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Abstract: With the development of distributed energy technology, the establishment of the energy
internet has become a general trend, and relevant research about the core component, energy router,
has also become a hotspot. Therefore, the bidirectional isolated DC–DC converter (BIDC) is widely
used in AC–DC–AC energy router systems, because it can flexibly support the DC bus voltage
ratio and achieve bidirectional power flow. This paper proposes a novel vector reconfiguration
on a bidirectional multilevel LCL-T resonant converter in which an NPC (neutral-point clamped)
multilevel structure with a flying capacitor is introduced to form a novel active bridge, and a coupling
transformer is specially added into the active bridge to achieve multilevel voltage output under hybrid
modulation. In addition, an LCL-T two-port vector analysis is adopted to elaborate bidirectional
power flow which can generate some reactive power to realize zero-voltage switching (ZVS) on active
bridges to improve the efficiency of the converter. Meanwhile, due to the symmetry of the LCL-T
structure, the difficulty of the bidirectional operation analysis of the power flow is reduced. Finally,
a simulation study is designed with a rated voltage of 200 V on front and rear input sources which has
a rated power of 450 W with an operational efficiency of 93.8%. Then, the feasibility of the proposed
converter is verified.

Keywords: energy router; bidirectional isolated DC–DC converter; LCL-T; coupling transformer;
vector analysis

1. Introduction
1.1. Research Background

In order to achieve the goals of green development and the reasonable distribution
of energy resources, reduce pollution emissions, and improve the ecological environment,
an investigation into a new generation of renewable and distributed energy interconnection
systems is urgent [1–3]. The next-generation new power grid structure represented by the
FREEDM system [4,5], proposed by the University of North Carolina in the United States,
has played a positive role in the establishment of the China Energy Internet. One of the core
parts of the energy internet is the energy router, which has also become a subject hotspot in
related research.

1.2. Literature Review

The energy router is normally based on the solid-state transformer (SST) composed
of three stages: AC–DC–AC [6–8]. Since the intermediate-stage DC converter needs to
take account of the galvanic isolation between the front and rear voltage bus, and can
also flexibly provide matching DC bus voltage gain to achieve bidirectional power flow,
bidirectional isolated DC–DC converters (BIDCs) [9,10] are generally used. Nevertheless,
the dual active bridge (DAB) [11,12] is a typical and representative BIDC structure with
many excellent research results, suitable for the working requirements of the BIDC in
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various applied situations. However, in the process of power flow, once the voltage gain at
the two ends does not match, there will be reactive power loss instead, thereby reducing
the efficiency of the converter. A class of control methods represented by DPS [13], EPS [14],
TPS [15], and HPS [16] have been proposed one after another to overcome the problem;
they are all different combinations of phase shift modulation in bridge and between bridges,
to which a PWM duty cycle was added to obtain multiple-degrees-of-freedom control to
precisely control the power flow and reduce the generation of reactive power, but with
the increase in the degrees of freedom, the control algorithm becomes more and more
complicated, and the actual effect is not satisfactory.

In addition, in order for the energy router to be used to medium- and high-power
applications, the front-stage rectifier and the back-stage inverter should adopt the NPC
multilevel structure [17], which can not only reduce the voltage stress of the switch, but
also reduce the THD of the output waveforms. Therefore, the intermediate-stage DC
converter should also adopt a multilevel structure for BIDC, which has gradually attracted
attention. Based on the traditional two-level DAB converter, some studies [18,19] replace
the full-bridge arm with an NPC arm to form a five-level DAB converter, but still adopt the
method of DAB mentioned above to manage the converter power bidirectional flow.

Other works [20,21] study the full-bridge LCL-T resonant BIDC, relying on the estab-
lished relationship of the input, output current, and voltage vector phase for resonant tank
two-port networks, so as to analyze the influence law of the active power over the vector
phase and PWM duty in the power flow. However, in terms of realizing soft switching,
there is less detailed process contact with the modulation method, and analyzing the THD
cannot clearly reflect the influence of higher harmonics on power transmission.

