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Abstract: The purpose of this study was to determine the impact of a titanium cranial implant on the
electric field distribution and the amount of energy absorbed from a cell phone within the human head.
Three-dimensional lifelike models of the head of the mobile phone user, a titanium cranial implant,
and a smartphone model was built. The head model consisted of sixteen homogeneous, isotropic
domains, with permittivity and conductivity parameters taken from the literature. Numerical
calculations were performed at the mobile communication frequency of 2600 MHz for a head model
with and without a titanium cranial implant, in order to determine a field perturbation introduced
by the implant. Our results show that in the presence of a titanium cranial implant, the electric
field amplitude and SAR (Specific Absorption Rate) are increased within the layers close to the
outer surface of the model (skin, fat tissue, and muscle). On the other hand, a cranial implant
leads to a lower penetration depth, decreasing the electric field amplitude and SAR inside the skull,
cerebrospinal fluid, and brain.

Keywords: cranial implant; electromagnetic radiation; mobile phone; specific absorption rate

1. Introduction

The treatment of bone defects in the craniofacial and maxillofacial regions is a very
common clinical problem. Bone defects usually arise from musculoskeletal tumors, infec-
tions, or trauma. Diagnostics and therapy require accurate three-dimensional representa-
tion of bones and soft tissues. This representation is enabled using magnetic resonance
tomography (MRT).

Along with the development of technical imaging capabilities and the improvement
of surgical instruments, the materials for the reconstruction of certain bone defects have
also been developed. These materials have to be biocompatible and have to meet certain
criteria [1]. In this context, titanium has demonstrated excellent performance and is often
used in place of many other metals. Its chemical and mechanical characteristics and possible
tissue reactions are presented in [2].

Since the penetrated electromagnetic field is influenced by the composition, morphol-
ogy, and size of biological organs, it is logical to assume that the presence of a metal object
will affect the distribution of the electromagnetic field in its vicinity [3–6].

Studies [7–12] have previously examined the effects of various implants, such as wires,
rods, orthopedic implants, pacemakers, auditory implants, and coronary stents, on the
distribution of electromagnetic fields. In these studies, an analysis of RF far-field exposure
was performed. Hence, it is not possible to draw any conclusions based on the findings
of these studies regarding RF near-field exposure, which is the case when the source of
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electromagnetic radiation is a mobile phone, positioned near to the user’s head. Virtanen
et al. [13] estimated the specific energy absorption rate inside a head with authentic metallic
implants exposed to a half-wave dipole antenna. In [14], the influence of a head implant on
the absorbed energy distribution is considered, but in the vicinity of the wireless power
transfer embedded smart table.

The aim of this study is to model the titanium cranial implant and then analyze its
influence on the electromagnetic field distribution and the amount of absorbed energy
induced by a mobile phone within certain biological structures of the user’s head.

Since it is considered unethical to perform tests on human subjects, the best evaluation
of RF radiation effects is to use numerical simulations. The effects of exposure to elec-
tromagnetic radiation are usually evaluated by analyzing the penetrated electromagnetic
field and SAR within the biological organs. To achieve this, 3D realistic numerical models
have been created that provide reliable results regarding the penetrated electromagnetic
field and the amount of absorbed energy from the mobile phone RF radiation inside the
user’s head. The Computer Simulation Technology (CST) [15] software (2012) package was
used to perform numerical simulation of the E-field and SAR values at the frequency of
2600 MHz.

Our model includes the fourth generation of mobile communication standards avail-
able in the Republic of Serbia. The penetrated SAR and electric field values will be compared
to those allowed in the territory of this country [16].

2. Models and Methods
2.1. Head Model

A three-dimensional lifelike model of a mobile phone user comprises sixteen biolog-
ical tissues and organs: skin, fatty tissue, muscle, skull, mandible, tongue, eyes, teeth,
vertebrae, cartilage, thyroid gland, cerebrospinal fluid, cerebrum, cerebellum, brain stem,
and hypophysis. The anterior and side views of a realistic 3D head model are presented in
Figures 1a and 1b, respectively. Transverse, sagittal, and coronal cross-sections are repre-
sented in Figures 2a, 2b and 2c, respectively.
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Figure 1. A realistic 3D head model: anterior view (a) and side view (b). Figure 1. A realistic 3D head model: anterior view (a) and side view (b).

