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Abstract: To enhance the control performance of a wire-controlled steering system, an improved
sparrow search algorithm for fine-tuning the gains of a proportional–integral–derivative (SSA-PID)
steering motor control algorithm is proposed. Mathematical models of the steering system and
motor were derived based on an analysis of the system’s structure and dynamics. A PID controller
was developed with the aim of facilitating the precise control of the steering angle by targeting
the angle of the steering motor. The population diversity in the sparrow algorithm was enhanced
through the integration of a human learning mechanism along with a Cauchy–Gaussian variation
strategy. Furthermore, an adaptive warning strategy was implemented, which employed spiral
exploration to modify the ratio of early warning indicators, thereby augmenting the algorithm’s
capacity to evade local optima. Following these enhancements, an SSA-PID steering motor control
algorithm was developed. Joint simulations were performed using the CarSim software 2019.1 and
MATLAB/Simulink R2022a, and subsequent tests were conducted on a wire-controlled steering
test rig. The outcomes of the simulations and bench tests demonstrate that the proposed SSA-
PID regulation algorithm is capable of adapting effectively to variations and disturbances within
the system, facilitating precise motor angle control and enhancing the overall reliability of the
steering system.

Keywords: steering by wire; improved sparrow search algorithm; PID control; bench test; vehicle
dynamics

1. Introduction

The advancement of driverless technology significantly influences the direction of
future automobile development. Traditional steering systems increasingly fail to meet the
electrified control requirements that are essential for automated driving. The advance-
ment of steering-by-wire systems has been identified as a pivotal aspect in facilitating
autonomous driving capabilities, as discussed in [1]. In these systems, the mechanical link
between the steering wheel and the steering mechanism is replaced with an electric motor,
which allows for direct operation of the steering mechanism. Therefore, precise control
of the steering motor angle is considered essential [2]. However, challenges associated
with the development of control algorithms for linear steering systems have impeded their
widespread implementation in the automotive sector. This study presents an enhanced
iteration of the sparrow search algorithm, which is renowned for its expeditious conver-
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gence, with the objective of optimizing the performance of a PID controller while striving
to reduce cornering errors in the steering system.

For research on steering-by-wire systems, some scholars have adopted sliding-mode
control (SMC), model predictive control (MPC), learning-based control, etc. To enhance the
accuracy and robustness of the system and enable vector control of brushless DC motors
in [3], an adaptive sliding-mode observer was developed to replace the velocity sensor.
Control was achieved by observing the motor’s induced electromotive force, eliminating
the need for a velocity sensor. Due to the advantages of high power density and fast
response, the comprehensive performance of permanent-magnet synchronous motors is
better than that of brushless DC motors in steering system applications [4]. Reference [5]
proposed a controller that combines LuGre dual observers and backstepping to respond to
external disturbances and flutter using adaptive SMC. In [6], an innovative adaptive fast
overtwist sliding-mode control (AFST-SMC) strategy was proposed, employing time-delay
estimation (TDE) to optimize the performance of SBW systems by modifying the gain based
on control errors. However, the sliding-mode variable-structure control strategy has high
requirements for the nonlinearity and uncertainty of the system, and it requires a more
accurate model and parameter estimation. In [7], an adaptive hierarchical control method
was proposed, based on the VSR strategy of the Adaptive Network Fuzzy Inference System
(ANFIS) and an integrated sliding-mode design. The proposed method was observed
to accurately track both the expected yaw rate and front wheel rotation angle, thereby
enhancing the stability and accuracy of the SBW system when operating in low positions.
In order to make the prediction and optimization of the model more accurate, an observer
and sliding-mode predictive control (DSMPC) were combined to solve the uncertainty and
input constraints of a system and enhance the lateral stability [8]. In [9], model predictive
control (MPC) was used to optimize the steering angle in an SBW system to improve its
dynamic performance and stability. To enhance real-time control performance, researchers
have investigated extreme learning machines. In the study [10], authors proposed a robust
adaptive terminal sliding-mode (AITSM) control strategy that employs an extreme learning
machine (ELM) to guarantee the convergence of errors and precise estimation of uncertainty.
As demonstrated in [11], the ability of the sideslip angle, as well as the yaw rate, to converge
was constrained, and the system exhibited a lack of robustness. To address this, the authors
proposed using ARITSM for the upper controller and FNTSM for the lower controller.
Simulation experiments demonstrated the effectiveness of this control scheme, achieving
decoupling and optimization of the SBW system’s steering performance.

