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Abstract: In network security, intrusion detection systems (IDSs) are essential for maintaining
network integrity. Traditional IDSs primarily use supervised learning, relying on extensive datasets
for effective training, which limits their ability to address rapidly evolving cyber threats, especially
with limited data samples. To overcome this, prior research has applied meta-learning methods to
distinguish between normal and malicious network traffic, showing promising results mainly in
binary classification scenarios. However, challenges remain in model information acquisition within
few-shot learning (FSL) frameworks. This study introduces a metric-based meta-learning strategy that
constructs prototypes for each sample category, improving the model’s ability to manage multi-class
scenarios. Additionally, we propose an Adaptive Feature Fusion (AFF) mechanism that dynamically
integrates statistical features and binary data streams to extract meaningful insights from limited
datasets, thereby enhancing the effectiveness of IDSs in few-shot learning contexts. By introducing a
metric-based meta-learning method and the Adaptive Feature Fusion mechanism, this study provides
a feasible solution for developing a high-accuracy, multi-class few-shot intrusion detection system. A
series of experiments show that this approach significantly improves the effectiveness of the intrusion
detection system, achieving an impressive accuracy of 97.78% in multi-class tasks, even when the
sample size is reduced to just one.

Keywords: network intrusion detection; few-shot learning; adaptive feature fusion; meta-learning

1. Introduction

With the proliferation of diverse and increasingly sophisticated cyber threats, network
intrusion detection has emerged as a crucial tool for identifying malicious network traffic
and maintaining the security of digital ecosystems [1]. As the hardware capabilities of
devices continue to advance, many network intrusion detection systems have integrated
machine learning and deep learning models to enhance their detection capabilities [2].
These systems, when combined with the deep learning method, rely more heavily on ample
training samples to achieve improved generalization compared to traditional rule-based
intrusion detection systems. However, the ever-evolving landscape of novel network
attack methodologies poses significant challenges, especially when these emerging network
attacks are characterized by a scarcity of attack samples. Traditional supervised intrusion
detection systems, reliant on a large number of samples, face difficulties in promptly
detecting and defending against these new types of network attacks.

To address the challenges outlined above, recent advancements in network intrusion
detection have increasingly focused on the integration of meta-learning mechanisms. In
this context, few-shot learning is particularly noteworthy, as it enables systems to learn
from a minimal number of samples, thereby enhancing their adaptability to new and
previously unseen threats. This capability is crucial for countering novel cyber threats,
where traditional systems often struggle due to insufficient data.
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Meta-learning frameworks are specifically designed to mitigate the issue of few-shot
learning for emerging threats, such as zero-day vulnerabilities [3]. Prior research [4–6] has
demonstrated that the incorporation of meta-learning frameworks into network intrusion
detection systems significantly improves their ability to manage few-shot scenarios. By
effectively extracting and transferring knowledge from specific tasks, these frameworks
enable models to achieve remarkable recognition performance, even with limited sam-
ple sizes. Furthermore, our intrusion detection method is founded on a metric-based
meta-learning approach, which enables it to effectively address multi-class scenarios. We
hypothesize that by establishing a prototype for each category and classifying new samples
through distance measurement, this approach will enable the system to proficiently manage
multi-classification problems.

Adequate information is crucial for model construction and is a key element in en-
suring the accuracy of intrusion detection systems. However, dependency solely on meta-
learning algorithms cannot fully address the information loss caused by the few-shot
problem. Therefore, in this system, we introduce an Adaptive Feature Fusion mechanism
to augment the data acquired by the model from a representational perspective. Typically,
network traffic in intrusion detection can be represented in two forms: one presents data
packets in a binary data stream format, offering the advantage of input that closely resem-
bles the original data and retains fine details; the other involves the extraction of network
features from traffic, transforming data packets into a series of intuitive statistical fea-
tures. AFF dynamically combines these two representations of network traffic, adaptively
integrating the strengths of both. In cases of network traffic characterized by significant dif-
ferences in macro-level statistical methods, AFF prioritizes statistical feature representation,
while in other scenarios, it focuses on the binary data stream representation. In scenarios
with a limited number of samples, AFF efficiently extracts valuable information from the
samples, thereby mitigating the problem of insufficient information to a certain extent. We
hypothesize that our proposed method will significantly enhance the classification accuracy
in both binary and multi-class tasks when compared to traditional methods that do not
incorporate the Adaptive Feature Fusion mechanism. This enhancement is attributed to
the AFF mechanism’s ability to extract more valuable information from a fixed number of
samples, thereby improving the differentiation of various network traffic patterns.