When the 3D head model is created, it is essential to allocate suitable electromagnetic
characteristics to each tissue in the head. These properties are frequency-dependent, so
values for a specific frequency of 2600 MHz are needed. We use relative permittivity (εr), an
electrical conductivity (σ), and a tissue density (ϱ) at the operating frequency of 2600 MHz
as shown in Table 1 [17]. The effects of electromagnetic wave reflection, propagation,
and attenuation within the user’s head are greatly influenced by these characteristics of
biological tissues.
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Table 1. Electromagnetic properties of biological tissues and organs at 2600 MHz.

Biological Tissue εr σ [S/m] ϱ [kg/m3]

1. Skin 37.8 1.54 1109

2. Fat 10.8 0.29 911

3. Muscle 52.5 1.84 1090

4. Skull 14.8 0.64 1543

5. Mandible 11.3 0.42 1908

6. Tongue 52.4 1.92 1090

7. Teeth 11.3 0.42 2180

8. Vertebrae 11.3 0.42 1908

9. Cartilage 38.4 1.87 1100

10. Thyroid gland 57.0 2.09 1050

11. Eyes * 47.55 2.08 1060

12. Cerebrospinal
fluid 66.0 3.60 1007

13. Cerebrum 44.5 2.20 1046

14. Cerebellum 44.5 2.20 1045

15. Brain stem 44.5 2.20 1046

16. Pituitary gland 57.0 2.09 1053
* Characteristics of tissues are defined as an average value.

The Table provides data on the dielectric characteristics of all tissues at a particular
frequency. The dielectric characteristics rely on the Gabriel dispersion equations [18]. They
are calculated from measurements of the impedance of a sample, performed using an
automatic swept frequency network and impedance analyzers. Dispersion has been taken
into consideration using complex permittivity values in numerical simulations.

2.2. Model of a Cranial Implant

A 3D model of a cranial implant is created using 3D images of real implants, installed
due to existing bone tissue defects or defects resulting from certain surgical interventions. A
model of a cranial implant used in our simulations is presented in Figure 3. The implant is
placed on the right side of the head, i.e., the same side as the electromagnetic field radiation
(mobile phone) source.
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Figure 3. 3D numerical model of cranial implant.

As previously mentioned, the most frequently used material for cranial implants is
titanium. Therefore, for the purposes of this numerical calculation, the electromagnetic
characteristics of titanium have been used for the model of the cranial implant.

The cranial implant is a titanium alloy implant fabricated using electron beam melt-
ing [19]. It has of a volume 18.77 cm3 and a density ϱ = 4.5 g/cm3, producing a total mass
of 84.46 g. The thickness of the implant is between 1.8 mm and 2.3 mm. The material is
non-magnetic with a relative permeability of 1.00005. Its electrical resistivity is equal to
42 µΩ cm.

2.3. Model of a Smartphone

For the purpose of the current investigation, the smartphone as an electromagnetic
radiation source, was modeled. A planar inverted F antenna (PIFA) serves as the electro-
magnetic radiation source. One way of its design and analysis with a MIMO system is
proposed in [20]. The PIFA has been modeled for the frequency of 2.6 GHz with the output
power of 1 W [21] and an impedance of Z = 50 Ω. The 3D model of a cellphone comprises a
housing, camera, battery, display, antenna, and PCB board.

The position of a mobile phone in relation to the 3D head model is shown in Figure 4a.
Figure 4b shows the PIFA inside a model of a mobile phone. The shortest distance between
the surface of the head and the antenna is equal to 6 mm. S-parameters of the antenna are
shown in Figure 5.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 12 
 

 

is placed on the right side of the head, i.e., the same side as the electromagnetic field radi-
ation (mobile phone) source. 

 
Figure 3. 3D numerical model of cranial implant. 

As previously mentioned, the most frequently used material for cranial implants is 
titanium. Therefore, for the purposes of this numerical calculation, the electromagnetic 
characteristics of titanium have been used for the model of the cranial implant. 

The cranial implant is a titanium alloy implant fabricated using electron beam melt-
ing [19]. It has of a volume 18.77 cm3 and a density ρ = 4.5 g/cm3, producing a total mass 
of 84.46 g. The thickness of the implant is between 1.8 mm and 2.3 mm. The material is 
non-magnetic with a relative permeability of 1.00005. Its electrical resistivity is equal to 42 
µΩ cm. 

2.3. Model of a Smartphone 
For the purpose of the current investigation, the smartphone as an electromagnetic 

radiation source, was modeled. A planar inverted F antenna (PIFA) serves as the electro-
magnetic radiation source. One way of its design and analysis with a MIMO system is 
proposed in [20]. The PIFA has been modeled for the frequency of 2.6 GHz with the output 
power of 1 W [21] and an impedance of Z = 50 Ω. The 3D model of a cellphone comprises 
a housing, camera, battery, display, antenna, and PCB board. 