PID controllers offer fast response times and high control accuracy, making them
suitable for widespread use in electronic control systems. Compared to SMC, MPC, and
extreme learning machines, they are particularly efficient in these aspects. The whale
optimization algorithm was employed in [12] to determine the optimal PID controller
parameters. The algorithm’s optimization ability and convergence speed were enhanced
by improving the population iteration updating method and incorporating an adaptive
learning strategy. In [13–15], the BP neural network training method was integrated into
the PID control strategy, resulting in enhanced performance and robustness of the regulated
system. In conventional PID controllers, the control output is determined by measuring
the magnitude of the system error, its rate of change, and integrating the error over time.
However, PID controllers usually require the manual tuning of parameters and may not
perform well for nonlinear, time-varying, or complex systems. A superior solution can be
identified using the sparrow search algorithm (SSA) through a global search within the
solution vector space. This makes it highly adaptable to complex nonlinear systems and
multi-peak optimization problems, and the individuals in the algorithm population are
adaptive and can adjust to the needs of the current environment. The sparrow algorithm
facilitates the automatic adjustment of search strategies and parameter values in accordance
with a problem’s characteristics, thereby enhancing the robustness and stability of the PID
controller. Using the sparrow algorithm for parameter optimization in a PID controller
improves the system’s control performance and response speed.
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Various improvement strategies for addressing local optima in the SSA were sum-
marized in [16]. A hybrid approach combining the strengths of the artificial bee colony
algorithm and the SSA was proposed to improve optimization performance [17]. An
improved SSA was introduced in [18], utilizing the Levy flight strategy to boost global
optimization capabilities. The enhancement of population diversity was achieved in [19]
through chaotic mapping combined with a greedy strategy, thereby improving the algo-
rithm’s effectiveness against local optima. In [20], a hybrid strategy was employed to
augment the quality, diversity, and search capability of the preliminary population. This
resulted in improved convergence accuracy and speed in specific application scenarios.
The approach of chaotic mapping, as described in [21], was used to optimize both the
quality and quantity of the explorer subpopulation within the SSA, thereby enhancing
the global search ability of the system. In order to enhance the algorithm’s capacity to
circumvent local optima, a two-sample learning strategy was employed to update the
follower positions. An inverse learning strategy was utilized in [22] to enhance individ-
ual exploration abilities, along with improvements to the flexible strain mechanism via
a perturbation operator, adaptive weight factor, and sine–cosine factor. Additionally, a
penalty processing mechanism was developed for vigilantes to ensure appropriate search
solutions for individuals outside the boundary, thus guaranteeing the full utilization of each
sparrow’s value. However, while enhancing the algorithm’s ability to search for optimal
solutions, more arithmetic power and more accurate test functions are needed to meet the
algorithm’s operational requirements.

To address the issues mentioned above, this study introduces a steering-by-wire motor
control method that uses an enhanced SSA-PID algorithm. A novel adaptive early warning
strategy based on spiral exploration is proposed with the objective of enhancing the spar-
row algorithm’s capability to escape local optima. This is achieved by incorporating the
human learning mechanism and the Cauchy–Gaussian mutation strategy, which increases
population diversity in the algorithm. Then, the SSA-PID steering motor control algorithm
is designed and improved. The proportional, integral, and differential coefficients are
adjusted using the improved sparrow algorithm to achieve precise control of the system. To
augment the anti-interference capacity of the control system, the nonlinear characteristics
of the permanent-magnet synchronous motor and the impact of permanent-magnet encap-
sulation are taken into account. The objective of this study was to enhance the stability of
the steering-by-wire system by reducing external interference and incorporating current
compensation into the motor signal input. In the initial phase of the enhanced sparrow
algorithm, the discrepancy between the actual and target motor angles is utilized as the
fitness value. Subsequently, an iterative optimization process is employed in order to deter-
mine the optimal PID controller parameters. Then, the output of the PID controller is used
as a control signal and input to the steering motor to achieve accurate control of the rotation
angle. Due to the real-time acquisition of corner information and the iterative calculation
of control signals, the method has high real-time performance and can quickly respond to
system changes. The PID controller can adapt to changes and disturbances in the system,
making the control of the steering motor more stable and reliable. Considering that actuator
wear will reduce performance over time, the experimental rig will be maintained at the end
of its use to extend its service life. In order to avoid the influence of temperature, humidity,
light, and other environmental factors, the entire test bench is placed in a separate room,
isolating it from such factors to ensure the stability of the test environment.

The remainder of this article is structured as follows. Section 2 elucidates the structure
and operational principle of the wire-controlled steering system and presents the mathe-
matical models of both the vehicle and the steering system. In Section 3, a mixed-strategy
improved SSA based on PID control is proposed for the modeling of the steering motor’s
PMSM, and the effect of the improved algorithm is verified and applied. In Section 4,
steering pedestal experiments are conducted to test the control strategy for the steering
motor and the improved algorithm. Subsequently, the results are subjected to a comparative
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analysis with the data obtained from the simulation. Finally, the work carried out in this
study is summarized in Section 5.

2. Modeling of Steering-by-Wire Systems
2.1. Structure and Working Principle of the Steering-by-Wire System

As shown in Figure 1, the steering-by-wire system includes a steering wheel module,
a steering actuator module, and an electronic control unit (ECU). During operation, signals
from the steering wheel are monitored using torque and angle sensors and transmitted
to the ECU via a communication bus. Vehicle status information, such as speed, is also
received by the ECU. The front wheel’s steering angle is calculated by the control unit based
on a specified algorithm, and this angle signal is sent to the steering motor through the
communication bus to initiate the steering action [23]. The ECU calculates the torque of the
road-sensing motor using the return torque. This feedback is then transmitted to the driver
through the steering wheel, simulating the sensation provided by a mechanical connection.

Figure 1. Schematic diagram of the structure of the steering-by-wire system.