1.3. Contribution and Outline

This paper proposes a novel vector reconfiguration on a bidirectional multilevel LCL-T
resonant converter. On the basis of the original five-level DAB converter, the traditional
series inductor is replaced by an LCL-T tank. A flying capacitor and a coupling transformer
are added to the active bridges on both sides to form a multilevel voltage output by hybrid
modulation. In addition, reasonable reactive power is generated through the vector phase
design, and most active bridge switches on both sides can achieve zero-voltage switching
(ZVS) to improve the working efficiency of the BIDC converter. Moreover, due to the
symmetry of the LCL-T structure, the bidirectional power flow control characteristics
remain consistent, which reduces the difficulty of the quantitative analysis of the converter
power flow.

2. The Topology and Multilevel Hybrid Modulation of the Proposed Novel
BIDC Converter
2.1. Structure Description of Topology

Figure 1 shows the proposed new multilevel BIDC topology, which is composed of
front and rear input sources Uinp/Uins, voltage-dividing capacitors C1p~C2s, novel active
bridges, and a galvanic isolation module (GIM). Particularly, the two active bridges located
on both sides of the GIM have the same structure, and are, respectively, composed of a main
bridge arm (MBA) and an auxiliary bridge arm (ABA) that all have an NPC multilevel
structure with a flying capacitor and cascaded by coupling transformers TXp/TXs with
a fixed turns ratio of 1.

In addition, Q1~Q4, T1~T4 indicate the switches of MBA, Q5~Q8, T5~T8 indicate the
switches of ABA, and D1~D8, DT1~DT8 are the body diodes to the switches which have
the parasitic capacitances C1~C8, CT1~CT8. D11~D42 are clamping diodes, and Cf1~Cf4 are
flying capacitors. Furthermore, the GIM consists of an isolation transformer TX with a turns
ratio of k and an LCL-T resonant tank, which includes resonant inductance Lr, resonant
capacitor Cr, and leakage inductance Lk.
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Figure 1. Diagram of topology structure.

2.2. Operation Principles for Multilevel Hybrid Modulation

The active bridge on the left side of the GIM adopts a new multilevel hybrid modula-
tion method by combining phase shift modulation (PSM) with asymmetric pulse width
modulation (APWM), in which the PSM angle of the MBA is α, and PSM angle of the ABA
is β. Moreover, the MBA’s output voltage is uao, and the ABA’s output voltage is umo, which
are both indicated in Figure 1. Thereby, the injecting voltage of GIM is uab = uao + umo by
coupling effect of TXp.

The active bridge on the right side of the GIM also adopts the “PSM + APWM”
multilevel hybrid modulation method, in which all switches’ sequences only lag behind
phase φ to the active bridge on the left side of the GIM. The specific key waveforms of the
multilevel hybrid modulation are shown in Figure 2.

The PSM can create a sequence difference among the switches to cause the leading
switches Q1, Q4 and the lagging switches Q2, Q3 in MBA. Particularly, during the dead time,
the input current ip of GIM would charge C1, C4 and discharge C2, C3 by the path of Cf1 at
the same time to produce a current-exchanging process to realize ZVS of Q2, Q3 and obtain
zero level, then uao can output three-level voltage. This stage is cleared in the equivalent
circuit of the dead time, as shown in Figure 3.
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Similarly, due to the coupling transformer TXp, the primary side current of TXp is
clamped by the secondary side current of TXp, i.e., ip. Thereby, the leading switches Q5,
Q8 and lagging switches Q6, Q7 in ABA could also have a current-exchanging process
between parasitic parameters produced by the primary side current of TXp to realize ZVS.
Nevertheless, when the control of β is different to α, the three-level pulse widths of output
voltage are different between umo and uao, which makes uab output five-level voltage after
the superposition of umo and uao.