The position of a mobile phone in relation to the 3D head model is shown in Figure 
4a. Figure 4b shows the PIFA inside a model of a mobile phone. The shortest distance 
between the surface of the head and the antenna is equal to 6 mm. S-parameters of the 
antenna are shown in Figure 5. 

  
(a) (b) 

Figure 4. 3D numerical model of a mobile phone and its relative position to the head (a); model of
the planar inverted F antenna inside a phone (b).
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2.4. Finite Integral Technique

In order to simulate the propagation of electromagnetic waves of a mobile phone
inside biological organs in the presence of a cranial implant, the CST Studio Suite [15]
software (Version 12) package based on the Finite Integral Technique (FIT) [22] was used.
This software for solving 3D electromagnetic problems offers an excellent CAD interface for
designing and editing models while importing and exporting tools enable the utilization of
models created with various 3D modeling software.

Each biological tissue and organ that is an integral part of the head modelwas modeled
separately using an appropriate software package for 3D modeling. Once created, the
elements of the modeled biological tissue and organs are imported into CST and linked
into a unique entity with other elements. The accurate position of each tissue is defined
by CT scans of the human head. Additionally, accurate modeling of separating surfaces
between neighboring tissues with no overlapping is of crucial importance. This enables the
application of proper boundary conditions at the surfaces separating different biological
compartments. Derivation of boundary conditions is based on an integral form of Maxwell’s
equations and grid Maxwell’s equations, using the approach introduced in [23].

Our model comprises 46,801,112 hexahedral elements. The simulations were per-
formed with an Intel(R) Core(TM) i7-8700 K CPU @ 3.70 GHz processor, with 32 GB RAM
memory within 7 h. Calculation of SAR, which belongs to the postprocessing step, requires
an additional sixty minutes.

3. Results
3.1. Electric Field Distribution Within the User’s Head Model

First, we investigated the distribution of the electric field in the transverse cross-section
presented in Figure 6, for the case with and without a cranial implant. The position of the
plane corresponds to the position of the mobile phone antenna, i.e., the position of the
titanium cranial implant. A calculation line C at the transversal plane and perpendicular to
the mobile phone is presented in Figure 6 as well.

The distribution of the electric field strength at the transversal cross-section (Figure 6)
is presented for the case of the model containing a cranial implant and without a cranial
implant in Figures 7a and 7b, respectively. The same color legend applies to both cases in
order to enable a fast comparative analysis.

According to the electric field distributions within both user’s head models (with and
without cranial implant), represented in Figure 7, a noticeable variation in the strength of
the electric field exists among specific biological tissues and organs.



Electronics 2024, 13, 4551 6 of 11Electronics 2024, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 6. Calculation line C at the transversal plane, perpendicular to the mobile phone, utilized to 
analyze the results. 

The distribution of the electric field strength at the transversal cross-section (Figure 
6) is presented for the case of the model containing a cranial implant and without a cranial 
implant in Figure 7a and Figure 7b, respectively. The same color legend applies to both 
cases in order to enable a fast comparative analysis. 

  
(a) (b) 

Figure 7. Electric field distribution within the user’s head model: (a) with cranial implant and (b) 
without cranial implant. 

According to the electric field distributions within both user’s head models (with and 
without cranial implant), represented in Figure 7, a noticeable variation in the strength of 
the electric field exists among specific biological tissues and organs. 

To conduct more precise assessments of the results, the dependence of electric field 
strength on the distance from the radiation source, along line C (shown in Figure 6), is 
illustrated in Figure 8, for both models. 

 

Figure 6. Calculation line C at the transversal plane, perpendicular to the mobile phone, utilized to
analyze the results.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 6. Calculation line C at the transversal plane, perpendicular to the mobile phone, utilized to 
analyze the results. 

The distribution of the electric field strength at the transversal cross-section (Figure 
6) is presented for the case of the model containing a cranial implant and without a cranial 
implant in Figure 7a and Figure 7b, respectively. The same color legend applies to both 
cases in order to enable a fast comparative analysis. 

  
(a) (b) 

Figure 7. Electric field distribution within the user’s head model: (a) with cranial implant and (b) 
without cranial implant. 

According to the electric field distributions within both user’s head models (with and 
without cranial implant), represented in Figure 7, a noticeable variation in the strength of 
the electric field exists among specific biological tissues and organs. 