2.2. Modeling of the Steering-by-Wire System

The steering-by-wire system consists of a steering wheel module and a steering actua-
tion module [24]. The dynamic balance equation for the steering wheel module is derived
through a detailed analysis of the steering wheel and column, as outlined below:

Tsw = Jsw ¨θsw + Bsw ˙θsw + Ksw

(
θsw − θm

Gm

)
+ Tf (1)

In this context, Tsw represents the steering wheel’s input moment, Jsw denotes the rota-
tional inertia of the steering wheel assembly, Bsw = 0.366 N·m·s/rad indicates the steering
wheel’s damping coefficient, and θsw refers to the steering wheel’s angle. Ksw = 131 N·m/rad
is the steering wheel’s torsional stiffness, θm is the road-sensing motor angle, Gm = 17 is the
road-sensing motor’s reduction ratio, and Tf is the steering wheel assembly’s friction moment.

The system includes a steering motor and a steering actuator. The dynamic balance
equation for the steering motor is given by

TM = JM ¨θM + BM ˙θM + KM

(
θM − Xr

rp

)
/Gm + fM · sign

( ˙θM
)

(2)

In this context, TM denotes the output torque of the steering motor, JM represents
the motor’s rotational inertia, θM indicates the angle of rotation of the steering motor,
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BM = 0.00011 N·m·s/rad refers to the motor damping coefficient, KM = 172 N·m/rad
signifies the steering motor’s torsional stiffness, Xr represents the rack displacement,
rp = 0.00837 mm is the radius of the pinion indexing circle, GM denotes the steering motor’s
gear reduction ratio, and fM indicates the friction within the motor and reduction mechanism.

The power balance equation for the steering motor is

VM = LM · ˙iM + RM · iM + Kb · ˙θM (3)

The electromagnetic torque equation is

TM =
PMZMϕMiM

2πaM
= KM · iM (4)

In this context, VM represents the steering motor voltage, LM denotes the armature
inductance, iM indicates the motor current, RM = 0.44 Ω refers to the armature resistance,
Kb = 0.072 V·s/rad signifies the electromotive force coefficient, PM represents the steering
motor power, ZM denotes the number of turns of the armature winding, ϕM is the magnetic
flux per stage, and aM indicates the number of branch circuits in the armature winding.

The equilibrium equations for the rack and pinion dynamics are{
mrẌr + BrẊr + Fr = GMTM/rp

θsg = Xr/rp
(5)

In this context, mr = 4.21 Kg denotes the rack mass, Br = 1100 N·m·s/rad represents
the rack’s damping coefficient, Fr indicates the rack’s motion resistance, and θsg signifies
the pinion angle.

As an example, the steering wheel’s dynamic balance equation for a front-wheel-drive
model is

JFW1θFW1 + BFW1θFW1 = KFW1

(
Xr

NL1
− θFW1

)
− TF1 (6)

In this context, JFW1 denotes the rotational inertia of the left steering wheel,
BFW1 = 203 N·m·s/rad represents the damping coefficient of the left steering wheel,
θFW1 indicates the steering angle of the left steering wheel, KFW1 = 132 N·m/rad signifies
the torsional stiffness of the left steering wheel, NL1 represents the torsional stiffness from
the rack to the left steering wheel, and TF1 indicates the steering resistance moment of the
left steering wheel.

2.3. Simulation and Analysis of the Steering-by-Wire System
2.3.1. Variable-Ratio Design

To ensure the stability of the vehicle’s handling, a method based on a constant yaw
velocity gain is used to design the ideal transmission ratio [25]. This approach addresses
the limitations of the constant angular velocity gain, including its poor adaptability to
the dynamic system, low anti-interference capability, and mismatch with the vehicle’s
physical characteristics.

The two-degree-of-freedom model of the vehicle is represented as follows:
β(k1 + k2) +

1
u
(ak1 − bk2)ωr − k1θFW = m(v̇ + uωr)

β(ak1 − bk2) +
1
u

(
a2k1 + b2k2

)
ωr − ak1θFW = Izωr

(7)

In this context, β denotes the lateral deflection angle of the vehicle’s center of mass, and
k1 = 107,948.6 N/rad and k2 = 98,538.2 N/rad represent the lateral deflection stiffnesses of
the front and rear wheels, respectively. The variable u indicates the velocity component of
the center of mass in the direction of vehicle motion, while a = 1015 mm and b = 1895 mm
signify the distances from the front and rear axles to the center of mass, respectively. ωr
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represents the transverse angular velocity of the vehicle, m = 1341 Kg denotes the total
mass of the vehicle, and θFW = (θFW1 + θFW2)/2, with θFW2 indicating the steering angle
of the right steering wheel. Additionally, v represents the vertical velocity component of
the center of mass, and Iz denotes the rotational moment of inertia about the z-axis.

Let Kw represent the transverse pendulum angular velocity. In the two-degree-of-
freedom vehicle model, it is given by

ωr = Kw · θsw = Kw · θFW · G =
v · θFW

1 + mv2

L2

(
a

2k1
− b

2k2

) (8)

Here, G represents the steering ratio, and L = a+ b, L = 2910 mm denotes the distance
between the front and rear axles of the vehicle.