3. The Vector Characteristics Analysis of LCL-T Resonant Tank

According to Figure 1, ignoring the magnetizing inductance impedance of the TX,
and based on FHA (fundamental harmonic analysis), the equivalent circuit of the two-port
network of LCL-T resonant tank can be seen in Figure 4.
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Here,
→
Ip,

−−→
Vab are marked as vector of input current ip, input voltage uab to the resonant

tank;
−−→
Is1 ,

−−→
Vcd1 are marked as vector of output current is1, out voltage ucd1 to the resonant

tank; ωs is the switching angular frequency; n is the harmonic order. Ref. [20] drew the

conclusion that voltage vector of Cr would be
→

VCr =
−−→
Vab +

−−→
Vcd1 , which means that voltage

vector
−−→
Vcd1 is equally distributed across Lr and negatively associated with

→
Ip, and voltage

vector
−−→
Vab is equally distributed across Lk and positively associated with

−−→
Is1 ; thereby,

−−→
Vab would be beyond

−−→
Is1 for phase π/2, and

→
Ip would beyond

−−→
Vcd1 for phase π/2.

Finally, taking the
−−→
Vcd1 as the initial phase reference, the vector phase relationship of each

current and voltage on the complex plane is shown in Figure 5.
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Undoubtedly, the current and voltage vector phase relationship on the same side of the
two-port network as the resonant tank can be changed by controlling the phase φ between
−−→
Vab and

−−→
Vcd1 . When φ = π/2, the

→
Ip phase is the same as the

−−→
Vab phase, and the

−−→
Is1

phase is the same as the
−−→
Vcd1 phase. The power is transported from the left active bridge

to the right active bridge, which is all active power. When φ > π/2, the
−−→
Vab phase is

beyond the
→
Ip phase for φ-π/2, and the

−−→
Is1 phase is beyond the

−−→
Vcd1 phase for φ-π/2,

the direction of power flow remains unchanged, but the transmitted power is contained as
part of the reactive power.
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When φ = −π/2, the
−−→
Vab phase lags behind the

→
Ip phase for π, the

−−→
Is1 phase lags

behind the
−−→
Vcd1 phase for π, and the power is transported from the right active bridge

to the left active bridge, which is all reactive power. When φ > −π/2, the
−−→
Vab phase

lags behind the
→
Ip phase for |φ| + π/2, the

−−→
Is1 phase lags behind the

−−→
Vcd1 phase for

|φ| + π/2, and the direction of power flow remains unchanged, but the transmitted power
also is contained as part of reactive power. This paper only analyzes the power flow from
the left to the right.

However, according to Figure 2, some reactive power is beneficial to the ZVS of
switches. The φ cannot be fixed at π/2 to eliminate reactive power. In addition, reactive

power depends on the phase relation between
→
Ip and

−−→
Vab ; thus, the time expression of

ip must be found. Then, the specific vector expressions of
−−→
Vab and

−−→
Vcd1 based on Fourier

expansion are derived as follows:

−−→
Vab =

∞

∑
n=1,3,5···

−−−→
Vab(n) =

∞

∑
n=1,3,5···

Uinp√
2nπ

[cos(nβ) + 3 − j sin(nβ)] (1)

−−→
Vcd1 =

∞

∑
n=1,3,5···

−−−→
Vcd1(n) =

∞

∑
n=1,3,5···

kUins√
2nπ

[
cos(nβ + φ) + 3 cos(φ)−
j(sin(nβ + φ) + 3 sin(φ))

]
(2)

Because the transmission characteristics of the two-port network are only related to the
internal structure, the admittance matrix can be established as (3), on the basis of Figure 4:

Y =

[
Y11 Y12
Y21 Y22

]
(3)

where 
Y11 = 1−(nωs)

2LkCr

j(nωsLr+nωsLk−(nωs)
3LrCrLk)

Y12 = Y21 = −1
j(nωsLr+nωsLk−(nωs)

3LrCrLk)

