
Citation: Lin, Y.; Endo, Y.; Lee, J.;

Kamijo, S. Neural Architecture Search

via Trainless Pruning Algorithm: A

Bayesian Evaluation of a Network

with Multiple Indicators. Electronics

2024, 13, 4547. https://doi.org/

10.3390/electronics13224547

Academic Editor: Luca Patanè

Received: 30 September 2024

Revised: 11 November 2024

Accepted: 14 November 2024

Published: 19 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Neural Architecture Search via Trainless Pruning Algorithm:
A Bayesian Evaluation of a Network with Multiple Indicators
Yiqi Lin * , Yuki Endo , Jinho Lee and Shunsuke Kamijo

Graduate School of Information Science and Technology, The University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8902, Japan; endou@kmj.iis.u-tokyo.ac.jp (Y.E.); leejinho@kmj.iis.u-tokyo.ac.jp (J.L.);
kamijo@iis.u-tokyo.ac.jp (S.K.)
* Correspondence: linyiqi@kmj.iis.u-tokyo.ac.jp

Abstract: Neural Architecture Search (NAS) has found applications in various areas of computer
vision, including image recognition and object detection. An increasing number of algorithms, such
as ENAS (Efficient Neural Architecture Search via Parameter Sharing) and DARTS (Differentiable
Architecture Search), have been applied to NAS. Nevertheless, the current Training-free NAS methods
continue to exhibit unreliability and inefficiency. This paper introduces a training-free prune-based
algorithm called TTNAS (True-Skill Training-Free Neural Architecture Search), which utilizes a
Bayesian method (true-skill algorithm) to combine multiple indicators for evaluating neural networks
across different datasets. The algorithm demonstrates highly competitive accuracy and efficiency
compared to state-of-the-art approaches on various datasets. Specifically, it achieves 93.90% accuracy
on CIFAR-10, 71.91% accuracy on CIFAR-100, and 44.96% accuracy on ImageNet 16-120, using
1466 GPU seconds in NAS-Bench-201. Additionally, the algorithm exhibits improved adaptation to
other datasets and tasks.

Keywords: neural architecture search; training free; prune-based search

1. Introduction

Convolutional Neural Networks (CNNs) have played a pivotal role in driving forward
the field of computer vision, leading to notable advancements and breakthroughs. Despite
their transformative impact, the design of architectures tailored to specific computer vision
tasks continues to be a labor-intensive process that is heavily reliant on human expertise.
Despite the paradigm shift from traditional feature engineering to architecture design,
the process remains complex and time-consuming, necessitating a deep understanding
of domain-specific knowledge. While advancements have made the design process more
accessible, achieving effective model architectures still requires significant investments in
time and expertise.

Neural Architecture Search (NAS) aims to automate the design process by leverag-
ing techniques such as reinforcement learning or evolutionary algorithms to explore the
vast space of potential neural architectures. However, current methods often encounter
inefficiencies, particularly when dealing with intricate cell-based search spaces. Conven-
tional NAS methods, such as ENAS [1] and DARTS [2], typically involve training neural
networks to evaluate their performance; a process that is time-consuming. Conversely,
existing training-free NAS methods, like TTNAS [3], face challenges in finding an effective
approach to precisely evaluate the performance of neural networks. To address these issues,
our focus is on enhancing the efficiency of NAS through two key avenues: refining the
evaluation methodology for neural networks and managing the size of the search space.

A central challenge lies in how to evaluate the performance of neural networks in ex-
isting NAS methods. This necessitates the definition of an objective function that delineates
desirable architectural characteristics. Moreover, establishing metrics that effectively guide
the search process towards superior architectures is pivotal.

Electronics 2024, 13, 4547. https://doi.org/10.3390/electronics13224547 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13224547
https://doi.org/10.3390/electronics13224547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0006-7628-4283
https://orcid.org/0000-0002-9452-5339
https://doi.org/10.3390/electronics13224547
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13224547?type=check_update&version=1

Electronics 2024, 13, 4547 2 of 20

In this paper, we introduce three primary contributions. Firstly, we present a novel
pruning-based method designed to reduce the sampling space, thereby improving the
efficiency of NAS. Secondly, we propose two key indicators for evaluating architectural
quality: the spectrum of Neural Tangent Kernels (NTKs) [4–6] and the quantification of
linear regions within the input space. We systematically incorporate these theoretically
motivated indicators into an objective function that is tailored for assessing architectural
quality. Furthermore, anticipating the need for additional evaluation metrics, we provide an
alternative framework that is capable of accommodating three or more indicators seamlessly.

2. Related Work and Background
2.1. Reinforcement Learning-Based Neural Architecture Search

Automated neural architecture search [7] has witnessed significant advancements
with the advent of Reinforcement Learning (RL)-based methodologies. RL-NAS lever-
ages reinforcement learning algorithms to automate the process of discovering optimal
neural architectures.

Early approaches in RL-NAS focused on training RL agents to sequentially select
architectural components or operations. Techniques like policy gradient methods and
Trust Region Policy Optimization (TRPO) [8] have been employed to efficiently explore the
architectural search space.

Recent developments in RL-NAS have addressed challenges related to sample effi-
ciency and scalability. Techniques like Population-Based Training (PBT) [9] and Evolu-
tionary Strategies (ES) [10] have been integrated into RL-NAS frameworks to enhance
convergence speed and solution quality.

RL-NAS offers a principled framework or automating neural architecture search,
leveraging reinforcement learning techniques. Additionally, RL-NAS methodologies can
efficiently explore large architectural spaces and discover novel configurations. However,
RL-NAS approaches also show some disadvantages. RL-NAS approaches may suffer
from high computational costs and training times, especially for complex search spaces.
Additionally, their performance heavily depends on the choice of exploration strategies
and hyperparameters, which means these requires careful tuning.

2.2. Differentiable Neural Architecture Search

Differentiable Neural Architecture Search (NAS) has emerged as a promising alterna-
tive to traditional RL-NAS methods. Differentiable NAS employs gradient-based optimiza-
tion techniques to directly search for optimal architectures within a continuous space.

Early works in differentiable NAS introduced techniques like Differentiable Architec-
ture Search (DARTS) [2], which enables efficient exploration of architectural configurations
by formulating decisions as differentiable operations.

Recent research in differentiable NAS has focused on refining optimization strate-
gies and architectural representations. Techniques like Neural Architecture Optimization
(NAO) [11] have explored novel approaches to gradient-based optimization, leading to
improved search efficiency.

Differentiable NAS methods have many merits. For example, Differentiable NAS
offers a principled and efficient approach to automating neural architecture search through
gradient-based optimization. And, seamless integration with existing deep learning frame-
works and optimization tools simplifies implementation and experimentation. However,
its limitations in representing complex architectural configurations within a continuous
space may lead to suboptimal solutions. In addition, the performance depends on the
choice of optimization algorithms and architectural parameterizations. Scalability issues
may also arise when dealing with large and complex search spaces.

2.3. Training-Free NAS

Training-free Neural Architecture Search (NAS) represents a novel approach to au-
tomated model design that eliminates the need for training neural networks during the

Electronics 2024, 13, 4547 3 of 20

search process. Instead, training-free NAS focuses on directly evaluating architectural
candidates using proxy metrics.

Early work in training-free NAS introduced techniques like Neural Architecture Eval-
uation (NAE), which utilizes surrogate models to estimate the performance of architectural
candidates without actual training.