Consequently, the transmission ratio G is determined as follows:

G =
v

KwL
[
1 + mv2

L2

(
a

2k1
− b

2k2

)] (9)

Since the motor turning angle is the focus of this study, the transmission ratio G1
between the steering wheel and the steering motor must be established. For convenience,
the transmission ratio G2 between the steering motor and the wheel is set to 1.15, which is
calculated using the following transmission ratio formula:

G = G1 + G2 (10)

The transmission relationship between the steering wheel and the steering motor is
given by Equation (11), where Kw is set to 0.3 s−1:

G1 =
v

1.15KwL
[
1 + mv2

L2

(
a

2k1
− b

2k2

)] (11)

2.3.2. Simulation and Analysis of the Variable-Ratio-Based Steering Motor

In order to test the steering motor angle control effect, a variety of working conditions
were set up in the CarSim software to carry out joint simulations, as shown in Figure 2.

Figure 2. Steering motor angle curves under different operating conditions. (a) The steering motor
angle curves for under 60 km/h double-shift lane-changing conditions. (b) The steering motor angle
curves for under 90 km/h double-shift lane-changing conditions. (c) The steering motor angle curves
for under 60 km/h sinusoidal curve conditions. (d) The steering motor angle curves for under
90 km/h sinusoidal curve conditions.
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3. Research on the Steering Motor Control Algorithm
3.1. Steering Motor Modeling for the Steering-by-Wire System

High-precision steering control is achieved by precisely regulating the phase and
amplitude of the stator current in permanent-magnet synchronous motors, which offer
a higher torque density for increased output torque [26–28]. This characteristic makes
permanent-magnet synchronous motors particularly well suited for steering applications
that demand both high accuracy and substantial torque output. As a result, the steering
motor is classified as a three-phase permanent-magnet synchronous motor.

The three-phase windings inside the motor are arranged at 120° intervals. The chain
equation of the permanent-magnet synchronous motor (PMSM) in the ABC three-phase
coordinate system is as follows:φA

φB
φC

 =

 LA MAB MAC
MBA LB MBC
MCA MCB LC

iA
iB
iC

+

φA
f

φB
f

φC
f

 (12)

In this context, φA, φB, and φC represent the magnetic chains of the three-phase
windings. LA, LB, and LC denote the self-inductances of these windings, while MAB,
MAC, MBA, MBC, MCA, and MCB indicate the mutual inductances between the three-phase
windings. The currents in the windings are represented by iA, iB, and iC, and φA

f , φB
f , and

φC
f denote the magnetic chains of the three-phase windings generated by the magnetic field

of the permanent magnet’s excitation.
The voltage balance equation, typically employed in the context of permanent-magnet

synchronous motors, is commonly written in the following form:uA
uB
uC

 =

R 0 0
0 R 0
0 0 R

iA
iB
iC

+

L 0 0
0 L 0
0 0 L

 d
dt

iA
iB
iC

− ωr φ f

 cos θ
cos(θ − 2π/3)
cos(θ + 2π/3)

 (13)

where uA, uB, and uC are the phase voltages of the three-phase motor and R is the three-
phase stator resistance.

The equation for the motor’s electromagnetic torque is usually written as follows:

Te = −Pφ f [iA sin θ + iB sin(θ − 2π/3) + iC sin(θ + 2π/3)] (14)

where P is the number of pole pairs of the motor rotor.
To simplify the mathematical model of the complex nonlinear system of the permanent-

magnet synchronous motor (PMSM) and aid in control decoupling, a coordinate system
transformation is necessary.

After applying the Clarke and Park transformations, the three-phase coordinate system
undergoes a transition to become a two-phase stationary system. Subsequently, the α-β
coordinates are multiplied by a rotation matrix, thereby deriving the d-q coordinate system.

The current in the d-q coordinate system is given by[
id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

][
iα

iβ

]
(15)

In the d-q rotating coordinate system, id and iq represent the currents, while iα and iβ

represent the currents in the α-β rotating coordinate system.
As a result of the Park transformation, the equation expressing the voltage balance is

given by [
ud
uq

]
=

[
R −ωLs

ωLs R

][
id
iq

]
+ L

d
dt

[
id
iq

]
+

[
0
ω

]
(16)

In the d-q rotating coordinate system, ud and uq denote the voltages.
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The transformed electromagnetic torque equation is

Te =
3
2

P
(

φdiq − φqid
)
=

3
2

Pφ f iq (17)

where φd and φq are the magnetic chains of the d and q axes, respectively.
The equation shows that the motor’s electromagnetic torque can be controlled by

adjusting the magnitude of the q-axis current.

3.2. Improved SSA-PID Algorithm

This study uses the SSA-PID control algorithm to adjust the motor angle. The param-
eters of PID control (KP, KI , and KD) can be set by humans, and the control parameter
values can be gradually changed to change the control effect. However, this method is very
cumbersome, as it is not only time- and labor-consuming but also fails to reach the ideal
state in terms of the control effect [29]. Using the sparrow search algorithm to determine
the parameters can enhance both control stability and effectiveness. The PID controller, in
conjunction with the optimization algorithm, is utilized for motor corner-tracking control,
effectively enhancing the corner-following capability and steering motor accuracy. The
control strategy is illustrated in Figure 3.

