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Abstract: In complex and diverse practical application scenarios, the challenge of blind source separa-
tion under underdetermined and nonlinear conditions is often encountered. To address this challenge,
this paper proposes an innovative underdetermined nonlinear bounded component analysis method.
This method first employs Multivariate Nonlinear Chirp Mode Decomposition (MNCMD) to process
and reconstruct the observed signals, transforming the original underdetermined problem into a
positive definite problem. Subsequently, Gaussianization techniques are introduced as a means of
nonlinear compensation, successfully converting the nonlinear model into an analyzable linear model,
laying a solid foundation for subsequent signal separation. Finally, the signal is separated by the
bounded component analysis method, which does not require the source signals to be independent
of each other. To validate the effectiveness and superiority of the proposed algorithm, detailed
simulation experiments were designed and implemented. The experimental results demonstrate
that compared to traditional underdetermined blind source separation algorithms, the algorithm
presented in this paper exhibits significant advantages in terms of universality, convergence speed,
separation accuracy, and robustness. Furthermore, this paper successfully applies the algorithm to
the blind extraction of fetal electrocardiogram (FECG) signals from real datasets. The experimental
results show that the algorithm can rapidly and effectively extract clearer and more accurate FECG
signals, demonstrating its great potential and value in practical applications.

Keywords: multivariate nonlinear chirp mode decomposition; bounded component analysis; blind
source separation; underdetermined and nonlinear; fetal electrocardiogram

1. Introduction

Blind source separation (BSS) is a signal processing method where, when the charac-
teristics and quantity of the source signal cannot be confirmed and the mixing matrix of
the transmission channel is also unknown, only the observed mixed signal can be used to
obtain the desired source signal for processing [1]. Its purpose is to restore the source signal
to the maximum extent through an estimation method. The underdetermined problem
refers to the fact that the number of observable signals is lower than the number of source
signals [2]. In practical applications, underdetermined BSS has become a hot research
topic due to various objective factors that can easily cause underdetermined problems. For
underdetermined BSS, research began in 1991, when J F. Cardoso proposed the use of the
fourth order cumulant method [3], followed by the underdetermined system localization
method [4] and sparse component analysis (SCA) [5], which became the mainstream. Do-
mestic scholars followed suit and proposed algorithms such as the parallel factor method
(PFA) [6], the embedded vector method [7], and the density space clustering method [8].
However, most of these algorithms are aimed at the simplest linear mixing and have limita-
tions when facing nonlinear mixing problems [9]. A nonlinear mixing problem refers to
the mixing model between source signals being nonlinear [10], which is usually caused by
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the observed signal undergoing nonlinear distortion, and often occurs in daily life. The
research on nonlinear BSS began relatively early. In 1992, Borel analyzed deterministic
nonlinear mixed models with unknown parameters in detail [11]. In recent years, popular
algorithms began to include the Bayesian method [12], the radial basis function neural
network method [13], the back propagation neural network algorithm [14], etc. However,
most of the current nonlinear BSS algorithms are still based on the positive definite case.
The common constraint of the above algorithms is that the source signals are required to be
independent of each other.

Bounded component analysis (BCA) is a new BSS method that has attracted scholars’
attention in recent years. In BCA, the hypothetical conditions of traditional BSS methods
are replaced with the boundedness of the signal, which utilizes the set compactness and
Cartesian separability of the source signal for separation. This assumption is more lenient
and allows for separation without the need for source signals to be independent of each
other [15]. Many scholars have made improvements to the BCA algorithm. Cruces proposed
the goal of minimizing the convex perimeter function to extract a single source signal from
a mixed signal [16]. Erdogan proposed a BCA method with the maximizing volume ratio
as the objective function [17]. Gong et al. [18] proposed a normalized boundary objective
function that simplifies the objective function of BCA.