To conduct more precise assessments of the results, the dependence of electric field 
strength on the distance from the radiation source, along line C (shown in Figure 6), is 
illustrated in Figure 8, for both models. 

 

Figure 7. Electric field distribution within the user’s head model: (a) with cranial implant
and (b) without cranial implant.

To conduct more precise assessments of the results, the dependence of electric field
strength on the distance from the radiation source, along line C (shown in Figure 6), is
illustrated in Figure 8, for both models.
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Comparing the numerical calculation results shown in Figure 8, for the model with
and without a cranial implant, it is evident that the presence of the cranial implant leads to
a notable difference in the electric field distribution.
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3.2. SAR Distribution Within the User’s Head Model

The basic limit for the exposure of the population to electromagnetic fields refers
to exposure to variable electromagnetic fields, low-frequency or high-frequency. Basic
limits and reference levels for exposure to electromagnetic radiation are generally based on
established health and biological effects. One of the physical quantities used to model these
limitations is the specific level of energy absorption, or SAR (Specific Absorption Rate).

SAR is a measure of the interaction between an electromagnetic wave and biological
tissue, i.e., a measure of the rate at which the human body absorbs energy per unit mass
of biological tissue exposed to electromagnetic radiation. SAR can be determined by the
following equation [24]:

SAR =
σ

ρ
|E| 2, (1)

where σ is the electrical conductivity (S/m), and ρ is the density of the tissue or biological
organ (kg/m3). E represents the root mean square (rms) value of the electric field.

SAR is commonly described for either the entire body or specific body regions and
is measured in watts per kilogram. Equally important and suitable for application in
practice is the average SAR. In addition to SAR being averaged over the volume of the
whole body, local averaged SAR values are often necessary to reduce the overexposure to
electromagnetic radiation on specific smaller body parts. One example of this scenario is
when a person is exposed to electromagnetic radiation from a mobile phone antenna.

The average SAR is determined by integrating the local SAR expression with the
desired volume of the biological tissue and dividing it by the corresponding volume:

SARAV =
1
V

∫
V

SAR dV =
1
V

∫
V

σE2

ρm
dV. (2)

The local SAR is calculated by averaging over a small sample volume. The sample is
usually 1 g or 10 g of tissue, defining a local SAR1g and a local SAR10g, respectively. Since
spatial averaging is performed over different size regions for both measures, the differences
in local SAR distributions occur. The averaging procedure can also affect the location of the
highest SAR value. Therefore, both measures, the local SAR1g and local SAR10g, are used
for predicting the energy absorbed per unit mass when exposed to an electromagnetic field.
SAR averaging in this study was performed according to the international standard [25].

The distributions of SAR1g and SAR10g for both models (with and without a cranial
implant), for the cross-section represented in Figure 6, are shown in Figures 9 and 10,
respectively. In order to make a better comparison of the results obtained, the highest SAR
value in the color palette is identical for both models.
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In order to evaluate the impact of the titanium cranial implant on the SAR distribution
inside the user’s head model, the graphs of SAR1g and SAR10g values vs. radiation source
distance (Figure 5), along line C, are shown in Figures 11 and 12, respectively.
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According to the graphs presented in Figures 11 and 12, it can be noticed that the
distribution of SAR1g as well as SAR10g is different for both models (model with and model
without a cranial implant) within certain biological structures. Also, by analyzing the
obtained results shown in Figures 11 and 12, significant differences in the highest SAR1g
and SAR10g values within individual biological tissues can be observed.

4. Discussion

Results shown in Figure 7 indicate that the strength of the electric field is higher in the
layers close to the outer boundary of the head (skin, fatty tissue, and muscle) of the model
that includes the titanium cranial implant. However, it is noticeable that the obtained
distribution of the electric field within the skull, cerebrospinal fluid, and brain indicates
a higher intensity of the electric field in these tissues for the model without the titanium
cranial implant.

Similar conclusions can be drawn from the results presented in Figure 8. The greatest
increase in electric field intensity occurs within the model with a titanium cranial implant,
especially in the superficial biological tissue. Examining the differences in electric field
intensity between the model with a cranial implant and the one without, it is evident that
the presence of cranial implants affects the electric field distribution across the skin, adipose
tissue, and muscle.

Through the analysis of the results obtained for the electric field strength along line
C, it can be seen that the maximum difference in electric field intensity within the skin is
105.62 V/m. In the scenario where the model includes a cranial implant, the highest electric
field value within the skin reaches 162.55 V/m, whereas for the model without the cranial
implant, this value is 56.93 V/m.