Figure 3. Block diagram of SSA-PID control algorithm.

Several improvements were proposed to the sparrow search algorithm (SSA) to im-
prove its convergence speed and accuracy. Modifications were made to overcome the
SSA’s tendency to converge to local optima and enhance population diversity. A human
learning mechanism was introduced to modify the update method for the individual with
the worst fitness, promoting greater population diversity. Additionally, the Cauchy and
Gaussian variation methods were applied to determine the step size of the variation for
each individual based on its ranking position. Furthermore, the global search capability
of the SSA’s alarmers was enhanced through the implementation of spiral variation. To
further accelerate the convergence speed, the number of alarmers was optimized using a
linearly decreasing approach. The improvements are described as follows:

(1) Sparrow Algorithm Based on Human Social Learning Behavior

As the algorithm iterates, each individual in the population approaches the optimal
value, resulting in a rapid decline in population diversity and a reduction in conver-
gence accuracy [30]. To solve this problem, the idea of human social learning behavior
is introduced to improve population diversity. Improvements are made to the updating
method for individuals in the population through this idea. The specific improvements are
detailed below.
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The worst-adapted individual during each iteration, i.e., the worst individual globally,
Xworst, is defined as follows:

Xworst = max{Fit(X1), Fit(X2), . . . , Fit(XM)} (18)

The learning factor r3 is introduced into the position update process for population
individuals to simulate human social learning behavior. This factor is defined as a random
number following a standard normal distribution, N (0,1). When r3 > 0, learning among
the population individuals is facilitated, resulting in increased energy values and improved
global optimization capabilities of the algorithm. In contrast, when r3 < 0, a penalty is
applied to learning, improving the algorithm’s local search capability. To lessen the impact
of a single parameter on the algorithm’s optimal solution, two additional random learning
factors, r1 and r2, are introduced. These factors are defined as random numbers within the
interval [0, 1] and follow a uniform distribution, with the constraint that r1 + r2 = 1. The
position update formula is then revised as follows:

Xd
i (t + 1) = Xd

i (t) + r1

[
Pd

best(t)− Xd
i (t)

]
+ r2

[
Gd

best(t)− Xd
i (t)

]
+ r3

[
Xd

worst(t)− Xd
i (t)

]
(19)

In this context, Xd
i (t + 1) represents the updated position of the population individuals,

Xd
i (t) denotes the current position, Pd

best(t) signifies the historical optimal solution, and
Gd

best(t) indicates the global optimal solution.

(2) Cauchy–Gaussian Variation Strategy

To address the issue of sparrow individuals in the sparrow algorithm tending to
experience individual assimilation in the later iterations, which leads to locally optimal
solutions, a Cauchy–Gaussian mutation strategy is introduced. Following the mutation
of individuals with optimal fitness using the Cauchy–Gaussian operator, a comparison
of their positional energy values before and after the mutation is made. The individual
exhibiting the highest positional energy value is selected for substitution in the subsequent
iteration [31]. The formula is as follows:

Xd
i (t + 1) = Xd

best(t) +
[

Xd
i (t)− Xd

k (t)
]
·
[
λ1Cauchy

(
0, σ2

)
+ λ2Gauss

(
0, σ2

)]
(20)

In this context, Xd
i is designated as the position of the optimal-fitness individual fol-

lowing the mutation, Xd
best represents the position of the current optimal individual, and

Xd
k denotes a randomly selected individual in the d-th dimension and k-th instance. The

parameters λ1 and λ2 are updated throughout the iterations. The function Cauchy() repre-
sents a random parameter that follows the Cauchy distribution, while Gauss() represents a
random parameter that follows the Gaussian distribution.

σ =


1, f (Xbest) < f (Xi)

exp
(

f (Xbest)− f (Xi)

| f (Xbest)|

)
, otherwise.

(21)

(3) Adaptive Predictive Warning Based on Spiral Exploration

To address the sparrow algorithm’s rapid convergence and strong optimization ability,
as well as its tendency to fall into local optima, an updating strategy is proposed. This
strategy enables the proportion of early-warning individuals to undergo a spiral change
with respect to the number of iterations. In the first half of the algorithm’s iterations, the
spiral change enhances the global search capability. In the second half, the quantity of
early-warning individuals is decreased using a linear-decreasing method. This approach
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aims to avoid local optima and improve the algorithm’s convergence speed. The update
process for the number of alarmers is as follows:

N f =


int

[
z · Nt

f · exp(−i/α · Maxiter)
]
, 0 < t ≤ Maxiter/2

Nmax − int
[

t2 · Nmax − Nmin
Maxiter

]
, Maxiter/2 < t ≤ Maxiter

(22)

In this context, N f represents the proportion of early warners, z denotes the spiral
exploration factor, t indicates the current iteration number, α is a random number between
0 and 1, Maxiter is the maximum number of iterations, Nmax is the maximum number of
early warners, and Nmin is the minimum number of early warners. The maximum number
of early warners is set to 20% of the population, while the minimum number is set to 10%.