The primary contributions of this paper are as follows:

1. We develop an intrusion detection method using a metric-based meta-learning ap-
proach, which not only distinguishes between normal and malicious network traffic
but also excels in handling multi-class tasks in few-shot scenarios.

2. We introduce an Adaptive Feature Fusion mechanism, which effectively combines two
types of traffic data representations, thereby enriching the information content of each
sample and enhancing the efficacy of few-shot learning in network intrusion detection.

3. We conduct extensive experiments on the network intrusion detection method incorporat-
ing AFF. The results demonstrate its excellent performance in both binary and multi-class
scenarios. Furthermore, the feasibility experiments validate its practical applicability.

2. Related Work
2.1. Intrusion Detection Based on Deep Learning

As computational resources for neural networks continue to expand, a prevalent trend
in applying deep learning involves employing the proposed neural network architectures
for feature extraction to classify traffic of different categories [7]. A highly scalable hybrid
deep neural network (DNN) was introduced by [8], which underwent benchmark testing
across multiple datasets. The experiments demonstrated that deep learning methods can
capture more profound feature information, providing an advantage over previous research
in intrusion detection tasks.

However, while the HAST-IDS introduced by [9] utilizes CNN for spatial feature
extraction and RNN for temporal features—achieving a detection rate of 96.96% on the
ISCX-2012 dataset—its reliance on specific architectures limits adaptability to varied traffic



Electronics 2024, 13, 4560 3 of 17

conditions. Similarly, the DST-IDS proposed by [10] combines packet-based and flow-
based techniques, transforming raw packets into 28 × 28 × 1 images, resulting in an
accuracy of 96.27% on the CICIDS2017 dataset. While effective, both systems demonstrate
a lack of integration of statistical feature representation, potentially constraining their
overall performance.

In contrast to prior intrusion detection systems, which frequently focus exclusively on
either statistical feature representation or binary data stream representation, FS-IDS [11]
aims to enhance classification accuracy within the binary data stream representation by
integrating statistical feature information. However, its lack of adaptiveness to specific
task requirements limits the maximization of information utilization, suggesting a gap in
flexibility compared to models that leverage both feature types effectively.

2.2. Few-Shot Learning

Traditional deep learning methods often rely on a large amount of labeled data, which
can be resource intensive and unattainable in some cases. In situations with limited labeled
data samples, deep learning models can struggle to generalize effectively due to overfitting
issues. In contrast, humans, equipped with prior knowledge and relevant backgrounds,
can rapidly transfer their acquired knowledge to new task scenarios, thereby effectively
completing tasks even in few-shot learning scenarios [12].

In recent years, meta-learning has gained popularity and been widely applied to
the challenges of few-shot learning. Generally, meta-learning can be seen as a process
of extracting knowledge from multiple similar learning tasks and improving subsequent
performance through experience [13], often referred to as “learning to learn”. Existing
meta-learning methods for few-shot learning typically involve learning from a limited
number of target tasks with a large number of similar tasks to create a classifier that
can adapt to various scenarios [14]. The Meta-Learning Algorithmic Model (MAML)
introduced by [15] achieves rapid convergence with minimal data by updating parameter
values to change gradient-based optima, thereby adapting to new application scenarios.
Matching networks [16] draw inspiration from some concepts in Metric Learning within
deep learning and enhance network capabilities using external memory. Prototypical
networks [17] are also metric-based meta-learning methods, directly determining sample
categories by their proximity to prototypes, which are the mean representations of all
samples within each category in a shallow feature space.

2.3. Application of Few-Shot Learning in the Field of Intrusion Detection

Confronted with emerging novel network attacks, traditional intrusion detection
relying on a plethora of labeled samples struggles to effectively detect threats. Consequently,
some studies seek to integrate few-shot learning into intrusion detection systems, leveraging
meta-learning frameworks to achieve effective detection even in scenarios with extremely
limited sample sizes. In the paper [18], the FC-Net is introduced as the first intrusion
detection system to incorporate a meta-learning framework. FC-Net, with a CNN as its
backbone, transforms data packets into 16×16 RGB images as input, achieving a notable
accuracy of 94.64% on the CICIDS2017 dataset. Built upon the MAML-based meta-learning
framework, ref. [19] establishes a few-shot intrusion detection task. Leveraging the learn to
forget mechanism, the model achieves rapid convergence, ultimately attaining an accuracy
of 94.66% in the binary classification task on the CICIDS2017 dataset.