Y22 = 1−(nωs)
2LrCr

j(nωsLr+nωsLk−(nωs)
3LrCrLk)

(4)

Then,

−−→
Ip(n) =

(
1 − (nωs)

2LkCr

)−−−→
Vab(n)−

−−−→
Vcd1(n)

j
(

nωsLr + nωsLk − (nωs)
3LrCrLk

) (5)

−−→
Is1(n) =

(
1 − (nωs)

2LrCr

) −−−→
Vcd1(n)−

−−−→
Vab(n)

j
(

nωsLr + nωsLk − (nωs)
3LrCrLk

) (6)

where
−−→
Ip(n),

−−→
Is1(n),

−−−→
Vab(n), and

−−−→
Vcd1(n) indicate nth harmonic vectors. Then, based on

Equations (1), (2), (5), and (6), the input active power to the resonant tank can be derived
as follows:

Pin =
∞
∑

n=1,3,5···
pin(n) =

∞
∑

n=1,3,5···
Re

[
−−−−→
Vab(n) ·

−−−→
I∗p(n)

]
= f (Uinp, Uins, k, Lr, Lk, Cr, ωs, β, φ, n)

∞
∑

n=1,3,5···


Uinp(cos(nβ) + 3) ·

[
kUins(sin(nβ + φ) + 3 sin(φ))−

√
2nπ

(
1 − (nωs)

2LkCr

)
sin(nβ)

]
2(nπ)2

(
nωsLr + nωsLk − (nωs)

3LrCrLk

) +

Uinp sin(nβ) ·
[
kUins(cos(nβ + φ) + 3 cos(φ))− Uinp

(
1 − (nωs)

2LkCr

)
(cos(nβ) + 3)

]
2(nπ)2

(
nωsLr + nωsLk − (nωs)

3LrCrLk

)


(7)
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The input reactive power to the resonant tank can also be derived as follows:

Qin =
∞
∑

n=1,3,5···
qin(n) =

∞
∑

n=1,3,5···
Im

[
−−−−→
Vab(n) ·

−−→
I∗p(n)

]
= f (Uinp, Uins, k, Lr, Lk, Cr, ωs, β, φ, n)

∞
∑

n=1,3,5···


−

Uinp(cos(nβ) + 3) ·
[
kUins(cos(nβ + φ) + 3 cos(φ))− Uinp

(
1 − (nωs)

2LkCr

)
(cos(nβ) + 3)

]
2(nπ)2

(
nωsLr + nωsLk − (nωs)

3LrCrLk

) −

Uinp sin(nβ) ·
[
kUins(sin(nβ + φ) + 3 sin(φ))−

√
2nπ

(
1 − (nωs)

2LkCr

)
sin(nβ)

]
2(nπ)2

(
nωsLr + nωsLk − (nωs)

3LrCrLk

)


(8)

According to Equations (7) and (8), the transmission characteristics of Pin and
Qin depend on up to 10 related parameters, making it too difficult to obviously show
the clear influence law of each variable. Thus, we let ωs equal resonant angular frequency
ωr = 1/

√
LrCr, which can make the vector relationship mentioned before, on the basis of

Figure 5, be more precise, because almost all power flow depends on the transmission of
the fundamental wave when the input impedance of the resonant tank is increasing, as ωs
is close to ωr. And the time expression of ip for analysis can be replaced by fundamental
component ip_1 which is derived as shown in (9) according to (5) under k = 1, Uinp = Uins,
Lr = Lk:

ip_1(t) =

√
2Uinp

π

√
Cr(3 cos(β) + 5)

Lr
· sin

(
t√

LrCr
+ arctan

(
cos(β + φ) + 3 cos(φ)

sin(β + φ) + 3 sin(φ)

))
(9)

Furthermore, the Qin/Pin ratios of total power flow can be completely expressed by
qin(1)/pin(1), i.e., Q1/P1 ratios. Thereby, the variation law of the Q1/P1 with β and φ is
established, as shown in Figure 6.
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According to Equations (7) and (8), the transmission characteristics of Pin and Qin de-
pend on up to 10 related parameters, making it too difficult to obviously show the clear 
influence law of each variable. Thus, we let ωs equal resonant angular frequency 