Currently, most FECG signal extraction algorithms are devised based on ideal linear
instantaneous mixture models. However, these methods may encounter issues like often ne-
cessitating multi-channel ECG data, which adds complexity and resource consumption [19].
Considering that the maternal electrocardiogram (MECG) signal source is located far from
the fetal position in the abdomen, as it travels through internal organs to reach the fetus,
it inevitably undergoes nonlinear distortions. Hence, the measured mixture of maternal
and FECG signals in the abdomens of pregnant women is better modeled as a nonlinear
mixture model [20]. Therefore, FECG extraction can be used in applications involving
underdetermined nonlinear BSS algorithms.

This article proposes a nonlinear BCA algorithm based on MNCMD to solve problems
such as underdetermined observation signals, nonlinear mixing of source signals, and
non-mutual independence. This algorithm can extract and separate independent and non-
independent source signals from mixed signals without the need for prior information. The
computer experiments and the results of simulations involving clinical electrocardiogram
signal datasets and artificial synthesized electrocardiogram signal datasets have verified
the correctness and effectiveness of the algorithm proposed in this paper. At the same
time, it has been proven that this algorithm not only has stronger universality, but also
outperforms traditional FECG signal extraction algorithms in terms of accuracy.

2. Materials and Methods
2.1. Underdetermined Nonlinear Mixed Model

Assuming that the transmission of the signal is instantaneous, the mixed signals can
be expressed as follows:

xi(t) = fi(∑n
j=1 aijsj(t)), i = 1, . . . , m (1)

where xi(t) denotes the mixed signals received by sensors, sj(t) is the source signals, and
the above equation can be expressed as Equation (2) using a matrix.

x = f (As(t)) (2)

where s(t) = [s1(t), s2(t), s3(t) . . . sm(t)]
T . A is an m × n dimensional mixed matrix [21],

where m < n means that the number of observed signals is less than that of the source signal,
f is an unknown reversible nonlinear function, and aij (i, j = 1,2,. . . n) is an element of an
unknown nonsingular matrix A. The entire underdetermined nonlinear mixing process is
shown in Figure 1, and the nonlinear part occurs post nonlinear mixing [22].
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Separation under this condition should first solve the underdetermined problem of
signal elevation and then nonlinear BSS, as shown in Figure 2.
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The components of the output y(t) = [y1(t), y2(t) . . . yn(t)]
T in the figure are as follows:

yi(t) = ∑n
j=1 wijgj(hj(t); θj), i = 1, . . . , n. (3)

A nonlinear function gj(j = 1, 2. . ., n) with undetermined parameters θi is a parameter
adaptation function, which is used to correct the distortion caused by fi(i = 1, 2. . ., n);
wij(i, j = 1, 2. . ., n) is an element of an unknown n × n-order nonsingular matrix W. The
complete mixed separation system can be represented as follows:

e(t) = A∗s(t)
x(t) = f (e(t))

x(t) → (t)
z(t) = g((t))

y(t) = W∗z(t)

. (4)

If g = f−1 and W = PDA−1 (P and D are permutation matrices and diagonal scaling
matrices, respectively), then y(t) = P ∗ D ∗ s(t), i.e., separation is achieved, and the
output y is equal to the source signal after rearranging and scaling the components [23].

2.2. Nonlinear Bounded Component Analysis (NLBCA)

The biggest advantage of the BCA algorithm is that it can separate non-independent
signals, which brings stronger universality to blind source separation algorithms. Its basic
principle requires some necessary assumptions to be made [24,25]:

(1) Assume that the mixing matrix A has rank n, i.e., column full rank, i.e., the number
of sensors should be greater than or equal to the number of source signals.

(2) Assume that the distribution of source signals is bounded.
(3) Assume that the branch set S, consisting of the joint distribution of all source

signals, can be expressed by the Cartesian product of the branch set Si of each source signal:

S = S1 × S2 × · · · × Sn (5)

where n is the number of source signals and × denotes the Cartesian product.
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Assumptions (2) and (3) are weaker and more loosely constrained. Assumption (3) is
automatically satisfied when the signals are independent of each other, so the BSS algorithm
based on BCA has stronger generalizability.

With the help of the analysis above, it is clear that the BCA algorithm’s steps are
to find the separation matrix W when the mixed signal X is known, and then multiply
W by X to determine Y, which is the estimated value of the source signal S. Then, the
process of the BCA algorithm can be simply summarized as solving the separation matrix
to approximate the independent source signal, and the specific approximation method is
actually an optimization search of the established objective function.

