. if x3 < 45.75 then node 46 elseif x3 ≥ 45.75 then node 47
38. class = Ash
39. if x2 < 81.18 then node 48 elseif x2 ≥ 81.18 then node 49
40. if x1 < 94.77 then node 50 elseif x1 ≥ 94.77 then node 51
41. class = Ponderosa Pine
42. class = Austrian Pine
43. if x2 < 89.29 then node 52 elseif x2 ≥ 89.29 then node 53
44. class = Austrian Pine
45. class = Ponderosa Pine
46. if x1 < 93.90 then node 54 elseif x1 ≥ 93.90 then node 55
47. class = Ponderosa Pine
48. class = Ash
49. class = Ponderosa Pine
50. if x1 < 93.90 then node 56 elseif x1 ≥ 93.90 then node 57
51. class = Ponderosa Pine
52. class = Austrian Pine
53. if x2 < 91.86 then node 58 elseif x2 ≥ 91.86 then node 59
54. if x2 < 93.56 then node 60 elseif x2 ≥ 93.56 then node 61
55. class = Ponderosa Pine
56. if x1 < 93.03 then node 62 elseif x1 ≥ 93.03 then node 63
57. class = Ponderosa Pine
58. if x2 < 91.00 then node 64 elseif x2 ≥ 91.00 then node 65
59. class = Austrian Pine
60. class = Austrian Pine
61. class = Ponderosa Pine
62. if x4 < 24.53 then node 66 elseif x4 ≥ 24.53 then node 67
63. class = Austrian Pine
64. if x4 < 24.53 then node 68 elseif x4 ≥ 24.53 then node 69
65. class = Austrian Pine
66. class = Ponderosa Pine
67. if x2 < 95.27 then node 70 elseif x2 ≥ 95.27 then node 71
68. class = Ponderosa Pine
69. class = Austrian Pine
70. class = Austrian Pine
71. class = Ponderosa Pine



Electronics 2024, 13, 4534 11 of 14

4.2. Model Performance Evaluation and Validation

After building a classification tree, it is necessary to assess the capability of the model
in predicting newly observed data. A common approach is to calculate the re-substitution
error rate, which is the difference between the predicted species classes and the actual
species classes in the training dataset. This can be used as an initial estimate of the model’s
performance. To calculate the re-substitution error rate, the steps are as follows:

i. Fit the Decision Tree Model: Train the decision tree model using the training samples
(in this case, a total of 2106 × 4 = 8424 waveforms), which include features and
corresponding labels.

ii. Make Predictions: Use the trained decision tree model to make predictions on the
training datasets. Each dataset in the training dataset will be classified into a specific
class by the decision tree model.

iii. Compare Predictions with Actual Labels: The misclassification rate is the rate of
incorrectly classified instances in the training dataset.

iv. Calculate the Re-substitution Error Rate [34]:

Re_substitution Error Rate =
Number of Misclassified instances

Total Number of Instances
× 100%. (3)

In this study, the re-substitution error of the model was calculated to be 0.0323 (i.e.,
3.23%). A low re-substitution error value indicates that the classification tree accurately
classifies the data.

In order to further assess the prediction accuracy of the decision tree, a k-fold cross-
validation algorithm is adopted. The process partitions the datasets into k equal-sized folds,
where k − 1 folds are used for training and the remaining one-fold is used for testing. The
process will iterate k times; therefore, all data are tested. In this study, k = 10 is selected to
partition the 8424 waveforms. Usually, k value should be ≥5, ensuring that the training
process has enough samples. However, if the k value is too large, it will lead to less variance
across the training set. Consequently, k = 10 is a good trade-off in our case to achieve
high accuracy and better generalization and predictability. The model was trained and
evaluated in k iterations, with each iteration using a different fold (e.g., the ith fold, where
i = 1, 2, . . ., k) as the validation set while using the remaining folds (k − 1 folds) as the
training set. The results of each iteration were then averaged to produce a comprehensive
performance estimation. The average performance metric was used to compare and select
the best model among different algorithms or hyperparameter configurations. The most
common way of calculating the k-fold cross-validation error is to use the mean squared
error (MSE) [34]

MSE =
1
n∑ (yi − f (xi ))

2, (4)

where n is the total number of the datasets, yi is the actual labeled response value of the ith
observation, and f (xi) is the prediction value of the ith observation.