Based on the improved strategy described above, the improved hybrid sparrow search
algorithm (HSSA) is proposed, and its flowchart is illustrated in Figure 4. To validate
the optimization capabilities of the HSSA, both single-peak and multi-peak functions are
employed to assess the convergence speed and accuracy. The functions to be tested are
listed in Table 1, and the results are shown in Figure 5. Functions F1 to F3 are associated with
single-peak functions, which typically contain a single global optimal solution. In contrast,
functions F4 to F6 represent multi-peak functions, which are characterized by multiple
locally optimal solutions. Single-peak functions are utilized to evaluate the algorithm’s
convergence accuracy and speed, whereas multi-peak functions are primarily used to
examine the algorithm’s capacity to escape local optima [32]. Figure 5a–f show the solution
iteration results of the HSSA and SSA for test functions F1 to F6, respectively.

Figure 4. Flowchart illustrating the enhanced sparrow algorithm.

The convergence curves for the test functions in Figure 5 reveal that functions F1,
F3, F4, and F5 display slow convergence prior to 300 iterations. This is attributed to the
introduction of the Cauchy–Gaussian variation strategy, human learning mechanism, and
warning mechanism of spiral exploration, all of which preserve population diversity and
enhance the global exploration capability. After 300 iterations, a decrease in the number
of individuals is observed, resulting in an enhanced speed of convergence and increased
accuracy of the algorithm. Functions F2 and F6 are observed to reach local optima between
300 and 700 generations. The hybrid improvement strategy enhances the algorithm’s ability
to escape from local optima.
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Table 1. Standard test functions.

Test Function dim Range fmin

F1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

F2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10, 10] 0

F3(x) = max{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F4(x) = ∑n
i=1 −xi sin

√
|xi| 30 [−500, 500] −12,569.5

F5(x) 30 [−50, 50] 0

yi = 1 + (xi + 1)/4 30 [−50, 50] 0

u(xi, a, k, m) 30 [−50, 50] 0

F6(x) 30 [−50, 50] 0
F5(x), u(xi , a, k, m), and F6(x). See Appendix A for the specific formula.

To assess the stability of the improved algorithm, the means and standard deviations
of the test results were calculated and are shown in Table 2. The standard deviation of
the hybrid sparrow search algorithm (HSSA) was lower than that of the ordinary sparrow
algorithm (SSA), suggesting improved stability. Furthermore, the average value was found
to be closer to the optimal value, indicating an improvement in the optimization capability
of the HSSA. Overall, the results demonstrate that the HSSA converges faster and achieves
higher accuracy compared to the SSA.

Table 2. Comparison of the means and standard deviations of the test functions.

Test Function SSA HSSA
Average Value Standard Deviation Average Value Standard Deviation

F1 3.4904 × 10−44 1.1038 × 10−43 3.8067 × 10−95 1.1420 × 10−94

F2 2.0565 × 10−47 6.4096 × 10−47 1.9116 × 10−53 6.0450 × 10−53

F3 2.2373 × 10−26 7.0732 × 10−26 1.0811 × 10−42 3.4187 × 10−42

F4 −1.0056 × 104 3.0748 × 103 −1.2561 × 104 2.1879 × 101

F5 4.5555 × 10−6 2.2426 × 10−6 1.3866 × 10−12 2.9431 × 10−12

F6 4.5700 × 10−3 5.8466 × 10−3 5.2126 × 10−11 8.6025 × 10−11
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Figure 5. Comparative results of testing the optimization algorithm. (a) The convergence curve for
the F1 test function. (b) The convergence curve for the F2 test function. (c) The convergence curve for
the F3 test function. (d) The convergence curve for the F4 test function. (e) The convergence curve for
the F5 test function. (f) The convergence curve for the F6 test function.
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3.3. Simulation Analysis of the Steering Motor

The improved hybrid sparrow search algorithm (HSSA) was utilized for the parameter
adjustment of PID control. The three PID parameters were defined as the population
individuals in the sparrow algorithm. A target corner was defined according to the steering
motor’s operating conditions. The algorithm then automatically adjusted the PID con-
troller’s parameters based on the cornering error’s fitness value. This adjustment aimed to
stabilize the actual corner of the motor near the target value.

The first step was to set the sparrow population size to 30, ensuring a broader solution
space. Typically, the population size ranges from 30 to 50, with explorers making up 10% to
20% of the total. The algorithm was set to a maximum of 100 iterations. The upper and
lower bounds for the initialization position (UB and LB) were determined based on the
dimension of the benchmark function. To enhance search response speed, the safety value
(R2) and warning value (ST) were set between 0.6 and 0.8, as shown in Table 3.

Table 3. Algorithm parameters and controller parameters.

Algorithm Parameter Value

PID parameter range [−100, 100]
Number of algorithm iterations 500

Population size 30
PID controller parameters Kp = 10.283; Ki = 1.641; Kd = 0.065

Figure 6a displays the simulation results of the motor angle under double-lane-change
conditions at a vehicle speed of 60 km/h, while Figure 6b shows the results at a speed of
90 km/h. Similarly, Figure 7a presents the simulation results of the motor angle under
sine-wave conditions at 60 km/h, and Figure 7b illustrates the results at 90 km/h.