In this paper, the normalized boundary objective function is selected as follows:

J(y) =
R̂(y)√
E{y2}

(6)

where y denotes the separation signal, E
{

y2} denotes the variance of y, and R̂(y) is the
boundary operator.

The idea of the NLBCA algorithm is to introduce a nonlinear unmixing function to
compensate for the observed signal, then select a normalized boundary objective function,
and solve the unmixing matrix W through an optimization algorithm, ultimately achieving
signal separation.

Assuming that v is the observed signal after nonlinear compensation,

v = F−1
v [Fx(x)]. (7)

The cumulative distribution function, Fx(x), of the observed signal x can be directly
obtained through the kernel estimation method. Based on the previous model, assuming
that Q is the covariance matrix of x, the normalized boundary objective function of nonlinear
BCA can be written as follows:

J(W) =
R̂(Wv)√
WQWT

. (8)

Since Equation (8) is non-differentiable and its gradient does not exist, a subgradient
algorithm is used to solve it. The update rules are as follows:

W(k) = W(k − 1) + δ(h(k − 1))−
1
2 (

R̂(W(k − 1)v)
h(k − 1)

W(k − 1)Q − b(k−1)T
m ) (9)

where h(k − 1) = W(k − 1)QW(k − 1)T, δ is the iteration step size. If the step size is fixed,
it will cause the algorithm to always miss the best advantage. It is necessary to gradually
reduce the step size value to ensure that the algorithm ultimately converges to the best
advantage. Here, the adaptive weight is used as the attenuation factor, and the specific
method is to handle the step size as follows:

δk = [cos
(

π × k
2 × M

+
π

2

)
+ 1]× δ0 (10)

where M is the maximum number of iterations, δ0 is the initial step size, and k represents
the k-th iteration. Let the set of moments at which the output value of the m-th path is
maximized and minimized during the (k − 1)-th iteration be γm+ and γm−, then:

b(k−1)
m = ∑

(k−1)m+∈γm+

τ
(k−1)
m+ (k − 1)m+y(k − 1)m+ − ∑

(k−1)m−∈γm−

τ
(k−1)
m− (k − 1)m−y(k − 1)m− (11)
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where y(k − 1)m+, y(k − 1)m− are the estimated vectors of the source signal at time

(k − 1)m+ and time (k − 1)m−, respectively, and τ
(k−1)
m+ (k − 1)m+ and τ

(k−1)
m− (k − 1)m−

are joint coefficients that satisfy the following:

τ
(k−1)
m+ (k − 1)m+ ≥ 0, (k − 1)m+ ∈ γm+, ∑(k−1)m+∈γm+

τ
(k−1)
m+ (k − 1)m+ = 1 (12)

τ
(k−1)
m− (k − 1)m− ≥ 0, (k − 1)m− ∈ γm−, ∑(k−1)m−∈γm−

τ
(k−1)
m− (k − 1)m− = 1. (13)

As the iteration progresses, the output scale may become larger or smaller, so it is
necessary to form constraints through normalization. The pseudocode of NLBCA is given
in Algorithm 1.

W(k) =
W(k)√

W(k)W(k)T
(14)

Algorithm 1 NLBCA

Inputs: maximum number of iterations M, line progress length δ0, initial matrix W(0),
iterations k = 0

1. Perform non-linear transformation on the observed signal x to obtain the nonlinear
compensated signal v

2. Normalize W(0) using Equation (14)
3. While k < M
4. k = k + 1

5. Calculate τ
(k)
m+(k)m+ using Equation (12)

6. Calculate τ
(k)
m−(k)m− using Equation (13)

7. Update the line progress length δ0 using Equation (10)
8. Update the W(k) using Equation (9)
9. Normalize W(k) using Equation (14)