Recent advancements in training-free NAS have focused on improving evaluation meth-
ods and scalability. Techniques like training-free neural architecture search (TE-NAS) [3] try
to adopt two performance indicators to evaluate the quality of neural architectures.

Training-free NAS methods show many advantages compared with other NAS meth-
ods. Training-free NAS eliminates the need for time-consuming and resource-intensive
training of neural networks during the search process. Additionally, evaluation methods
can be optimized for efficiency, allowing for rapid exploration of architectural spaces.

Conversely, existing training-free NAS methods face numerous limitations. For ex-
ample, their evaluation methods may not match the accuracy of actual training, resulting
in suboptimal solutions. Furthermore, the proxy metrics used for evaluation might not
fully encompass the performance potential of architectural candidates. Additionally, these
methods exhibit limited flexibility in exploring various architectural configurations com-
pared to those that incorporate training. Moreover, when confronted with other datasets
or tasks, such as segmentation, existing training-free NAS methods demonstrate a lack of
adaptability. This is primarily because these methods heavily depend on their evaluation
methods, which are specifically designed for image classification. Consequently, when
applied to different tasks, they experience significant inaccuracies and incur substantial
additional pretraining costs.

In this paper, we introduce novel training-free NAS methods aimed at addressing
limitations observed in existing approaches. We employ two performance indicators and
propose an enhanced evaluation method characterized by improved accuracy and greater
flexibility in exploring a wide range of architectural configurations.

2.4. Rating Algorithm

There are numerous rating algorithms available, with TrueSkill [12] and the ELO
algorithms being among the most widely used for ranking and matchmaking in competitive
environments. Each of these algorithms possesses distinct characteristics, along with their
own set of advantages and disadvantages.

The ELO system stands as a widely adopted algorithm for ranking players’ skill levels
in competitive games, notably in chess. It assigns a numerical rating to each player and
adjusts these ratings after every match based on the outcome and the rating disparity
between opponents.

While the ELO system boasts simplicity, widespread adoption, and stability, it exhibits
limitations in flexibility. It may struggle to accommodate intricate game formats and player
skill distributions, thereby restricting its utility in certain contexts. Moreover, the ELO
system does not explicitly account for uncertainty or volatility in player ratings, which can
potentially result in inaccurate rankings within dynamic environments.

Another prominent rating algorithm is the TrueSkill algorithm, a Bayesian extension
of the ELO system developed by Microsoft Research for ranking and matchmaking in
online gaming platforms. TrueSkill incorporates prior knowledge about player skills and
incorporates uncertainty estimation into the ranking process, thereby yielding more precise
and robust rankings compared to traditional ELO-based approaches.

In contrast to the ELO system, TrueSkill offers several advantages. It leverages a
Bayesian framework to model uncertainty and volatility in player ratings, culminating
in more precise and dependable rankings. Furthermore, TrueSkill exhibits versatility in
handling diverse game formats and player skill distributions, rendering it suitable for a
broad spectrum of competitive environments. Additionally, TrueSkill dynamically updates
player ratings based on match outcomes and uncertainty estimates, facilitating adaptive
ranking adjustments over time.

Electronics 2024, 13, 4547 4 of 20

3. Methods

In this section, we utilize the TrueSkill algorithm to refine the evaluation function for
assessing network performance. Initially, within the TrueSkill component, we initiate the
process by descending along the gray arrow to update the prior probability, as shown in
Figure 1. This involves pitting two distinct networks against each other in a competitive
scenario. With a priori knowledge regarding the performance of each network, we employ
this information to predict the outcome of the competition. Subsequently, by juxtaposing the
predicted outcome with the observed result, we iteratively update the posterior probability
along the orange arrow. This refined posterior probability is then employed to adjust the
weighting of the two indicators within the evaluation function.

Figure 1. Pipeline: the left part is an algorithm to the evaluate child networks’ performance; the
right part is the procedure of the main algorithm. “N” represents the Gaussian distribution, “s”
signifies skill, “p” denotes performance, representing actual performance, “d” implies difference,
indicating the performance gap between the two parties in competition, and “r” stands for the
competing result. Each iteration involves evaluating the performance of the current network without
incorporating a specific operation oj, followed by pruning the least-significant operator on each edge.
This process continues until we obtain a single-path network that represents the optimal neural
network configuration.

Following the TrueSkill refinement, we proceed to execute the pruning algorithm
aimed at identifying the optimal single-path network structure. Initially, we initialize the
process with a super-network N0, comprising all possible edges and operations. Subse-
quently, leveraging the evaluation function, we compute the significance of each operation
oj and systematically prune the operation with the lowest significance. This iterative
pruning process continues until the network converges to a single-path configuration.

Electronics 2024, 13, 4547 5 of 20

3.1. Training-Free Pruning-Based Architecture Search Algorithm

The primary challenge encountered by the majority of Neural Architecture Search
(NAS) methods is substantial training costs involved. To illustrate, envision a network
comprised of recurrently structured Directed Acyclic Graph (DAG) cells, with each cell
containing a set of E edges. Furthermore, suppose that each edge offers a choice of |O|
distinct candidate operations. In such a scenario, the entirety of the search space would
expand exponentially to |O|E. Even if we employ sampling techniques to explore a fraction
of this vast search space, represented by a sampling ratio denoted as γ, the training
burden remains formidable. Specifically, to achieve the optimal performance network,
one would still need to train approximately γ|O|E distinct architectures. Consequently,
the computational demands associated with training such a multitude of architectures pose
a significant obstacle in the NAS process.

If a method could be devised to narrow down the search space to |O| · E, the associated
searching costs would be notably mitigated, particularly when dealing with extensive
search spaces. Additionally, if we could circumvent the necessity of utilizing training
results from neural architectures, opting instead for a training-free evaluation method to
assess their performance, further savings in computational costs could be achieved.

Moreover, by restricting the exploration to a reduced search space, represented by
|O| · E, the computational burden of exploring myriad architectural configurations would
be considerably alleviated. This reduction in search space not only enhances efficiency
but also streamlines the process of identifying optimal architectures within large-scale
search landscapes. Furthermore, the adoption of training-free evaluation methods obviates
the need for extensive training iterations, thus significantly reducing the computational
overhead associated with training numerous architectures. Consequently, the integration
of such methodologies holds the potential to revolutionize the efficiency and scalability of
NAS paradigms, facilitating more expedient and cost-effective exploration of architectural
design spaces.

In the subsequent sections, we propose a training-free methodology aimed at en-
hancing the efficiency of conventional NAS approaches. Our approach entails several key
steps. Firstly, we endeavor to identify pertinent indicators that are capable of effectively
evaluating the quality of the child architectures. These indicators serve as crucial metrics
for assessing the performance and efficacy of different architectural configurations. Sub-
sequently, we strive to develop a methodology for effectively balancing these indicators
and integrating them cohesively to guide the architecture search process. This involves
devising a robust framework for incorporating multiple indicators into the search process,
ensuring comprehensive evaluation and optimization of architectural designs. Finally,
we introduce a holistic training-free algorithm centered around the concept of pruning,
leveraging the identified indicators to inform the pruning process. By integrating these
indicators into the pruning algorithm, we aim to refine the search space and expedite the
identification of optimal architectural configurations. Through this systematic approach,
we seek to streamline the NAS process and mitigate the computational costs associated
with traditional training-based methodologies.