(a) (b)

Figure 6. The simulation curves of the motor angle under double-lane-change conditions. (a) The
simulation curve of the motor angle for the double-lane-change condition at a speed of 60 km/h.
(b) The simulation curve of the motor angle for the double-lane-change condition at a speed of
90 km/h.

Table 4 presents a summary of the simulation results for the double-lane-change con-
ditions, displaying the mean and standard deviation of the steering motor angle deviations
at vehicle velocities of 60 km/h and 90 km/h. At 60 km/h, the mean steering angle error
with HSSA-PID control was 0.3582°, and the standard deviation was 0.3625, represent-
ing reductions of 74.58% and 76.02%, respectively, compared with SSA-PID control. At
90 km/h, the mean error with HSSA-PID control was 0.3516°, and the standard deviation
was 0.3220, indicating decreases of 57.24% in the mean error and 53.07% in the standard
deviation compared with SSA-PID control.
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(a) (b)

Figure 7. The simulation curves of the motor angle under sine-wave conditions. (a) The simulation
curve of the motor angle under sine-wave conditions at a speed of 60 km/h. (b) The simulation curve
of the motor angle under sine-wave conditions at a speed of 90 km/h.

Table 4. Simulation data errors for different vehicle speeds under double-lane-change conditions.
AVMSAE: average value of the motor’s steering angle error; SDMSAE: standard deviation of the
motor’s steering angle error.

Control Strategy 60 km/h HSSA
AVMSAE SDMSAE AVMSAE SDMSAE

SMC 3.8890 4.0981 2.9424 2.4517
MPC 1.4795 1.5872 0.8634 0.7205

SSA-PID 1.4090 1.5116 0.8223 0.6862
HSSA-PID 0.3582 0.3625 0.3516 0.3220

The simulation results for the sine-wave conditions, including the mean and standard
deviation of the steering motor angle errors at vehicle speeds of 60 km/h and 90 km/h,
are presented in Table 5 . At 60 km/h, a mean steering angle error of 1.3505° was observed
with HSSA-PID control, and the standard deviation was recorded at 2.0185°. These results
indicate reductions of 8.88% in the mean error and 20.04% in the standard deviation when
compared with SSA-PID control. At 90 km/h, the mean error with HSSA-PID control was
observed to be 0.9567°, with a standard deviation of 1.2722°. This reflects decreases of
23.50% in the mean error and 26.83% in the standard deviation relative to SSA-PID control.

Table 5. Simulation data errors for different vehicle speeds under sinusoidal conditions.

Control Strategy 60 km/h HSSA
AVMSAE SDMSAE AVMSAE SDMSAE

SMC 7.3167 3.5783 6.2324 3.4678
MPC 1.5563 2.6507 1.3131 1.8255

SSA-PID 1.4822 2.5245 1.2506 1.7386
HSSA-PID 1.3505 2.0185 0.9567 1.2722

According to the simulation results of the step condition, the maximum overshoot of
the amplitude under the control of HSSA-PID was reduced by 2.96% compared with the
maximum overshoot under the control of SSA-PID. When the load was added at 0.7 s, the
peak time and steady-state error under HSSA-PID control were not significantly different
from those of SSA-PID, but they were improved compared with SMC and MPC.The
simulation results are shown in Figure 8 and the specific data are shown in Table 6.
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Figure 8. Step condition simulation curve.

Table 6. Comparison of simulation data under step operating conditions.

Control Strategy 0.7 s Before 0.7 s Later
Maximum Overshoot Peak Time Steady-State Error

SMC 0.03176 0.12100 0.10695
MPC 0.00938 0.19300 0.10427
SSA-PID 0.03937 0.81400 0.10052
HSSA-PID 0.00860 0.81800 0.10048

4. Test Bench of the Steering-by-Wire System Steering Motor
4.1. Construction of Test Bench

To evaluate the reliability of the control strategy for practical applications, a test bed for
the steering-by-wire system was constructed, as depicted in Figure 9. This setup included a
steering wheel, a corner sensor, a steering-by-wire ECU, wheels, a rack-and-pinion steering
gear, steering motors, an inferior unit, and an upper unit. The test process was as follows:
first, power was supplied to the upper unit, inferior unit, steering wheel, and steering
system. Then, the model built on the computer was compiled into a file type that could
be recognized by the upper computer. The road conditions and operating conditions were
established in the CarSim 2019.1 software, compiled, and sent to the VeriStand 20202 R4
software, where it was possible to connect the model and road condition information of the
upper computer with the real-time signals of the vehicle steering system received by the
inferior unit through a communication protocol, thus completing the acquisition of test data.

Figure 9. Test rig for the steering-by-wire system.
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4.2. Test Results and Analysis

In the CarSim software, the operating conditions were initially set to 60 km/h for
the double-lane-change scenario, as shown in Figure 10a. To evaluate the impact of the
variable-transmission ratio, the vehicle speed was increased to 90 km/h. The results for
the double-lane-change conditions are presented in Figure 10b. The test curves for the
sine-wave conditions at 60 km/h and 90 km/h are shown in the subsequent Figure 11.