1 LCω =r r r , which can make the vector relationship mentioned before, on the basis of 
Figure 5, be more precise, because almost all power flow depends on the transmission of 
the fundamental wave when the input impedance of the resonant tank is increasing, as ωs 
is close to ωr. And the time expression of ip for analysis can be replaced by fundamental 
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Furthermore, the Qin/Pin ratios of total power flow can be completely expressed by 
qin(1)/pin(1), i.e., Q1/P1 ratios. Thereby, the variation law of the Q1/P1 with β and φ is estab-
lished, as shown in Figure 6. 

Cr/nF Lr/μH

Q1/P1

0
50

100
150

200

100

300

140
180

220
260

0

-0.2

0.2

0.4

0.6

0.8

2ϕ π= 1.8ϕ π=
1.6ϕ π=

 
Cr/nF Lr/μH

Q1/P1

0
50

100
150

200

100

300

140
180

220
260

0

-0.2

0.2

0.4

0.6

0.8

2ϕ π= 1.8ϕ π=
1.6ϕ π=

 
(a) β = π/5 (b) β = 2π/5 

Figure 6. The variation law of the Q1/P1 with β and φ. Figure 6. The variation law of the Q1/P1 with β and φ.

It is obvious that the Q1/P1 ratios both extremely increase with the growth of φ when
β = π/5 and β = 2π/5, as shown in Figure 6a,b, and the Q1/P1 ratios of φ = π/1.8,
φ = π/1.6 in Figure 6b are both larger than the Q1/P1 ratios of φ = π/1.8, φ = π/1.6 in
Figure 6a, which means that the parameters of β and φ both have positive correlation with
the Q1/P1 ratios, but this correlation of β will be enhanced with the growth of φ. Particularly,
the structure parameters Lr and Cr of the resonant tank have no effect on the variation
law of the Q1/P1 with β and φ; this means that the inherent variation characteristics of
Q1/P1 only depend on the proposed novel BIDC topology and hybrid modulation. But
there must be a trade-off to ensure that the Q1/P1 ratio remains within a reasonable range
to realize ZVS, and these two aspects are both dependent on the design of the related
parameters β and φ.
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4. The Design of ZVS to Active Bridge Switches Located on Both Sides of GIM

Having established the topology and multilevel hybrid modulation of the proposed
novel BIDC converter in Section 3, it is essential to examine the design of ZVS for the
active bridge switches situated on either side of the GIM. This transition is necessary as the
efficient operation of the converter is contingent upon the successful implementation of
ZVS, which in turn is contingent upon the topological structure and modulation strategy
outlined in the previous section.

4.1. The Relationship Between Turn-Off Current and ZVS

According to (7), the initial phase of ip_1 is indicated as θp_1:

θp_1 = arctan
(

cos(β + φ) + 3 cos(φ)

sin(β + φ) + 3 sin(φ)

)
(10)

When θp_1 < 0, the
→
Ip phase lags behind the

−−→
Vab phase to generate some reactive

power. The variation of the θp_1 with respect to β ∈ [0, π] and φ ∈ [π/2, π/1.6] is illustrated
in Figure 7 using (10).
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Figure 7. The variations law of the θp_1 with β and φ.