3.2. Evaluation of Quality of Child Architectures

In recent research, numerous facets of neural architectures have undergone scrutiny
to assess their performance. In our study, we have identified and selected two pivotal
indicators to steer our architecture search process: trainability and expressivity. These
indicators have been chosen based on their significance in characterizing the effectiveness
and efficiency of neural architectures. By focusing on these specific aspects, we aim to
develop a comprehensive understanding of architectural design principles and optimize
the search process accordingly.

Electronics 2024, 13, 4547 6 of 20

3.2.1. Trainability of Neural Architecture

The ability of a neural network to be optimized using gradient descent [13–15] is
known as its trainability. Lechao et al. (2019) [16] examined the relationship between
the conditioning of the trainable parameters and the trainability of wide networks in
their research.

In the finite width NTK, the kernel function is defined as the product of the transpose
of the Jacobian of the output of the last layer evaluated at point x, with the Jacobian of the
output of the last layer evaluated at point x’. The Jacobian is defined as the derivative of
the output of the i-th neuron in the last output layer with respect to the parameter θα, and
it is denoted as Jiα(x).

Lechao et al. [16] defined the relationship between the conditioning of the trainable
parameters and the trainability of networks as follows:

µt(Xtrain)i = (I − e−ηλit)Ytrain,i (1)

the training process can be represented by Equation (1), where µt(Xtrain)i is the training
output, I is the identity matrix, e−ηλit is the exponential function, η is the learning rate,
and Ytrain,i is the trainable parameter. The eigenvalues λi of Θ̂train are used in this equation,
and it is hypothesized that the maximum feasible learning rate scales as η ∼ 2

λ0
, where λ0

is the largest eigenvalue. When this scaling is plugged into Equation (1), it can be observed
that the smallest eigenvalue will converge at a rate given by 1/KN , where

KN = λ0/λm (2)

is the condition number. Therefore, if the condition number of NTK associated with a
neural network increases, it will become untrainable, and the condition number is used as
a metric for trainability.

It has been observed that when neural networks have large depths, the spectrum of
the trainable parameters, Θ(Xtrain ,Ytrain)

, typically has one large eigenvalue, λmax, followed
by a gap that is much larger than the rest of the spectrum. The condition number of the
NTK, KN , is defined as the ratio of the largest eigenvalue to the smallest eigenvalue of a
specific neural network N , as shown in Equation (2). This value can be calculated without
any gradient descent or labels. The correlation between the condition number of NTK, KN ,
and the test accuracy of architectures in NAS-Bench-201 has been found to be negative,
with a Kendall-tau correlation of −0.42, which suggests that minimizing KN could lead to
finding neural architectures with high performance.

3.2.2. Expressivity by Number of Linear Regions

To ensure a balanced approach in selecting operations for neural architectures, we
propose a new evaluation criterion called Expressivity. This criterion is intended to be used
in architecture search to complement other evaluation metrics.

Expressivity of a neural network measures its capability to represent complex func-
tions [17,18]. We adopt the approach proposed by Xiong et al. (2020) [19] to evaluate the
expressivity of a neural network, which is based on the number of linear regions that a ReLU
network can separate. According to Xiong et al. (2020) [19], the expressivity is evaluated by
counting the activation patterns and linear regions, which is defined as follows:

Let N be a ReLU CNN with L hidden convolutional layers. An activation pattern of
N is a function P that maps the set of neurons to 1,–1, meaning that for each neuron z in N ,
we have P(N) ∈ 1,−1. Given a fixed set of parameters θ in N and an activation pattern P,
we define the region corresponding to P and θ as follows:

R(P; θ) = {X0 ∈ Rn(1)
0 ×n(2)

0 ×d0 :

z(X0; θ) · P(z) > 0,

∀z a neuron in N}

(3)

Electronics 2024, 13, 4547 7 of 20

where z(X0; θ) is the pre-activation of a neuron z. A linear region of N at θ is defined as a
non-empty set R(P; θ) ̸= ∅ for some activation pattern P. The number of linear regions of
N at θ is represented as follows:

RN ,θ = {#RP,θ : RP,θ ̸= ∅ f or activation P} (4)

Furthermore, we define the RN ,θ as shown in Equation (4) when θ ranges over
R(#weights+#bias).

From Equation (3) we can deduce that the number of linear regions RN ,θ reflects the
number of distinct activation patterns that the network can separate. We approximate the
expected value of RN by calculating its average:

R̂ ∼ Eθ [RN ,θ] (5)

where R̂ is an approximation of the expected value of the number of linear regions, and Eθ

denotes the expectation over the distribution of parameters θ.
The results of an experiment conducted by Chen et al. [3] showed that there is a

positive correlation between the number of linear regions and the test accuracy of neu-
ral architectures, as reflected by a Kendall-tau correlation of 0.5. Therefore, it can be
inferred that maximizing the number of linear regions can lead to finding architectures
with high performance.

3.2.3. Defining the Importance

As demonstrated above, KN and R̂N serve as two key indicators for assessing the
quality of a neural architecture. KN exhibits a negative correlation with the architecture’s
test accuracy, whereas R̂N demonstrates a positive correlation with the architecture’s test
accuracy. However, in order to ascertain which operation to prune in each iteration, it
becomes imperative to devise a method for amalgamating these two indicators into a
unified function. This amalgamation will facilitate informed decision-making during the
pruning process, enabling the identification of optimal architectural configurations.

3.2.4. Performance Estimation

We can clearly see that KN and R̂N favor different operations on NAS-Bench-201,
which is shown in Figure 2. They both employ conv3 × 3 with a large ratio, but KN favors
the skip-connect operation compared with the conv1 × 1 operation, while R̂N favors the
conv1 × 1 operation with a much higher ratio compared with the skip-connect operation.
Then, if there is a conflict where an operation that R̂N favors is not what KN favors, how
can we determine which operation should be pruned?

Chen et al. (2021) [3] made a rough trade-off that they directly attributed to using the
two relative rankings of ∆Kt,oj and ∆R̂t,oj as the selection criterion. More specifically, they
sorted the ∆Kt,oj in descending order and ∆R̂t,oj in ascending order. The higher the ∆Kt,oj

value, the more likely they would prune oj, and the lower the ∆R̂t,oj value, the more likely
they would prune oj. They pruned the operation with the lowest sum rank of ∆Kt,oj and
∆R̂t,oj . This indeed works in some specific cases, but this algorithm ignores two important
facts: (1) trainability may be not as important as expressivity; and (2) the preferences of
∆Kt,oj and ∆R̂t,oj may be different on different types of datasets; for example, a neural
network that performs well on an image dataset may not provide a good neural architecture
if trained with words.

We assume that KN and R̂N have different importance coefficients based on the
quality of the neural architecture. λK and λR can be seen as the importance of KN and R̂N
to the performance of a neural network. Given the importance of KN and R̂N , we simplify
the combined function as follows:

FN = λKKN + λRR̂N (6)

Electronics 2024, 13, 4547 8 of 20

We use FN to estimate the quality of N .
Understanding Equation (6) entails consideration of a neural architecture N0 that is

composed of multiple candidate operations on edges. If we prune one operation oj from
N0, we use ∆Foj to represent the variation in N0’s estimate quality. The estimation of N0 is
related to two indicators: KN and R̂N . Then, we can use a 2D plane to show the estimation
state of N0 in Figure 3.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

zer
o

ski
p-c

on
ne

ct

co
nv

 1*
1

co
nv

 3*
3

av
g_

po
ol

3*
3

condition number of NTK

number of linear regions

Figure 2. The distribution of the preferences of KN and RN (conducted by TE-NAS [3]). KN and RN
favor different operations on NAS-Bench-201.