10. end while
11. y = Wx
12. output results

2.3. Nonlinear Bounded Component Analysis Based on Multivariate Nonlinear Chirp Mode
Decomposition (MNCMD-NLBCA)

MNCMD is a new signal feature extraction and decomposition denoising method pro-
posed by Chen [26] that can effectively handle time-varying, nonlinear, and non-stationary
multivariate signals. The principle is to first define a multivariate nonlinear frequency
modulation mode based on the instantaneous frequency information between all input data
channels, and then establish an objective function based on minimizing the sum of mode
bandwidth on all signal channels to achieve accurate and stable signal decomposition. The
core idea of MNCMD is as follows:

The signal x(t) can be written as follows in nonlinear chirp mode [27]:

x(t) = ∑k
i=1 gi(t) (15)

where k represents the number of nonlinear chirp mode components, and gi(t) is defined
in MNCM as follows:

gi(t) = ai(t)cos(2π
∫ t

0
fi(e)de + γi) (16)
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where ai(t) is the instantaneous amplitude, fi(e) is the instantaneous frequency, and γi
denotes the initial phase. According to reference [28], Equation (16) can be rewritten
as follows:

gi(t) = µi(t)cos(2π
∫ t

0

∼
f i(e)de) + ρi(t)sin(2π

∫ t

0

∼
f i(e)de) (17)

where µi(t) and ρi(t) are written as follows:

µi(t) = ai(t)cos(2π(
∫ t

0 fi(e)de −
∫ t

0

∼
f i(e)de) + γi)

ρi(t) = −ai(t)sin(2π(
∫ t

0 fi(e)de −
∫ t

0

∼
f i(u)du) + γi)

. (18)

Assuming the number of signal channels is n, perform k-order decomposition and
construct the following problem:

min
{µi,m(t)},{ρi,m(t)},{

∼
f i(t)}

k
∑

i=1

n
∑

m=1

{∥∥∥µ
′′
i,m(t)

∥∥∥2

2
+
∥∥∥ρ

′′
i,m(t)

∥∥∥2

2

}
s.t.
∥∥∥∥xm(t)−

k
∑

i=1
µi,m(t)cos

(
2π
∫ t

0

∼
fi(e)de

)
−

k
∑

i=1
ρi,m(t)sin

(
2π
∫ t

0

∼
fi(e)de

)∥∥∥∥
2
≤ εm,

m = 1, 2, . . . n.

(19)

Due to the fact that the collected signals are mostly in discrete form, Equation (19) is
rewritten as follows:

min
{µi,m},{ρi,m},{

∼
f i}

∑k
i=1 ∑n

m=1

{
∥Ψµi,m ∥2

2 + ∥Ψρi,m ∥2
2

}
s.t.
∥∥∥xm − ∑k

i=1 Li µi,m − ∑k
i=1 Viρi,m

∥∥∥
2
≤ εm,

m = 1, 2, . . . n

(20)

where Li = diag[cos(αi(t1)), cos(αi(t2)), . . . cos(αi(tN))], Vi = diag[sin(αi(t1)), sin(αi(t2)), . . .

sin(αi(tN))], αi(t) = 2π
∫ t

0

∼
fi(e)de, Ψ is a second-order difference operator.

Ψ =


−1 1 0 · · · 0
1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1
0 · · · 0 1 −1


Introduce the Lagrange function to solve the optimal solution of the aforementioned

variational problem [29].

L({µi,m}, {ρi,m}, {
∼
f i }, {θm}, {λm}) =

n
∑

m=1
ζCεm

(θm) +
k
∑

i=1

n
∑

m=1

{
∥Ψµi,m ∥2

2 + ∥Ψρi,m ∥2
2

}
+

n
∑

m=1

(
ψ

2
∥θm +

Q
∑

i=1
(Liµi,m + Viρi,m)− xm +

1
ψ

λm∥
2

2
− 1

2ψ
∥λm∥2

2

) (21)

where ψ is the penalty parameter, λm is the Lagrangian multiplier, and θm = −∑Q
i=1(Liµi,m

+Viρi,m) + xm, ζCεm
(θ) ≜

{
0, θ ∈ Cε

+∞ θ /∈ Cε
, Cε is a Euclidean ball whose radius is ε and center

is 0.
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Finally, the alternating direction multiplier iterative algorithm is used to solve the vari-

ational problem. The expressions for µi,m, ρi,m
∼
, f i, θm, and λm after alternating optimization

iterations are as follows:

µi,m
ω+1 =argmin

{µi,m}

{
L
(
{µi,m}, {ρi,m}, {

∼
f i }, {θm}, {λm}

)}
(22)

ρi,m
ω+1 =argmin

{ρi,m}

{
L
(
{µi,m}, {ρi,m}, {

∼
f i }, {θm}, {λm}

)}
(23)

∼
f i

ω+1
=

∼
f i +

δ

2π
×
(

2
γ

ΨTΨ + I
)−1

(
d
dt

(
arctan

ρi,m
ω+1

µi,m
ω+1

))
(24)

θm
ω+1 = QCεm

(
xm − ∑k

i=1 Li µi,m − ∑k
i=1 Viρi,m − λm

ψ

)
(25)

λm
ω+1 = λm + ψ

(
θm + ∑Q

i=1(Liµi,m + Viρi,m)− xm

)
(26)

where δ is the learning rate, γ is the noise tolerance, and QCεm
(·) is a proximity operator [30],

QCεm
(z) ≜

{
εm
∥z∥2

· z, ∥z∥2 > εm

z, ∥z∥2 ≤ εm
.

Based on the introductions of previous hybrid models, this paper proposes an MNCMD-
NLBCA algorithm to solve the problem of underdetermined nonlinearity. The main idea is
to perform MNCMD processing on the mixed signal, which is decomposed into several
NCM components, and then these NCM components are reconstructed to obtain a new
signal sequence. This new signal sequence can be merged with the original mixed signal to
form a new observation signal, ultimately forming a positive definite BSS model. Users can
perform nonlinear transformation on each observed signal to obtain nonlinear compensa-
tion, then select a normalized boundary objective function, and then solve the unmixing
matrix W to recover the source signal.

The main process of the algorithm is as follows:

(1) Pre-process the received mixed signal X(t), including de-averaging and pre-whitening.
(2) Perform MNCMD processing on the pre-processed observation signal to obtain k

NCM components, ui(t).
(3) Perform one-dimensional reconstruction on these k NCM components by assigning

different random weights between (0, 1) and adding them together to obtain a new
signal X′(t). Then, make X(t) = [X(t); X′(t)] to obtain a new observation signal.

(4) Carry out nonlinear transformation of the new observation signals.
(5) Select the normalized boundary objective function and use the subgradient descent

algorithm to solve the mixed matrix W.
(6) Complete signal separation.

Figure 3 shows a flow chart of the MNCMD-NLBCA algorithm.
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Figure 3. Flow chart of MNCMD-NLBCA algorithm.

3. Experiment and Results
3.1. Simulation Dataset

Using MATLAB, we generated three signals: two independent signals labeled s1 and
s2, and a noise signal denoted as s3. s1 is a sinusoidal wave with a frequency of 10 Hz. s2 is
a square wave featuring a 50% duty cycle. s3 represents the noise component.

All signals are sampled at a frequency Fs of 1000 Hz. Their respective waveforms and
frequency spectra are presented in Figure 4, providing a clear visualization of their unique
characteristics.
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We generated a mixed signal through a mixed matrix and nonlinear transformation,
with a signal-to-noise ratio (SNR) of 20 dB. Their waveforms and spectra are shown in
Figure 5.
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The waveforms and spectra of the observed signals after separation with the MNCMD-
NLBCA algorithm are shown in Figure 6.
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In order to see the separation effect more objectively and accurately, the correlation
coefficient ρ between the extracted signal and the source signal was chosen as the evaluation
criterion in this paper [31], as shown in (27), and the results are shown in Table 1.

ρ =
cov(si, yi)√

cov(si, si)cov(yi,yi)
(27)

where cov( ) denotes the variance, yi is the separated signal, and si is the source signal.