The initial phase θQ1 of sequences to the Q1, Q5 are both zero on the basis of Figure 2.
It can be found that θp_1 lags behind θQ1, according to Figure 7, and the magnitude of the
turn-off current ip_1_off on the turn-off moment of t = π

√
LrCr to the Q1, Q5 is derived as∣∣ip_1(0)

∣∣ = ip_1(π
√

LrCr) = ip_1_o f f due to the cyclic symmetry property of the ip_1.
Thus, the variation law of the ip_1_off with β and φ is also shown in Figure 8, which

shows that ip_1_off will increase with the growth of each of β, φ, Cr, and decrease with the
growth of Lr, but it would be ip_1_off > 0 regardless of the values of these parameters. This
means that ip_1_off will not change the previous polarity to produce a current-exchanging
process to realize ZVS after Q1, Q5 are both turned off.
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Furthermore, in view of the current-exchanging process for realizing ZVS, which has
to provide enough power, the charge conservation law between ip_1_off and stored energy
of the parasitic capacitances should be established as follows (11):

ip_1_o f f · tDT = 4 · Coss ·
Uinp

2
(11)

where ip_1_off would be treated as a constant in the dead time tDT due to the very short time;
the quantities of parasitic capacitances for all switches are uniformly indicated as Coss; and
4 represents the number of switches involved in the ZVS process for MBA or ABA. Then,
the range of magnitude of the turn-off current is

ip_1_o f f ≥ 4 · Coss ·
Uinp

2tDT
(12)

4.2. The Achievement of ZVS for Lagging Switches of MBA, ABA by Designing PSM Angles α, β

The initial phase θQ2 of sequences to Q2 is closer to θp_1 than Q1, Q5, making the
magnitude of the turn-off current smaller, which might cause the failure of ZVS, as shown
in Figure 2, because the LCL-T resonant tank has only one resonance angular frequency,
ωr, without the circulating current stage, compared with the LLC resonant tank under
PSM. Thereby, a relationship of α ≤ |θp_1| must be guaranteed to realize ZVS. Based
on Figure 7, the contour cross-curves map of θp_1 is shown in Figure 9, where the con-
tour cross-curves are indicated as solid-colored lines under each specific value of θp_1.
Moreover, referring to (9), (10), the magnitude range of the turn-off current ip_1_off _L

on the turn-off moment of t = (π + α)
√

LrCr to the Q2 for realizing ZVS is derived
as follows (13):

ip_1_o f f _L = ip_1

(
(π + α)

√
LrCr

)
=

∣∣∣ip_1(α
√

LrCr)
∣∣∣ ≥ 2 · Coss ·

Uinp

2tDT
(13)
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Figure 9. The contour cross-curves map of θp_1.

Along the dotted arrow direction, |θp_1| will be increased with the increase in β, φ,
and then the adjustable α is also increased. However, φ should not be taken as a larger
value, in order to limit the ratio of reactive power to keep the efficiency of the converter,
and β should be larger, to make α ≤ |θp_1|. In addition, β must also satisfy β ≤ |θp_1| to
realize ZVS of Q6 in ABA, as was also analyzed for α, because of the coupling effect of TXp.

However, β is usually larger than α and |θp_1|, mainly to control the power flow
under the limitation of φ. In addition, uab can output five-level voltage only once Q1,
Q5 realize ZVS to output the three-level voltage of MBA or ABA clamped by PSM.
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4.3. The Design of ZVS for the Right Side Active Bridge Switches

is1 can also be replaced by the fundamental component is1_1. According to Figure 5,

the
−−→
Is1 phase lags behind the

→
Ip phase for π-φ, and we have π-φ < φ to make the initial

phase θs1_1 of is1_1, derived as follows (14):

θs1_1 = arctan
(

cos(β + φ) + 3 cos(φ)

sin(β + φ) + 3 sin(φ)

)
− (π − φ) = −arctan

(
sin(β)

cos(β) + 3

)
− π

2
(14)

is1_1 can be derived as shown in (15), according to (6) combined with (14):

is1_1(t) =
√

2Uins

π

√
Cr(3 cos(β) + 5)

Lk
· sin

(
t√

LkCr
− arctan

(
sin(β)

cos(β) + 3

)
− π

2

)
(15)

It can be plotted as a function image of f (β,φ) = θs1_1 + φ with zero boundary, as shown
in Figure 10, to analyze the relationship between θs1_1 and the initial phase θT1, which is
equal to −φ and aligns at the leading switches T1, T5.
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Figure 10. The function image of f (β, φ) = θs1_1 + φ.