Figure 3. Training phase elaboration: The algorithm starts with super-network N0, then it is optimized

under the vector sum of λK

−−→
∂Foj
∂Kt,oj

and λR

−−→
∂Foj

∂R̂t,oj
. λK and λR are obtained from Algorithm 1. Iteratively,

the stop point Nt will approach the best performance point.

Electronics 2024, 13, 4547 9 of 20

Let us write a total derivative of ∆Foj as follows:

−−→
∆Foj = λK · (∆Kt,oj ·

−−−→
∂Foj

∂Kt,oj

) + λR · (∆R̂t,oj ·
−−−→
∂Foj

∂R̂t,oj

) (7)

−−→
∂Foj

∂Kt,oj
and

−−→
∂Foj

∂R̂t,oj
are two independent unit vectors pointing in two directions. Since we

do not know the scale of each direction, we use two parameters λK and λR to estimate
them. The closer λK and λR are to their ground truth, the less bias we would suffer during
the process of pruning the candidate operations.

We consider two neural architectures, N and N ′, which have at least one different
operation on the same edge. We can use the combined function FN to evaluate the quality
of N and N ′ based on our current priori estimation of λK and λR as follows:

FN = λKKN + λRR̂N

FN ′ = λKKN ′ + λRR̂N ′
(8)

3.2.5. Update the Importance

We initiate a competitive scenario wherein two neural architectures engage in a head-
to-head comparison to ascertain the alignment between their actual performance and our
current estimation. Subsequently, we leverage the outcome of this competition to iteratively
refine and update our estimation in a reverse manner. This iterative process enables us
to validate the accuracy of our initial estimation by directly observing the comparative
performance of the competing architectures. Through this feedback loop, we continually
enhance the precision and reliability of our estimations, ensuring they remain reflective
of the practical performance exhibited by the neural architectures. If FN > FN ′ , then
we could deduce that N should perform better than N ′. We simplify the inequation
FN > FN ′ as follows:

(λKKN + λRR̂N)−
(λKKN ′ + λRR̂N ′) > 0

(9)

λK(KN −KN ′) > −λR(R̂N − R̂N ′) (10)

According to Inequation (10), comparing λK(KN − KN ′) and −λR(R̂N − R̂N ′) is
equivalent to comparing FN and FN ′ , which means we can use the competence result to
update λK and λR, where (KN −KN ′) and −(R̂N − R̂N ′) can be calculated as constants
in each competence. By making them compete with each other multiple times, we could
determine their importance more precisely. We propose a new method to combine KN
and R̂N with their importance λK and λR by applying the TrueSkill algorithm given in
Algorithm 1.

In Algorithm 1, β is a constant value used to measure the instability of the performance
of two competitors, and v and w are the additive and multiplicative correction terms for
the mean and variance of a (doubly) truncated Gaussian, respectively. This is shown as
follows:

V1|·|>ϵ(t, ϵ) :=
N(t − ϵ)

Φ(t − ϵ)
(11)

W1|·|>ϵ(t, ϵ) := V2
1|·|>ϵ

+
(ϵ − t) · N(ϵ − t) + (ϵ + t) · N(ϵ + t)

Φ(ϵ − t)− Φ(ϵ + t)

(12)

While the ELO algorithm remains a widely adopted method for evaluating performance,
we have opted to employ the TrueSkill algorithm in our approach for several reasons:

• TrueSkill can handle fair status.

Electronics 2024, 13, 4547 10 of 20

• TrueSkill can handle multi-player situations; although two factors are taken into
consideration, we may use more factors in the future.

• TrueSkill has a rigorous theory foundation.
• TrueSkill converges faster than ELO.
• TrueSkill requires little fine-tuning of hyperparameters.

Algorithm 1 Measurement of KN and R̂N
Input: Begin with two different neural architectures N1 and N2, current estimation

λK, σK, λR, σR, for importance of KN and R̂N
Initialization:

r1 = get_accuracy(N1);
r2 = get_accuracy(N2);
r = sign(r1 − r2);
if r == 1 then N1 wins, others N2 wins Let µ1 = λK(KN1 −KN2), µ2 = λR(RN2 − RN1),
σ1 = σK, σ2 = σR

Based on the competing result r, update µ1 and µ2 as:

µwinner + =
σ2

winner
c · v(µwinner−µloser

c , ε
c)

µloser − =
σ2

loser
c · v(µwinner−µloser

c , ε
c)

σ2
winner ∗ = [1 − σ2

winner
c2 · w(µwinner−µloser

c , ε
c)]

σ2
loser ∗ = [1 − σ2

loser
c2 · w(µwinner−µloser

c , ε
c)]

update λK, σK, λRσR as:
λK = µ1

KN1
−KN2

λR = µ2
RN2

−RN1
σK = σ1
σR = σ2
c2 = 2β2 + σ2

winner + σ2
loser

return λK, σK, λR, σR
−get_accuracy(N) : train the neural architecture N with the dataset and return the final
test accuracy.

3.2.6. Pruning Network

Traditional network pruning typically requires pre-trained weights and specific strate-
gies to ensure successful learning of the pruned structure. However, recent advancements
in pruning-from-scratch, as demonstrated in works such as [20,21], have shown that the
structure of pruned models can be directly learned from randomly initialized weights
without sacrificing performance. This breakthrough enables network pruning without the
need for pre-trained weights, streamlining the pruning process and reducing dependencies
on external resources.

Inspired by the prune-from-scratch approach, we extend our methodology to propose
a pruning-operation-by-importance NAS method aimed at reducing the search space and
enhancing search efficiency. In our approach, we iteratively prune one candidate operation
with the least importance on each edge in a single round. This strategy effectively reduces
the algorithmic complexity from |O|E to |O| · E. We encapsulate our training-free and
pruning-based algorithm, referred to as TTNAS, in Algorithm 2. This algorithmic frame-
work streamlines the search process and facilitates efficient exploration of architectural
configurations, leading to improved performance and computational efficiency.

In Algorithm 2, we start with a super-network N0 stacked by multiple repeated
cells [22], which is composed of all possible edges and candidate operations. In each outer
loop, we prune one operation with the least importance to the whole architecture Nt on
each edge until Nt is a single-path network. In the inner loop, we calculate the change
in KN and R̂N before and after pruning each candidate operation, and we evaluate its

Electronics 2024, 13, 4547 11 of 20

importance with ∆Foj , and prune the candidate operation with the lowest importance on
each edge.

Algorithm 2 Training-free TrueSkill NAS
Input: λK,λR, super-network N0 stacked by cells, each cell has E edges, each edge has |O|

candidate operations
Initialization: step t = 0
1: while Nt is not a single-path network do
2: for each operation oj in Nt do
3: ∆Kt,oj = −(KNt −KNt\oj)

4: ∆R̂t,oj = −(RNt − RNt\oj)

5: end for
6: ∆Foj = λK · ∆Kt,oj + λR · ∆R̂t,oj
7: Nt+1 = Nt
8: for each edge ei, i = 1, . . . , E do
9: j∗ = argminj{∆Foj : oj ∈ ei}

10: Nt+1 = Nt+1\oj∗

11: end for
12: t = t + 1
13: end while
14: return pruned single-path network Nt

The entire pruning process exhibits exceptional speed and efficiency. As we will
illustrate in subsequent sections, our approach is methodical and adaptable, requiring
minimal modifications for application across diverse architectural spaces and datasets.
The prune-operation-by-importance mechanism employed in our methodology can be
seamlessly extended beyond the indicators KN and R̂N . This extension holds promise for
incorporating additional indicators or network properties, thereby enhancing the versatility
and applicability of our approach in various contexts. Furthermore, the scalability of our
methodology ensures its effectiveness across different domains and datasets, underscoring
its potential as a robust solution for efficient neural architecture refinement.