(a) (b)

Figure 10. Motor angle test curves for double-lane-change conditions. (a) Motor angle test curve
for double-lane-change conditions at 60 km/h. (b) Motor angle test curve for double-lane-change
conditions at 90 km/h.

(a) (b)

Figure 11. Motor corner test curves for sine-wave conditions. (a) Motor corner test curve for sine-wave
conditions at 60 km/h. (b) Motor corner test curve for sine-wave conditions at 90 km/h.

Table 7 presents the outcomes of the double-lane-change condition test, exhibiting the
mean and standard deviation of steering motor angle errors at vehicle speeds of 60 km/h
and 90 km/h. At a speed of 60 km/h, the mean steering angle error under HSSA-PID
control was 2.5155°, with a standard deviation of 1.8930. These values reflect a 17.11%
reduction in the mean error compared with SSA-PID control and an 18.18% decrease in
standard deviation relative to SSA-PID control. At a speed of 90 km/h, the mean steering
angle error under HSSA-PID control was 2.5343°, with a standard deviation of 1.8969,
representing a 13.19% reduction in the mean error compared with SSA-PID control, along
with a 14.00% decrease in the standard deviation.

Table 8 presents the simulation results under sinusoidal conditions, including both
the mean value and the standard deviation of the steering motor angle errors at speeds
of 60 km/h and 90 km/h. At 60 km/h, the mean steering angle error under HSSA-PID
control was 2.9477°, with a standard deviation of 2.3878. These values represent an 11.25%
reduction in the mean error compared with SSA-PID control and a 17.20% reduction in the
standard deviation. A mean steering angle error of 2.5197° was observed for the HSSA-PID
control system at a speed of 90 km/h, with a standard deviation of 1.9768. This represents
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a 10.94% reduction in the mean error and a 10.20% reduction in the standard deviation
compared to SSA-PID control.

Table 7. Test data errors for different vehicle speeds under double-lane-change conditions.

Control Strategy 60 km/h HSSA
AVMSAE SDMSAE AVMSAE SDMSAE

SMC 5.3104 4.7104 3.9607 3.0146
MPC 3.1863 2.4291 3.0654 2.3161

SSA-PID 3.0346 2.3134 2.9194 2.2058
HSSA-PID 2.5155 1.8930 2.5343 1.8969

Table 8. Test data errors for different vehicle speeds under sinusoidal conditions.

Control Strategy 60 km/h HSSA
AVMSAE SDMSAE AVMSAE SDMSAE

SMC 7.1885 4.9050 6.4055 3.9956
MPC 3.4874 3.0282 2.9707 2.3114

SSA-PID 3.3213 2.8840 2.8292 2.2013
HSSA-PID 2.9477 2.3878 2.5197 1.9768

5. Conclusions

In view of the hardware limitations and safety problems that commercial vehicles may
face when implementing the SSA-PID algorithm, this study turned to a test bench designed
based on a specific model by Chery for verification. The test bench covered the key motion
control aspects of the vehicle, such as steering and acceleration, and was designed to
simulate the dynamic response of a vehicle under real road conditions. Through a series of
experimental verifications on the bench, the feasibility of the proposed control algorithm
under hardware constraints was ensured, and its influence on vehicle-handling stability
and dynamic vehicle performance was evaluated. This method not only effectively avoids
the risks caused by hardware and safety concerns but also provides an experimental basis
for promoting the implementation of these research results in actual commercial vehicles in
the future, as well as the close integration between research and applications. Following an
analysis of the steering control stability issue in the steering-by-wire system, the following
conclusions were reached:

(1) To enhance the steering motor’s angle control accuracy in the steer-by-wire system, an
improved SSA-PID control strategy was developed. Considering that actuator wear
and tear may affect performance during use, the test bench will be maintained after
the end of service to extend its service life.

(2) The population diversity of the sparrow algorithm was increased by incorporating
a human learning mechanism and a hybrid Cauchy–Gaussian mutation strategy.
In order to enhance the exploration of the solution space and improve both the
efficiency of the algorithm and its capacity to circumvent local optima, an adaptive
spiral exploration method was introduced. This method updates the characteristics of
the warning agents in the sparrow algorithm. As a result, a hybrid sparrow search
algorithm (HSSA) was developed; it incorporated these enhancement strategies and
was subsequently applied to the PID control system of the steering motor.

(3) The integration of the algorithm and the verification of its control effects were con-
ducted on the test bench. A comparison with other control algorithms revealed that
HSSA-PID control outperformed both SMC and SSA-PID control. The experimental
results indicated that, under double-lane-change conditions, the mean cornering er-
rors of steering motors controlled by HSSA-PID at speeds of 60 km/h and 90 km/h
were reduced by 17.11% and 13.19%, respectively, while the standard deviations of
the cornering errors were decreased by 18.18% and 14.00% compared with those
of SSA-PID control. Under sine-wave conditions, the mean cornering errors were
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reduced by 11.25% and 10.94%, with the standard deviations decreasing by 17.20%
and 10.20%, respectively. The implementation of current compensation in the motor
signal input was shown to effectively reduce external interference and the nonlinear
effects within the system. This modification ensures a stable response of the steering
motor to commands and enhances corner tracking control in the steer-by-wire system.
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