While these studies validate the feasibility of meta-learning models in addressing
few-shot challenges in intrusion detection, they primarily focus on binary classification
tasks. There remains a critical need for solutions tailored specifically for multi-class classi-
fication tasks. Thus, this paper builds on the enhanced performance in binary scenarios
to conduct comprehensive experiments targeting multi-class intrusion detection, thereby
distinguishing its contributions in addressing the identified gaps.
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3. Problem Formulation

In few-shot scenarios, the samples within the task set constitute the meta-training set,
while the few samples corresponding to the target task constitute the meta-test set. Typically,
in the realm of few-shot learning, a model is trained to differentiate among instances from
N different categories by being given K instances for each category, constituting what is
known as K-shot N-way tasks. As shown in Figure 1, during a training episode or task, a
subset of categories is randomly selected from the training set, and a portion of instances
from each category is randomly sampled to form the support set. Additional instances
are selected from the remaining categories to construct the query set. With the support set
provided, the model is trained iteratively to minimize the prediction loss on the query set.

Figure 1. An abstract illustration demonstrating the meta-learning process. G represents normal
traffic, A, B, C and F represent malicious traffic, with F having very few samples. The symbol ?
denotes the classification of the sample into its respective category.

In the field of network intrusion detection, we define a task Ti as a binary classification
task distinguishing between normal (G) and a specific type of malicious sample (A, B, C,
or F). G represents normal traffic, while A, B, C, and F represent different malicious traffic
types. Types A, B, and C have ample labeled samples in the dataset, whereas F is a new
type with only K samples available. The primary goal is to perform task Tf by learning
from K samples each of type F and normal type G, forming a classifier f . This classifier
will then identify type F malicious samples among unknown samples. The support set for
this task is S f = {(x1, y1), . . . , (x2K, y2K)}, where yi ∈ {G, F}. Given the small K, these 2K
samples alone are insufficient for Tf .

To address this, we leverage tasks Ta, Tb, and Tc, which are structurally similar to
Tf but use malicious samples of types A, B, and C, respectively. For example, task Ta
uses K samples, each of types A and G, forming Sa = {(x1, y1), . . . , (x2K, y2K)}. These
tasks simulate the support and test sets for Tf . In meta-learning terms, Ttrain (comprising
tasks like Ta, Tb, and Tc) and Ttest (comprising tasks like Tf ) are the meta-training and
meta-testing sets, respectively.

4. Methodology
4.1. Metric-Based Meta-Learning Model

The approach of metric-based meta-learning involves utilizing the distances between
categories as indicators to facilitate the learning process. In this paper, we use a pro-
totypical network as the foundational approach and illustrate the implementation of
AFF. In a single training episode of K-shot N-way tasks, the support set, denoted as
S = {(e1, y1), ...(eN , yN)}, consists of samples with feature vectors ei ∈ RD, where D
represents the dimensionality of the input feature vectors that encapsulate the character-
istics of each sample. The corresponding labels yi ∈ {1, ..., K} indicate the categories of
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these samples. The prototypical network computes a representation Pk ∈ RM for each
category k using the support set, often referred to as the prototype, where M signifies
the dimensionality of the prototype representations that summarize the information from
the corresponding feature vectors, facilitating classification. Each category’s prototype is
essentially the mean feature embedding of the samples belonging to that category in the
support set, with feature embedding generated by the embedding function fϕ : RD → RM,
where ϕ represents learnable parameters:

Pk =
1
|Sk| ∑

(ei ,yi)⊂Sk

fϕ(ei) (1)

Following this, the prototype network classifies each sample in the query set based
on the distances to various class prototypes. In this paper, we employ the distance d for
calculating distances, and the class distribution for sample e is determined by the softmax
corresponding to distances in the embedding space:

pϕ(y = k|e) =
exp(−d( fϕ(e), Pk))

∑k′ exp(−d( fϕ(e), Pk′))
(2)

In practical implementation, the distance function d used is the Euclidean distance
because of its excellent computational efficiency and effectiveness as demonstrated in
previous work [20,21].