3.3. TTNAS with Multiple Indicators

In this section, we introduce an indicator for evaluating the performance of neural
architectures, namely discriminability. This section is structured as follows: First, we will
elucidate the concept of discriminability in the context of neural networks and detail the
methodology for calculating this metric. Following this, we will explore how the TrueSkill
algorithm can be employed to ascertain the relative importance of discriminability within
the evaluation framework. We will then discuss how to integrate discriminability with
existing indicators to provide a comprehensive assessment of neural network performance.
Lastly, we will outline how the prune-based search strategy of the training-free TrueSkill
NAS can be adapted to incorporate this new evaluation method, thereby enhancing the
search process for optimal network architectures.

3.3.1. Introduction to Discriminability

Discriminability, within the context of neural network performance evaluation, per-
tains to the capability of a network to differentiate between distinct classes or inputs with a
high degree of accuracy. This concept is crucial, as it directly influences the network’s ability
to perform well in classification tasks and other applications requiring precise distinctions.
Explicitly defined, a robust and flexible network should not only be adept at discerning
local linear operators for each individual data point but also exhibit consistency in its
outputs for similar data points. This dual capability ensures that the network can handle
complex patterns and maintain coherence in its decision-making processes.

Electronics 2024, 13, 4547 12 of 20

The ideal scenario in neural network evaluation would involve an untrained network
that exhibits low correlations between different data points. Specifically, data points
belonging to the same category should be clustered closely together, indicating a high
degree of similarity within categories. This clustering effect would facilitate the network’s
learning process during training, as it would encounter fewer challenges in distinguishing
between different categories. Consequently, the network would be able to learn and
generalize more effectively, leading to improved performance metrics.

In this ideal scenario, the network’s ability to distinguish between similar data points
within the same category is balanced with its capacity to differentiate between distinct
categories. This balance is essential for achieving high discriminability, as it ensures that
the network can accurately classify new, unseen data points based on the patterns it has
learned during training. The importance of this balance cannot be overstated, as it directly
impacts the network’s overall performance and reliability in real-world applications.

To further elucidate the concept of discriminability, consider a neural network tasked
with classifying images of different animals. A network with high discriminability would
be able to accurately distinguish between images of cats and dogs, even if the images
differ only in subtle details. Moreover, the network should consistently classify images of
similar animals (e.g., different breeds of dogs) correctly, demonstrating its ability to handle
fine-grained distinctions. This level of performance is indicative of a well-trained network
that has learned to recognize and differentiate between various patterns with high accuracy.

3.3.2. Assessing the Discriminability of Neural Networks

We base our approach on a fundamental assumption: different networks can be
effectively compared by evaluating their behavior using local linear operators at various
data points. This assumption stems from the premise that the local behavior of neural
networks can provide valuable insights into their overall performance and capabilities.
By examining how networks respond to small perturbations in the input space, we can gain
a deeper understanding of their decision-making processes and identify key differences
between various network architectures.

To do this, we define a linear map, wi = f (xi), which maps the input xi ∈ RD through
the network f (xi), where xi represents an image that belongs to a batch X, and D is the
input dimension. Then, the linear map can be computed as follows:

Jacobian wi =
∂ f (xi)

∂xi

In order to evaluate how a network behaves with different data points, we calculate
the Jacobian matrix wi for different data points of the batch, i = {1, 2, 3, . . . , N}:

J =
(

∂ f (x1)

∂x1

∂ f (x2)

∂x2

∂ f (x3)

∂x3
. . .

∂ f (xN)

∂xN

)T

The Jacobian Matrix J contains information about the network output with respect to
the input for several data points. We can then evaluate how points belonging to the same
class correlate with each other.

To evaluate the discriminability of neural networks, we assess the correlation of J
values with respect to their respective classes by computing a covariance matrix for each
class present in J. This approach allows us to quantify the relationships between the
Jacobian values and the class labels, thereby providing insights into the network’s ability to
distinguish between different classes.

Cc = (J − MJc)(J − MJc)
T

where MJ is the matrix with elements:

Electronics 2024, 13, 4547 13 of 20

(MJc)ij =
1
N ∑

n∈{1,2,...,N},xi∈class c
Ji,n

where c represents the class, c ∈ {1, 2, . . . , C}, and C is the number of classes present in
the batch.

Then, it is possible to calculate the correlation matrix per class PJc for each covariance
matrix CJc :

(PJc)i,j =
(CJc)i,j√

(CJc)i,i ∗ (CJc)j,j

Each individual correlation matrix provides a comprehensive analysis of the behavior
of an untrained network across different classes. This analysis serves as a critical indicator
of the local linear operators’ capability to distinguish between various class characteristics.

To facilitate the comparison among the various individual correlation matrices, which
may exhibit varying sizes due to the differing number of data points per class, each matrix
is evaluated separately:

EC =

∑N
i=0 ∑N

j=0 log(|(PJC)i,j|+ ε), if C < constant
∑N

i=0 ∑N
j=0 log(|(PJC)i,j |+ε)

||PJC ||
, otherwise

where ε is a small constant. We denote ||PJC || as the number of elements of the set PJC .
Finally, we use S to evaluate the discriminability of neural networks:

S =

∑C
t=0 |Et|, if C < constant

∑C
i=0 ∑C

j=i |Ei−Ej |
||E|| , otherwise

where E is the vector containing all correlation matrices’ scores.

3.3.3. Evaluation Method with Three Indicators

With an additional indicator included, we have three indicators: trainability KN ,
expressivity R̂N , and discriminability SN .

We define the performance of three different neural networks, N1,N2, and N3, as
follows:

F1 = λK · ∆KN1 + λR · ∆R̂N1 + λS · ∆SN1

F2 = λK · ∆KN2 + λR · ∆R̂N2 + λS · ∆SN2

F3 = λK · ∆KN3 + λR · ∆R̂N3 + λS · ∆SN3

We let the three neural networks compete with each other. An overview of the TrueSkill
algorithm with the three indicators is shown in Figure 4.

Once two neural networks, N1 and N2, have competed, we fix one of the indicators
and update the other two indicators.

Combined with the TrueSkill algorithm, we can update the equations of these three
indicators:

Let µ1 = λK(∆KN1 − ∆KN2), µ2 = −[λR(∆R̂N1 − ∆R̂N2) + CS], CS = λS(∆SN1 −
∆SN2), σ1 = σK, σ2 = σR, where CS is a constant. According to the competition results of
neural networks N1 and N2, we update µ1, µ2, σ1, σ2 as follows:

µwinner+ =
σ2

winner
c

· v
(

µwinner − µloser
c

,
ε

c

)

µloser =
σ2

loser
c

· v
(

µwinner − µloser
c

,
ε

c

)

Electronics 2024, 13, 4547 14 of 20

σ2
winner∗ =

[
1 −

σ2
winner
c2 · ω

(
µwinner − µloser

c
,

ε

c

)]

σ2
loser∗ =

[
1 −

σ2
winner
c2 · ω

(
µwinner − µloser

c
,

ε

c

)]
After updating µ1, µ2, σ1, σ2, we can update λK and λR as follows:

λK =
µ1

∆KN1 − ∆KN2

λR =
µ2 + CS

∆R̂N2 − ∆R̂N1

σK = σ1

σR = σ2

CK,R = 2β2 + σ2
winner + σ2

loser

Similarly, we update R̂N and SN via the competition between two neural networks,
N2 and N3:

Let

µ3 = λR(∆R̂N2 − ∆R̂N3),

µ4 = −[λs(∆SN2 − ∆SN3) + CK],

CK = λK(∆KN2 − ∆KN3),

σ3 = σR,

σ4 = σS,

where CK is a constant. According to the competition results of two neural networks, N2
and N3, we update µ3, µ4, σ3, σ4.