Table 1. Correlation coefficients.

y1 y2 y3

s1 0.99782904 0.01841561 0.00165612
s2 0.00404252 0.98984297 0.04701977
s3 0.00741474 0.04752748 0.99377657

From Table 1, it can be seen that the correlation coefficients of s1 and y1, s2 and y2, and
s3 and y3 are all close to 1, which corresponds to Figures 4 and 6. From Figures 4 and 6, it
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can be seen that independent source signals were successfully separated with the MNCMD-
NLBCA algorithm.

To evaluate the robustness of this algorithm, we devised five distinct operating scenar-
ios with varying SNRs by modulating the noise signals and subsequently performing BSS
experiments. The signal interference ratio (SIR) [32] was used as the performance index.
The equation of SIR is shown in Equation (28).

SIR = −10lg
∥ei − si∥2

∥si∥2 (28)

where ei is the separated signal and si is the source signal. Signal processing-related
knowledge tells us that the separation is improved by increasing the SIR value.

As depicted in Figure 7, it is evident that as the SNR increases, there is no significant
decline in the SIR values. Furthermore, all SIR values remain above 24, indicating that
the signals have been effectively separated. This demonstrates the strong robustness and
resistance to interference exhibited by the algorithm.

To further validate the universality of this algorithm, the subsequent section of this
paper covers three correlated source signals that follow a Copula-t distribution. Again,
1000 sample points are utilized for these non-independent sources. The waveform plots
and spectrum diagrams of these generated correlated signals are presented in Figure 8.
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With an SNR maintained at 20 dB, mixed signals are generated following the same
methodology as previously described. The resulting waveform plots and spectrum dia-
grams of these mixed signals are presented in Figure 9.
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Finally, the MNCMD-NLBCA algorithm is used to separate the observed signals. In
order to generate a comparative effect, three different algorithms are used for blind source
separation of the mixed signal: SCA, VMD-ICA, and EMD-ICA. The results are shown in
Figure 10.

The correlation coefficients between the signals separated by the MNCMD-NLBCA
algorithm and the source signals are shown in Table 2.

Table 2. Correlation coefficients.

y1 y2 y3

s1 0.97778428 0.52447726 0.21264333
s2 0.55792012 0.98634734 0.60709731
s3 0.2556597 0.54286605 0.96087454

From Table 2, it is evident that the correlation coefficients between s1 and y1, s2
and y2, and s3 and y3 are all nearly 1, aligning with Figures 8 and 10. This indicates
that the algorithm has successfully separated three highly correlated source signals from
underdetermined nonlinear mixed signals at an SNR of 20 dB.

To facilitate an objective and quantitative assessment of the efficacy of these algorithms,
we not only employed similarity coefficients and SIR, but also incorporated the mean
squared error (MSE) [32] and the response time into our research methodology for a
comprehensive comparison.

MSE is a fit metric commonly used to evaluate the difference between model predic-
tions and actual observations. A smaller MSE value indicates a better fit of the model. Signal
processing-related knowledge has shown that the separation is improved by increasing the
SIR value.

The equation of MSE and SIR is shown in Equation (29).

MSE =
1
N∑N

i=1(si − ei)
2 (29)

It should be noted that due to the inability of blind source separation to accurately
recover the amplitude of the source signal, in order to avoid the influence of amplitude
when calculating evaluation indicators, it is necessary to normalize signals. The results
are shown in Table 3. It can be seen that the signal extracted by the MNCMD-NLBCA
algorithm has the highest correlation coefficient with the source signal, and the SIR value
is also the largest and produces the smallest MSE value, so the separation effect of the
MNCMD-NLBCA algorithm is the best.
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Figure 10. Separated results. (a) Waveforms of MNCMD-NLBCA algorithm. (b) Spectra of MNCMD-
NLBCA algorithm. (c) Waveforms of EMD-ICA algorithm. (d) Spectra of EMD-ICA algorithm.
(e) Waveforms of VMD-ICA algorithm. (f) Spectra of VMD-ICA algorithm. (g) Waveforms of SCA
algorithm. (h) Spectra of SCA algorithm.
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Table 3. Extraction performance evaluation index data.