When in the f (β,φ) area, θs1_1 will exceed θT1 to provide the turn-off current is1_1_off on
the turn-off moment of t = (π + φ)

√
LkCr to the T1, T5. However, is1_1 is inputted on the

right side active bridge, compared with ip_1, which is outputted on the left side active bridge.
Thus, is1_1_off will also not change the previous polarity to produce the current-exchanging
process to realize ZVS after T1, T5 are both turned off. In addition, it can be found that
β has to be taken as a small value under the limitation of φ to keep f (β,φ) > 0. Then, the
modulation key waveforms of the right side active bridge can be plotted in Figure 11 on
the basis of Figure 2:

In the same way, the charge conservation law between is1_1_off and the stored energy of
the parasitic capacitances Coss should be enough to complete ZVS, which is still applied to
Equations (11) and (12). And it can also obviously be seen that the ZVS of lagging switches
T2, T6 is easier to realize than T1, T5, according to Figure 11. It must be emphasized that the
transient analysis of another half working period to the converter will be skipped for brevity
due to the mechanism similar to the abovementioned one. In addition, in subsequent
simulations based on the SABER platform, the simulation results for the other half of the
converter’s working period will also be skipped for brevity due to the simulation symmetry.
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5. The Simulation Design of Prototype
5.1. Simulation Parameters Design

The simulation study is based on the SABER platform, and the relevant parameters
are shown in Table 1.

Table 1. The parameters of the 450 W Simulink experiment.

Components Values

Uinp/Uins 200 V
ωs 2π × 50 × 103 rad/s

C1p~C2s 940 µF
Cr 50 nF

Lr/Lk 200 µH
TXp/TXs 1:1

TX 1:1
Q1~Q8, T1~T8 IRF460 MOSFETs

D11~D42 Power diode
Cf1~Cf4 1 µF

Control Variables Values

φ π/1.8 (5.5 µs)
α 2π/25 (0.8 µs)
β π/5 (2 µs)

tDT 0.5 µs

5.2. The Checking Calculation of Parameters

The Coss of the MASK model to IRF460 MOSFETs is set to 480 pF, and the parameters
of Table 1 are substituted into (9). Then, the inequality relation of (12) can be satisfied
by calculation:

ip_1_o f f = 1.248 ≥ 4 · Coss ·
Uinp

2tDT
=

4 · 480pF · 200V
2 · 0.5µs

= 0.384 (16)
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Moreover, inequality relations of α ≤ |θp_1| and (13) can be satisfied by calculation:

α = 2π
25 ≤

∣∣∣arctan
(

cos(β+φ)+3 cos(φ)
sin(β+φ)+3 sin(φ)

)∣∣∣ = 0.328

ip_1_o f f _L = 0.296 ≥ 2 · Coss ·
Uinp
2tDT

= 0.192
(17)

In practice, when β is significantly bigger than |θp_1|, the proposed converter may
fail to achieve ZVS of lagging switches Q2, Q6 in ABA to the left side active bridge.

The parameters of Table 1 are also substituted into (14), yielding f (β, φ) = 0.0214 > 0,
indicating that the conditions for ZVS have been met. And

∣∣∣is1_1_o f f

∣∣∣ = ∣∣is1_1
(
(π + φ)

√
LkCr

)∣∣
= 0.083 A, calculated by (15), is not in agreement with (12), which shows that there is not
enough power for the charge conservation law to complete ZVS. Thus, maybe only the
leading switches T1, T4 and T5, T8 in MBA and ABA will fail to provide ZVS to the right
side active bridge.

5.3. The Key Waveforms of Simulation Study

The simulation output results were processed to form the simulation study key wave-
forms shown in Figure 12, which are the same as Figures 2 and 11, with the transient
detail of tDT.
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Figure 12. The simulation study key waveforms.