After updating µ3, µ4, σ3, σ4, we can update λK and λR as follows:

λR =
µ3

∆R̂N2 − ∆R̂N3

λS =
∆SN2 − ∆SN2

µ4 + CS

σR = σ3

σS = σ4

CR,S = 2β2 + σ2
winner + σ2

loser

We update KN and SN via the competition of two neural networks, N1 and N3:
Let µ5 = λK(∆KN1 − ∆KN3), µ6 = −[λs(∆SN1 − ∆SN3) + CR], CR = λR(∆R̂N1 −

∆R̂N3), σ5 = σK, σ6 = σs, where CK is a constant. According to the competition results of
two neural networks, N1 and N3, we update µ5, µ6, σ5, σ6 with the equations.

After updating µ5, µ6, σ5, σ6, we can update λK and λs as follows:

λK =
µ5

∆KN1 − ∆KN3

λs =
µ6 + CR

∆SN3 − ∆SN1

σK = σ5

σs = σ6

Electronics 2024, 13, 4547 15 of 20

CK,S = 2β2 + σ2
winner + σ2

loser

With three indicators included in the TrueSkill training-free NAS, we first update the
measurement of these three indicators, which are λK, λR, λS.

After updating λK, λR, λS, we use them to evaluate the performance of the neural
network:

FN = λK · ∆KN + λR · ∆R̂N + λS · ∆SN

𝑠1 𝑠2 𝑠3 𝑠1

𝑝1 𝑝2 𝑝3 𝑝1

𝑑1 𝑑2 𝑑3

𝑟1 𝑟2 𝑟3

𝑁(𝑠1; 𝜇1, 𝜎1
2) 𝑁(𝑠2; 𝜇2, 𝜎2

2) 𝑁(𝑠3; 𝜇3, 𝜎3
2) 𝑁(𝑠1; 𝜇1, 𝜎1

2)

𝑓1 𝑓2 𝑓3 𝑓1

𝑔1 𝑔2 𝑔3 𝑔1

𝐼(𝑑 = 𝑝1 − 𝑝2) 𝐼(𝑑 = 𝑝2 − 𝑝3) 𝐼(𝑑 = 𝑝1 − 𝑝3)

𝛿(𝑟1 − 𝑠𝑖𝑔𝑛(𝑑1)) 𝛿(𝑟2 − 𝑠𝑖𝑔𝑛(𝑑2)) 𝛿(𝑟1 − 𝑠𝑖𝑔𝑛(𝑑3))

Figure 4. “N” represents the Gaussian distribution, “s” signifies skill, denoting the ability value
of each player, “p” denotes performance, representing actual performance, “d” implies difference,
indicating the performance gap between the two parties in competition, and “r” stands for result,
signifying the outcome of the competition.

3.3.4. Prune-Based Search Strategy with Three Indicators

As the additional indicator added into consideration, we summarize the evaluation
method based on these indicators. We can easily conclude the following points regarding
the prune-based search algorithm:

Similar to the training-free true-skill NAS in Algorithm 3, we initiate with a super-
network N0, which is constructed by stacking multiple repeated cells [22]. This super-
network encompasses all feasible edges and candidate operations. During each iteration of
the outer loop, we systematically eliminate one operation that has the least significance
to the overall architecture Nt on each edge, continuing this process until Nt is reduced
to a single-path network. Within the inner loop, we compute the variations in KN , R̂N ,
and SN before and after the pruning of each candidate operation. The importance of
these operations is then assessed using ∆Foj , and the candidate operation with the lowest
importance on each edge is pruned accordingly.

Electronics 2024, 13, 4547 16 of 20

Algorithm 3 Training-free TrueSkill NAS
Input: λK, λR, super-network N0 stacked by cells, each cell has E edges, each edge has |O|
candidate operations
Initialization: step t = 0

1: while Nt is not a single-path network do
2: for each operation oj in Nt do
3: ∆Kt,oj = −(KNt −KNt\oj

)

4: ∆R̂t,oj = −(RNt − RNt\oj
)

5: ∆St,oj = −(SNt − SNt\oj
)

6: end for
7: ∆Foj = λK · ∆Kt,oj + λR · ∆R̂t,oj + λS · ∆St,oj
8: Nt+1 = Nt
9: for each edge ei, i = 1, . . . , E do

10: j∗ = argminj

{
∆Foj : oj ∈ ei

}
11: Nt+1 = Nt+1 \ oj∗

12: end for
13: t = t + 1
14: end while
15: return pruned single-path network Nt

4. Experiments
4.1. TTNAS with Two Indicators in DARTS Searching Space on CIFAR-10

The DARTS operation space O contains eight choices: none (zero), skip connection,
separable convolution 3 × 3 and 5 × 5, dilated separable convolution 3 × 3 and 5 × 5, max
pooling 3 × 3, and average pooling 3 × 3. During this experiment, the network undergoes
optimization through the implementation of an SGD optimizer accompanied by cosine
annealing, starting with an initial learning rate of 0.025. When it comes to the evaluation
stages, we assemble the network by stacking 20 cells, with the initial number of channels
set to 36 and each cell comprising 6 nodes. We run the experiments 20 times with different
random seeds in the DARTS searching space.

Based on the analysis presented in Table 1, it is evident that the performance of
TTNAS surpasses that of state-of-the-art reinforcement learning-based NAS methods such
as ENAS, as well as gradient-based methods like DARTS. This superiority can be attributed
to our method’s ability to achieve a more favorable balance between two critical indicators:
trainability and expressivity. By optimizing this combination, our approach successfully
identifies architectures with higher accuracy while maintaining competitive search costs.

Furthermore, our method exhibits superior performance compared to TE-NAS, an-
other training-free NAS method, in terms of accuracy and adaptability to diverse datasets.
Notably, our approach outperforms TE-NAS even on datasets such as MNIST, underscoring
its adaptability and effectiveness across various data types.

In summary, the results demonstrate that TTNAS offers a compelling solution for NAS,
achieving superior performance in terms of accuracy and efficiency compared to both traditional
reinforcement learning-based methods and training-free alternatives like TE-NAS.

4.2. TTNAS with Two Indicators on NAS-BENCH-201

NAS-Bench-201 offers a standardized cell-based search space, facilitating direct query-
ing of the performance of each neural architecture from its database. This resource supports
evaluation on datasets such as CIFAR-10 [21], CIFAR-100, and ImageNet 16-120, with the
operation space comprising options including zero, skip-connect, 1 × 1 convolution, 3 × 3
convolution, and 3 × 3 average pooling. According to NAS-Bench-201, each architecture is
trained via Nesterov momentum SGD, using the cross-entropy loss for 200 epochs in total.
We set the weight decay as 0.0005 and the learning rate decay from 0.1 to 0 with cosine
annealing. Notably, the direct query capability of NAS-Bench-201 allows for low search

Electronics 2024, 13, 4547 17 of 20

costs using specific methods such as REINFORCE, which will not perform as well on other
datasets as it does on NAS-Bench-201. However, it is important to note that low search
costs do not necessarily equate to efficiency in these methods.