VMD-ICA EMD-ICA SCA MNCMD-NLBCA

Similarity Coefficient 0.785 0.732 0.611 0.964
MSE 2.0204 3.1207 3.0299 0.0452
SIR 12.39 10.29 9.23 21.26

Response time 16.32 17.28 22.54 20.16

3.2. ADFECGD Dataset

ADFECGD is a small database of maternal abdominal ECG signals, created for the
evaluation of detection algorithms. During the recording of the maternal abdominal electric
signals, a repeatable arrangement of electrodes was used on the surface of a maternal
abdomen. The configuration consisted of three measuring electrodes aligned in a horizontal
line along the navel, and one measuring electrode that recorded the abdominal signal just
over the navel. A reference electrode with “zero” potential for measuring was located
above the pubic symphysis [33]. We selected the records “r01” and “r08”for the extraction
of the FECG signal. They both consist of five-channel signals (5 min long) recorded during
labor, with one channel of a direct fetal electrocardiogram. A more detailed description of
the database can be found in [34].

Both records “r01” and “r08” exhibited high-quality signals with clear FECG compo-
nents. These records were chosen to represent a diverse range of possible scenarios in the
dataset and have been previously validated or used in other studies.

We use an ECG signal from one of five channels to investigate the accuracy of the
extracted FECG morphology. The MNCMD-NLBCA method is compared with SCA, VMD-
ICA, and EMD-ICA. Figures 11 and 12 show visualizations of the extracted FECG to
intuitively illustrate the effects of these methods.
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Figure 11. Visual comparison of FECG signals extracted from record “r01” using 4 methods.

Shown in the first row of the above figures are desired FECG signals that are direct fetal
electrocardiograms in the records “r01” and “r08”. The second to fifth lines show the FECG
signals extracted using the VMD-ICA, SCA, EMD-ICA, and MNCMD-NLBCA algorithms,
respectively. From the two figures, it can be seen that the signal extracted by the SCA
algorithm shows significant distortion compared to the source signal in the first row, while
the distortion of the signal processed by the EMD-ICA algorithm has improved, but still
exists. In Figure 11, the signals in the second and fifth lines indicate that the VMD-ICA and
MNCMD-NLBCA algorithms have basically extracted the morphological features of FECG
without significant distortion. In Figure 12, the FECG signal extracted by the VMD-ICA
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algorithm is morphologically close to the desired signal, but is still accompanied by slight
distortion. From the waveform in the last line, it can be seen that the MNCMD-NLBCA
algorithm effectively suppresses distortion and ensures the accuracy of signal extraction.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 16 
 

 

min long) recorded during labor, with one channel of a direct fetal electrocardiogram. A 
more detailed description of the database can be found in [34]. 

Both records “r01” and “r08” exhibited high-quality signals with clear FECG com-
ponents. These records were chosen to represent a diverse range of possible scenarios in 
the dataset and have been previously validated or used in other studies. 

We use an ECG signal from one of five channels to investigate the accuracy of the 
extracted FECG morphology. The MNCMD-NLBCA method is compared with SCA, 
VMD-ICA, and EMD-ICA. Figures 11 and 12 show visualizations of the extracted FECG 
to intuitively illustrate the effects of these methods. 

 
Figure 11. Visual comparison of FECG signals extracted from record “r01” using 4 methods. 

 
Figure 12. Visual comparison of FECG signals extracted from record “r08” using 4 methods. 

Shown in the first row of the above figures are desired FECG signals that are direct 
fetal electrocardiograms in the records “r01” and “r08”. The second to fifth lines show 
the FECG signals extracted using the VMD-ICA, SCA, EMD-ICA, and MNCMD-NLBCA 
algorithms, respectively. From the two figures, it can be seen that the signal extracted by 
the SCA algorithm shows significant distortion compared to the source signal in the first 
row, while the distortion of the signal processed by the EMD-ICA algorithm has im-
proved, but still exists. In Figure 11, the signals in the second and fifth lines indicate that 

Figure 12. Visual comparison of FECG signals extracted from record “r08” using 4 methods.

We normalized these signals and calculated the evaluation indicators, as shown in
Table 4. From the perspective of the similarity coefficient, the MNCMD-NLBCA algorithm
has the highest similarity between the extracted FECG signal and the desired signal in both
experiments, with values of 0.981 and 0.964, respectively. It can be considered that this
algorithm has extracted a relatively clean FECG signal, while the similarity coefficients of
the other three algorithms’ extracted signals from high to low are VMD-ICA, EMD-ICA,
and SCA.