Unlike the re-substitution error, this approach can reliably estimate the predictive
accuracy of the resulting tree species because it tests the new trees with new and unknown
data. In this study, the calculated cross-validation loss error is 0.0503 (i.e., 5.03%). The low
error value suggests that the model performs well.

5. Discussions

Many factors affect the overall accuracy of the MAPL system. Radiometric calibration
is a key factor as it rescales data from all four channels. The canvas tarp proves to be
a reasonably good calibration standard. Although care was taken to make sure that the
canvas surface remains intact during field campaigns, the folding of the canvas, dirt and
dust getting on the canvas, aging of the tarp, etc. are all factors which may potentially
affecting measurement accuracy [35]. There are many noise sources that introduce random
noise into the signal during field measurement. For example, it was discovered that the
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field power source, a portable gas generator (Honda EG2200 series with a power output
of 2.2 kW), was one source of noise. Cleaner power tends to produce better signals, and,
hence, may improve classification accuracy.

On the other hand, exploring other ML approaches needs to be considered for fur-
ther vegetation classification research, especially unsupervised learning approaches. For
instance, clustering, one of the unsupervised ML methods, involves identifying groups
of data based on the proximity between elements/measurements. Proximity can refer to
either similarity or dissimilarity. Therefore, the classification of data groups depends on
how similarity or dissimilarity is defined. Clustering algorithms group elements based on
the mutual distances between them, where membership in a particular set is determined
by the proximity of an element to other members of the same set. Recent developments on
DL and image-based NNs provide alternative options for classification efforts.

Upon careful inspection of the subplots in Figure 4, it is difficult to identify the tree
species category with high accuracy and easy pathways, because the profiles and responses
of several tree species are very similar, resulting in overlapping responses. Instead, it may
be easier to cluster the tree species into coniferous or deciduous tree types. Otherwise, in
future studies, more tree features (such as adding the width of the captured signal pulse, or
even the entire signal pulse profile/image) can be selected for classification or clustering to
improve accuracy and robustness.

In summary, future research should prioritize enhancing radiometric calibration by
utilizing a more reliable calibration standard rather than a commercial canvas tarp. Ad-
ditionally, a more efficient power regulator may reduce power noise. It is also helpful to
collect more tree data and investigate additional features to improve our understanding
of the classification process. Most importantly, a comprehensive theoretical framework
for laser polarimetric scattering in tree canopies has yet to be developed. Establishing
such a theory would significantly advance our understanding of LiDAR signal generation
and facilitate the design of more effective classification strategies. Furthermore, other ML
methods such as clustering, DL, and image-based NNs should be explored. These new
methods may provide fresh insights into the MAPL data and the classification process as
well. Finally, the MAPL system, when fused with other imaging sensor data, can deliver
augmented reality such as Simultaneous Localization and Mapping (SLAM) and Bird’s
Eye View (BEV) [25,36]. Recently, much LiDAR-based multi-sensor fusion SLAM research
has emerged to make it more stable and accurate. Latest advancements include more
complex systems integrated with multiple sensors, more sophisticated fusion algorithms
using optimization, and more robust error reduction using tightly coupled complete graph-
ical models. In addition, the unique polarimetric capability of the MAPL provides extra
information and enables target characterization beyond shape and distance. For instance, if
a cylindrical object is detected, polarimetric data can be used to identify whether the object
is made of wood, stone, or metal.

6. Conclusions

The MAPL system provides a unique opportunity for vegetation and forest remote
sensing. With its dual-wavelength, dual-polarization, and full waveform capabilities, it
is still the only such system available for vegetation research. In this study, tree species
classification was successfully performed using a decision-tree-based ML method. The
approach is accurate and effective. The following key conclusions have been drawn:

• Polarimetric measurement has been proven to be an effective method for target detec-
tion. Polarimetric diversity enhances measurement and provides more information on
target characterization.

• The MAPL peak reflectance intensity data, at dual wavelength and dual polarization,
is an effective and simple feature for classification purposes.

• The decision tree algorithm proves to be effective in this case as suggested by the
re-substitution error and the k-fold cross-validation loss error.
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• The method developed in this study can be extended to new data and other vegetation
classification applications.
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