In our comparison with state-of-the-art methods on NAS-Bench-201 [23], we adopt
the same search space and conduct 20 independent searches and evaluations on the same
datasets using random seeds. This rigorous approach ensures fair and comprehensive eval-
uation of the performance of our method against existing approaches on NAS-Bench-201.

As shown in Table 2, in three distinct datasets, namely CIFAR-10, CIFAR-100, and Ima-
geNet 16-120, TTNAS demonstrates the highest average performance compared to all other
methods. TTNAS consistently achieves top-tier test accuracy across all three datasets while
maintaining relatively low search costs. Notably, NAS without training, while requiring
even less search time, significantly compromises test accuracy performance, exhibiting
markedly larger deviations across different search iterations. This highlights the superior
performance stability and efficiency of TTNAS compared to alternative methods, even in
scenarios with stringent resource constraints.

4.3. TTNAS with Multiple Indicators on NAS-BENCH-201

To demonstrate that TTNAS can effectively manage a higher number of indicators
while providing a more accurate assessment of neural network performance and achiev-
ing superior neural networks requiring reasonable computational resources, we carry
out an extra experiment involving TTNAS with three indicators on NAS-BENCH-201.
The fundamental experimental configuration remains consistent with Section 4.2, and the
discriminability constant is set to 100.

As evidenced by the experimental results, which are shown in Table 3, our proposed
TTNAS method, incorporating three indicators, demonstrates superior performance in
comparison to other state-of-the-art NAS techniques as well as human-designed neural net-
works. When applied to various datasets, including CIFAR-10, CIFAR-100, and ImageNet,
this method consistently achieves almost the highest accuracy, thereby identifying the most
optimal neural network architectures.

Furthermore, an analysis of the search cost reveals that our TTNAS method with three
indicators maintains competitiveness and remains within an acceptable range. This aspect
is particularly significant, as it ensures that the enhanced performance achieved by our
method does not come at the expense of excessive computational resources.

Additionally, a comparative study between TTNAS with three indicators and TTNAS
with two indicators highlights another notable advantage. Specifically, the incorporation of
an additional indicator in the former approach enables the attainment of superior neural
network architectures without a corresponding increase in search time. This observation
underscores the efficiency and effectiveness of our proposed method in optimizing both
the performance and computational aspects of the neural network design process.

Table 1. Comparison with state-of-the-art NAS methods on CIFAR-10; searching space is DARTS.

Method Test Error (%) Params (M) Search Cost
(GPU Hours) Search Method

ENAS [1] 2.89 4.6 12 RL
NASNet-A [22] 2.65 3.3 48,000 RL

DARTS (1st) [2] 3.00 3.3 10 Gradient
DARTS (2nd) [2] 2.76 3.3 24 Gradient

GDAS [24] 2.82 2.5 0.17 Gradient
PC-DARTS [25] 2.57 3.6 3 Gradient

SDARTS-
ADV [26] 2.61 3.3 31.2 Gradient

RTNAS [27] 2.56 3.2 2.16 Training-free
TE-NAS [3] 2.63 3.8 2 Training-free

TTNAS (Ours) 2.54 3.7 2 Training-free

Electronics 2024, 13, 4547 18 of 20

Table 2. Comparison with state-of-the-art NAS methods on NAS-BENCH-201.

Architechture CIFAR-10 CIFAR-100 ImageNet 16-120 Search Cost (GPU s) Search Method

ResNet [28] 93.97 70.86 43.63 N/A Human-designed
REINFORCE [29] 93.85(0.37) 71.71(1.12) 45.24(1.18) 0.12 Human-designed

DARTS (1st) [2] 54.30(0.00) 15.61(0.00) 16.32(0.00) 11,625.77 Gradient
DARTS (2nd) [2] 54.30(0.00) 15.61(0.00) 16.32(0.00) 35,781.80 Gradient

GDAS [24] 93.51(0.13) 71.14 (0.27) 41.84(0.90) 28,925.91 Gradient

ENAS [1] 54.30(0.00) 15.03(0.00) 16.32(0.00) 14,058.80 RL

NAS w.o.
Training [30] 91.78(1.45) 67.05(2.89) 37.07(6.39) 4.8 Training-free

TE-NAS [3] 93.90(0.47) 71.24(0.56) 42.38(0.46) 1558 Training-free
TTNAS (2
indicators) 93.94(0.38) 71.91(0.30) 44.96(0.89) 1466 Training-free

Table 3. TTNAS with multiple indicators compared with state-of-the-art NAS methods on NAS-
BENCH-201.

Architechture CIFAR-10 CIFAR-100 ImageNet 16-120 Search Cost (GPU s) Search Method

ResNet [28] 93.97 70.86 43.63 N/A Human-designed
REINFORCE [29] 93.85(0.37) 71.71(1.12) 45.24(1.18) 0.12 Human-designed

DARTS (1st) [2] 54.30(0.00) 15.61(0.00) 16.32(0.00) 11,625.77 Gradient
DARTS (2nd) [2] 54.30(0.00) 15.61(0.00) 16.32(0.00) 35,781.80 Gradient

GDAS [24] 93.51(0.13) 71.14 (0.27) 41.84(0.90) 28,925.91 Gradient

ENAS [1] 54.30(0.00) 15.03(0.00) 16.32(0.00) 14,058.80 RL

NAS w.o.
Training [30] 91.78(1.45) 67.05(2.89) 37.07(6.39) 4.8 Training-free

TE-NAS [3] 93.90(0.47) 71.24(0.56) 42.38(0.46) 1558 Training-free
RTNAS [27] 93.16(0.37) 70.48(1.04) 43.04(1.82) 508 Training-free
TTNAS (2
indicators) 93.94(0.38) 71.91(0.30) 44.96(0.89) 1466 Training-free

TTNAS (3
indicators) 93.91(0.34) 72.11(0.32) 45.16(0.77) 1615 Training-free

5. Conclusions

In this paper, we introduce a novel training-free method based on a Bayesian algorithm
for evaluating the quality of neural networks. By leveraging Bayesian principles, our
approach eliminates the need for data training processes that are typically associated
with conventional NAS methods. As a result, our method achieves significantly higher
efficiency and competitive accuracy, which are particularly evident in specific datasets.
Moreover, by extracting dataset features as prior knowledge for our training-free method,
we anticipate further performance improvements across diverse datasets and tasks.

By employing the TrueSkill algorithm, we integrate two and three essential indicators
into an evaluation function, which serve as a guide for the pruning process. The Bayesian
framework of the TrueSkill algorithm facilitates the smooth incorporation of these in-
dicators, thereby supporting informed decision-making in the context of architectural
refinement. Additionally, the TrueSkill algorithm’s adaptability enables the inclusion of
further indicators as new, significant network characteristics are discovered in forthcoming
studies. This flexibility ensures that our approach remains scalable and versatile, catering to
the ever-changing demands and insights within the realm of neural architecture evaluation.