In Figure 12a, firstly, ip is bigger than zero in tDT after turning off Q1, Q5. uab falls from
200 V to 0 at the same time, which shows that the ZVS of the leading switches in MBA and
ABA have been realized. Secondly, uab falls from 0 to −100 V in tDT, which shows that
the ZVS of the lagging switches in MBA have been realized, while ip is still bigger than
zero after turning off of Q2. Thirdly, uab falls from −100 V to −200 V after turning on Q7,
not after turning off Q6, which shows that the ZVS of the lagging switches in ABA have
not been realized, because ip is less than zero in tDT. The simulation results are consistent
with the design of Section 5.2.

In Figure 12b, is1 is less than zero in tDT after turning off T1, T5. ucd1 falls from 200 V
to 0 at the same time, which shows that the ZVS of the leading switches in MBA and ABA
have been realized, which is different from the design of Section 5.2, because higher-order
harmonics also transmit power. In addition, the ZVS of lagging switches in MBA and ABA
is easier to realize after turning off T2 and T6, respectively, while ucd1 falls from 0 V to
−100 V and falls from −100 V to −200 V, respectively, as shown in the simulation study
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key waveforms, which are consistent with the expectation of Section 4.3. In Figure 12c,
the active power absorbed by the right side active bridge is approximately equal to 450 W
due to the output current iins ≈ 2.25 A. Particularly, according to (1) and (5), and under
k = 1, Uinp = Uins, Lr = Lk, the active power generated by the left side active bridge can
be derived as follows:

Pin =
∞

∑
n=1,3,5···

pin(n) =
∞

∑
n=1,3,5···

Re

[
−−−→
Vab(n) ·

−−→
I∗p(n)

]
= f ′(Uinp, Lr, Cr, β, φ, n) (18)

Then, Pin(1) can be calculated to equal 422 W by substituting the parameters of Table 1
into Equation (18), which shows an operational efficiency of 93.8% and the feasibility of the
proposed converter.

5.4. The Performance Evaluation of the Proposed Converter

The proposed novel active bridge is formed by two NPC (neutral point clamped)
multilevel structures with flying capacitors, which, respectively, act as the main bridge arm
(MBA) and auxiliary bridge arm (ABA). As we know, the NPC multilevel structure can
reduce the voltage stresses of switches to half of the input voltage of the converter, which
keeps costs down, when the ZVS of switches is implemented. And, for example, generally,
in the emerging 800 V charging system of an EV battery, the proposed converter can select
the rated 650 V of MOSFETs to meet the 400 V of requirement for maximum voltage stress
within safety margins, while the conventional full bridge LCL-T resonant converter [22]
has to select the rated 1200 V of MOSFETs to meet the 800 V of requirement for maximum
voltage stress within safety margins. Sometimes, the higher the voltage level, the more
expensive it is. The product menus of Digi-Key Co. LTD, Thief River Falls, MN, USA,
contain the Rohm Semiconductor SCT3120 ALGC11 (SiC) (650 V 21 A USD 10.45) the and
Rohm Semiconductor SCT3105 KRC14 (SiC) (1200 V 24 A USD 24.86). Furthermore, the
switching frequency adopted in the proposed converter is higher than the conventional
DAB converter [23], reducing the volume of magnetic components and enabling a higher
power density, which is also used for keeping costs down. However, due to the vector
reconfiguration, more phase shift angles are introduced into the modulation in the active
bridge, which makes ZVS implementation and the design and transfer control of active or
reactive power more complex.

6. Conclusions

A novel active bridge for multilevel output, leveraging an NPC multilevel structure
and a coupling transformer, operates under “PSM + APWM” modulation. By integrating
this bridge with LCL-T resonance, a bidirectional multilevel converter is proposed, enabling
bidirectional power flow and ZVS for most switches through reactive power design based
on vector analysis with flexible phase shift controls α, β, and φ. The simulation on the
SABER platform confirms the feasibility of the 450 W bidirectional converter.
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