There is a 71.13 V/m difference in the electric field strength within the fat tissue i.e.,
the highest electric field strength is 134.43 V/m with a cranial implant and 63.30 V/m
without. The electric field strength inside the muscle tissue has a smaller difference in
value, measuring at 24.13 V/m. In the model with the cranial implant, the highest electric
field inside the muscle reaches 84.85 V/m, compared to 60.72 V/m in the model without
the implant.

However, for other biological tissues and organs (skull, cerebrospinal fluid, and brain),
the obtained values of the electric field strength are higher for the model without the cranial
implant. The value of the electric field inside the skull in the case of the model without
a cranial implant is higher by 34.58 V/m compared to the model with a cranial implant.
This difference in the value of the electric field strength within the cerebrospinal fluid is
20.21 V/m, while inside the brain it is lower and amounts to 12.04 V/m.

From Figure 8, it can be also seen that the electric field intensity for the model without
the cranial implant drops to a value close to zero after a penetration depth of about 70 mm.
The depth of the electric field penetration is significantly smaller in the model with a cranial
implant and is close to 25 mm, which results in electric field values inside the brain of less
than 1 V/m.

When it comes to the amount of energy absorbed by the user’s head tissues, it is
evident from Figures 11 and 12 that the presence of the titanium plate affects the spatial
distribution of SAR1g as well as SAR10g.

As in the case of electric field intensity, the largest deviation of SAR1g is noticeable
inside the skin, where the maximum value of SAR1g for the model with a cranial implant is
11.05 W/kg higher, compared to the value obtained for the model without this implant.
The maximum value of SAR1g inside the skin, for the model with the cranial implant, is
15.42 W/kg, while this value is 4.37 W/kg for the model without the implant. A slightly
smaller difference for the maximum value of SAR1g was obtained within fatty tissue and
amounts to 10.89 W/kg. A similar difference can be observed also within muscle tissue
and amounts to 10.83 W/kg. According to the graph shown in Figure 11, it can be noticed
that the value of SAR1g inside the tissues behind the cranial implant (skull, cerebrospinal
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fluid, and brain) falls to a value of 0 W/kg, while those values for the model without the
cranial implant are 1.73 W/kg, 1.24 W/kg, and 0.78 W/kg, respectively.

Based on the results obtained for SAR10g along curve C (Figure 12), it can be concluded
that SAR10g is higher only within the skin for the model with a cranial implant. The
maximum value of SAR10g inside the skin for the model with a cranial implant is 4.08 W/kg,
while this value is 2.81 W/kg without the implant. Within the other biological tissues, it
can be concluded from Figure 12 that the maximum values of SAR10g are higher in the
model without the cranial implant. As in the case of SAR1g, the value of SAR10g drops to
0 W/kg within the biological tissues located behind the cranial implant in relation to the
source of electromagnetic radiation.

The local SAR10g values (Figure 12) are smaller than the local SAR1g values (Figure 11)
at the same points of the head model. This difference in local SAR distributions occurs
because spatial averaging is performed over different size regions. The increased averaging
volumes in SAR10g calculations result in a larger spatial smoothing effect. The SAR10g
typically underestimates the locally absorbed electromagnetic energy, especially in regions
with relatively focused SAR local maxima.

According to standard [16], the maximal calculated SAR1g, SAR10g, and electric field
values for the head without an implant occur inside the skin and exceed the limits 2.2, 1.4,
and 2.3 times, respectively. These values for the head with an implant are 7.7, 2.04, and 6.7,
respectively. The area of the brain remains inside the safe ranges in both cases.

5. Conclusions

The presence of a titanium cranial implant inside the head of a mobile phone user
increases the highest values of electric field and specific absorption rate within the surface
layers of the head model (skin, fatty tissue, and muscle). This is directly caused by a
reflection of the electromagnetic field induced by a mobile phone. On the other side,
titanium cranial implants reduce the penetration depth of the electromagnetic wave of the
radiation source, which results in lower SAR values and electric field intensity within the
deeper layers of the user’s head model (skull, cerebrospinal fluid, and brain). In this case,
a cranial implant acts as a shield in terms of a penetrating electromagnetic field for the
deeper layers of the head model (skull, cerebrospinal fluid, and brain).

SAR and electric field values in superficial head layers exceed the limits set by the
standards of the Republic of Serbia [16]. The inner layers of the head remain within
permissible ranges.

Our future work will focus on frequencies of the 5G generation of mobile communica-
tion networks. It will also include different orientations, locations, and sizes of implants.
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