In future endeavors, we aim to incorporate additional indicators of neural networks
to refine and enhance the precision of our performance evaluations. By expanding the
scope of indicators, we seek to achieve a more comprehensive understanding of neural
network performance. Consequently, we plan to extend the TrueSkill evaluation system

Electronics 2024, 13, 4547 19 of 20

to accommodate multiple indicators, transitioning it into a multi-player version. This
extension will enable us to capture a broader range of network properties and better assess
overall performance. Notably, as we can see in the results of the experiment in Section 4,
the cost of TTNAS is still too high compared with some specific methods, including the
human-designed neural network and differentiable NAS methods. We also considering
adopt some lightweight neural networks like LMFRNet [31] and SLNAS [32].

Moreover, we intend to apply our TTNAS methodology to a diverse array of datasets
and expand its applicability beyond traditional computer vision tasks such as detection.
By demonstrating its flexibility and accuracy across various datasets and tasks, we aim to
validate the robustness and versatility of TTNAS as a viable solution for neural architecture
search in diverse real-world scenarios.

Author Contributions: Writing—original draft, Y.L.; Writing—review & editing, Y.E. and J.L.; Project
administration, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are contained within this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pham, H.; Guan, M.Y.; Zoph, B.; Le, Q.V.; Dean, J. Efficient Neural Architecture Search via Parameter Sharing. arXiv 2018,

arXiv:1802.03268.
2. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. arXiv 2018, arXiv:1806.09055.
3. Chen, W.; Gong, X.; Wang, Z. Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective.

arXiv 2021, arXiv:2102.11535.
4. Lee, J.; Xiao, L.; Schoenholz, S.S.; Bahri, Y.; Novak, R.; Sohl-Dickstein, J.; Pennington, J. Wide Neural Networks of Any Depth

Evolve as Linear Models Under Gradient Descent. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, BC, Canada, 8–14 December 2019; Volume 32; pp. 8570–8581.

5. Chizat, L.; Oyallon, E.; Bach, F. On Lazy Training in Differentiable Programming. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.

6. Jacot, A.; Gabriel, F.; Hongler, C. Neural Tangent Kernel: Convergence and Generalization in Neural Networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31.

7. Wang, L.; Zhao, Y.; Jinnai, Y.; Tian, Y.; Fonseca, R. Neural Architecture Search using Deep Neural Networks and Monte Carlo Tree
Search. arXiv 2018, arXiv:1805.07440. [CrossRef]

8. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2015, arXiv:1502.05477.
[CrossRef]

9. Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W.M.; Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; et al. Population Based Training of Neural Networks. arXiv 2017, arXiv:1711.09846. [CrossRef]

10. Weng, L. Evolution Strategies. 2019. Available online: https://lilianweng.github.io/posts/2019-09-05-evolution-strategies/
(accessed on 13 November 2024).

11. Luo, R.; Tian, F.; Qin, T.; Chen, E.; Liu, T.Y. Neural Architecture Optimization. arXiv 2018, arXiv:1808.07233. [CrossRef]
12. Herbrich, R.; Minka, T.; Graepel, T. TrueSkill(TM): A Bayesian Skill Rating System. In Proceedings of the Advances in Neural

Information Processing Systems 20; MIT Press: Cambridge, MA, USA, 2007; pp. 569–576.
13. Burkholz, R.; Dubatovka, A. Initialization of ReLUs for Dynamical Isometry. In Proceedings of the Advances in Neural

Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.
14. Hayou, S.; Doucet, A.; Rousseau, J. On the Impact of the Activation Function on Deep Neural Networks Training. arXiv 2019,

arXiv:1902.06853.
15. Shin, Y.; Karniadakis, G.E. Trainability of ReLU networks and Data-dependent Initialization. arXiv 2019, arXiv:1907.09696.

[CrossRef]
16. Xiao, L.; Pennington, J.; Schoenholz, S.S. Disentangling Trainability and Generalization in Deep Neural Networks. arXiv 2019,

arXiv:1912.13053.
17. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
18. Gulcu, T.C. Comments on “Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?”. IEEE

Trans. Signal Process. 2020, 68, 2401–2403. [CrossRef]
19. Xiong, H.; Huang, L.; Yu, M.; Liu, L.; Zhu, F.; Shao, L. On the Number of Linear Regions of Convolutional Neural Networks.

arXiv 2020, arXiv:2006.00978.

http://doi.org/10.1609/aaai.v34i06.6554
http://dx.doi.org/10.48550/arXiv.1502.05477
http://dx.doi.org/10.48550/arXiv.1711.09846
https://lilianweng.github.io/posts/2019-09-05-evolution-strategies/
http://dx.doi.org/10.48550/arXiv.1808.07233
http://dx.doi.org/10.1615/JMachLearnModelComput.2020034126
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/TSP.2020.2985303

Electronics 2024, 13, 4547 20 of 20

20. Lee, N.; Ajanthan, T.; Torr, P.H.S. SNIP: Single-shot Network Pruning based on Connection Sensitivity. arXiv 2018,
arXiv:1810.02340.

21. Giuste, F.O.; Vizcarra, J.C. CIFAR-10 Image Classification Using Feature Ensembles. arXiv 2020, arXiv:2002.03846.
22. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings

of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
8697–8710. [CrossRef]

23. Dong, X.; Yang, Y. NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search. arXiv 2020, arXiv:2001.00326.
24. Dong, X.; Yang, Y. Searching for A Robust Neural Architecture in Four GPU Hours. arXiv 2019, arXiv:1910.04465.
25. Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.J.; Tian, Q.; Xiong, H. PC-DARTS: Partial Channel Connections for Memory-Efficient

Architecture Search. arXiv 2019, arXiv:1907.05737.
26. Chen, X.; Hsieh, C.J. Stabilizing Differentiable Architecture Search via Perturbation-based Regularization. arXiv 2020,

arXiv:2002.05283. [CrossRef]
27. Yang, T.; Yang, L.; Jin, X.; Chen, C. Revisiting Training-free NAS Metrics: An Efficient Training-based Method. In Proceedings of

the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023; pp.
4740–4749.

28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
29. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
30. Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural Architecture Search without Training. arXiv 2020, arXiv:2006.04647.
31. Wan, G.; Yao, L. LMFRNet: A Lightweight Convolutional Neural Network Model for Image Analysis. Electronics 2023, 13, 129.

[CrossRef]
32. Lin, C.H.; Chen, T.Y.; Chen, H.Y.; Chan, Y.K. Efficient and lightweight convolutional neural network architecture search methods

for object classification. Pattern Recognit. 2024, 156, 110752. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.48550/arXiv.2002.05283
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.3390/electronics13010129
http://dx.doi.org/10.1016/j.patcog.2024.110752

	Introduction
	Related Work and Background
	Reinforcement Learning-Based Neural Architecture Search
	Differentiable Neural Architecture Search
	Training-Free NAS
	Rating Algorithm

	Methods
	Training-Free Pruning-Based Architecture Search Algorithm
	Evaluation of Quality of Child Architectures
	Trainability of Neural Architecture
	Expressivity by Number of Linear Regions
	Defining the Importance
	Performance Estimation
	Update the Importance
	Pruning Network

	TTNAS with Multiple Indicators
	Introduction to Discriminability
	Assessing the Discriminability of Neural Networks
	Evaluation Method with Three Indicators
	Prune-Based Search Strategy with Three Indicators

	Experiments
	TTNAS with Two Indicators in DARTS Searching Space on CIFAR-10
	TTNAS with Two Indicators on NAS-BENCH-201
	TTNAS with Multiple Indicators on NAS-BENCH-201

	Conclusions
	References