Table 4. Extraction performance evaluation index data for simulation experiment.

Methods
Record “r01” Record “r08”

Similarity Coefficient MSE SIR Similarity Coefficient MSE SIR

VMD-ICA 0.947 0.0312 11.23 0.914 0.0204 9.95
EMD-ICA 0.894 0.0391 6.02 0.901 0.0237 4.56

SCA 0.462 0.0263 8.01 0.611 0.0299 7.92
MNCMD-NLBCA 0.981 0.0306 14.36 0.964 0.0154 11.20

In both experiments, the MSE values of all algorithms were relatively small, mostly
around 0.03. The SIR value of MNCMD-NLBCA is significantly higher than that of the
other algorithms, reaching 14.36 and 11.20, respectively. Therefore, based on the waveform
comparisons in Figures 11 and 12, as well as the evaluation index data in Table 4, it can be
seen that the signals extracted by the MNCMD-NLBCA algorithm not only fully retain the
morphological features of FECG, but are also the most similar to the desired signal, and
have better performance compared to the other three mainstream algorithms.

Compared to the experiment reported in this article, the results of different recorded
experiments may not be completely consistent. However, compared with the other three
algorithms, the performance of our algorithm is still the best, so this does not affect the
experimental conclusion.

4. Conclusions

In this paper, we propose a blind source separation algorithm based on MNCMD-
NLBCA. This algorithm first processes the observed signals with MNCMD, then recon-
structs the signals to increase their dimensionality, and finally combines with the NLBCA
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algorithm, thereby enhancing the universality and extraction accuracy of the algorithm.
By introducing a nonlinear demixing function into BCA, this algorithm performs nonlin-
ear compensation on the observed signals. Meanwhile, a step decay factor is employed
during the iteration process to avoid falling into local optima and improve convergence
performance. When combined with the MNCMD algorithm, the entire algorithm becomes
applicable to underdetermined nonlinear scenarios, ensuring operational efficiency while
achieving better optimization accuracy. The prior assumptions of this algorithm are more
relaxed, as it does not require the source signals to be mutually independent, and fewer
observed signals are needed. Therefore, it is highly suitable for FECG signal extraction.

To verify the effectiveness and superiority of this algorithm, simulation analysis and
experimental verification were conducted. Firstly, BSS experiments were performed on
three independent source signals that underwent underdetermined nonlinear mixing. The
similarity coefficients between the separated signals and the source signals were 0.99782904,
0.98984297, and 0.99377657, respectively, which are all close to 1, thus proving the effective-
ness of this algorithm. Additionally, robustness tests were conducted on this algorithm.
As evident from Figure 7, varying SNRs had minimal impact on the experimental results
of this algorithm, indicating its strong robustness. Then, under identical conditions, blind
source separation simulations were conducted on cross-correlation signal sources, and
the separation effects were compared with those of SCA, VMD-ICA, and EMD-ICA. The
similarity coefficient, MSE, and SIR of the separated signals objectively and quantitatively
demonstrated that this algorithm is also suitable for the separation of non-independent
source signals, and it exhibits better separation accuracy compared to the other three algo-
rithms. Finally, this algorithm was used to extract FECG signals from the ADFECGD real
dataset and compared with three other algorithms. The morphological features presented
in Figures 11 and 12, along with the evaluation index data in Table 4, clearly show the
effectiveness and superiority of this algorithm in extracting FECG signals.

Although this algorithm has strong universality, it still has certain limitations, such as
being an offline algorithm that cannot be effectively applied in real-time signal processing.
Moreover, the response time of the algorithm is still relatively long, and there is still
room for improvement in the separation accuracy of the algorithm. In future research, we
will further investigate online blind source separation algorithms to achieve blind source
separation of real-time signals, and the application of this algorithm will be more extensive.
We will also aim to further shorten the response time of the algorithm without affecting the
separation accuracy.
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