4.2. Network Traffic Representation

Binary data stream representation. From a transmission perspective, transmitted
data packets are effectively converted from bitstreams into electrical signals for network
transmission. These data packets are then parsed by protocols other than the physical layer
in the Open Systems Interconnection (OSI) protocol suite. In this context, a network traffic
flow can be defined as the sequence of packets exchanged between two endpoints in a
network connection, typically beginning with a TCP connection establishment (SYN) and
concluding with the connection termination (FIN). As a result, data packets within network
traffic can be seen as a combination of payloads and data packet headers from various
protocol layers, such as IP and TCP. Each high-level data packet header contains semantic
information, including elements like version, length, and identifier. However, due to the
utilization of different protocols and varying content, achieving uniform representation
and constant sizes for data packets can be challenging.

To address this issue, nPrint [22] represents packets in their raw binary data form,
ensuring that semantic information can be accurately extracted through predefined formats.
By preserving a fixed number of bytes for each protocol header and aligning the data pack-
ets with padding, nPrint ensures consistency in format. Figure 2 illustrates the partitioning
and meaning of the data.

Recent work [23,24] has introduced a trend of transforming each byte in data traffic
into corresponding pixels in grayscale images and demonstrated the effectiveness of this
approach. However, due to the nonuniform sizes and formats of data packets, the straight-
forward stacking of raw binary data does not effectively leverage the feature extraction
capabilities of CNN architectures, which rely on gathering information from pixels and
their adjacent pixels.

To address this issue, our research aligns the binary data stream and maps bits from
data packets to pixels in grayscale images, thereby creating image-based representations.
In order to balance information retention and computational complexity, we select the first
five data packets from each network traffic flow and the first 256 bytes from each packet.
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Figure 2. Segmentation and examples of binary data stream representation.

Subsequently, we arrange the 256 bits from each packet into a 16 × 16 grid to form
grayscale images, stacking the packets in chronological order. This method maximizes the
feature extraction capabilities of the convolutional neural network (CNN) while effectively
representing the binary data stream. Each grayscale image in the sequence can be regarded
as a snapshot of the data packets, illustrating various layers of information derived from
the binary stream. The specific process for handling the binary data stream representation
is illustrated in Figure 3.

Figure 3. Pipeline of handling a binary data stream representation.

Statistical feature. In this study, we use the CICFlowMeter-4.0 tool to extract statistical
features from network traffic, such as flow size, flow duration, and packet count. We omit
sensitive information such as IP addresses and port numbers, so 76 out of the initially
extracted features are retained as the final set of statistical features. Given the signifi-
cant variations in the value ranges of different features, we perform data cleansing and
subsequently apply min-max normalization to standardize the data and expedite model
convergence. For each feature dimension, the normalization formula is as follows:

x∗i =
xi −min(xi)

max(xi)−min(xi)
(3)

where max (xi) and min (xi) represent the maximum and minimum values of the specific
feature across all samples. This data transformation maps the values of each feature to
the range [−1, 1]. The application of min-max normalization mitigates the influence of
dimensional disparities within the data and yields the final set of statistical features.

4.3. Adaptive Feature Fusion Mechanism

Statistical features and binary data stream features provide significantly different types
of information for the same network traffic. Statistical features mainly take a macroscopic
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approach, summarizing important characteristics of the given network traffic, providing a
relatively comprehensive overview. On the other hand, binary flow data focus more on
the detailed information contained within each packet, including the semantic details of
various protocol headers at different layers and payload contents.

To effectively harness the information from both representations and further enhance
performance in few-shot learning (FSL), we introduce an Adaptive Feature Fusion (AFF)
mechanism. This mechanism is designed to fuse heterogeneous features while dynamically
adjusting its emphasis based on specific target tasks and variations in training set samples.
In this context, the AFF mechanism can dynamically adjust the focus on these two feature
types based on the specific network traffic scenario. For instance, during a DDoS attack,
where traffic patterns may shift rapidly and unpredictably, the AFF mechanism can pri-
oritize binary data stream features to capture the nuanced behavior of malicious packets
while still retaining the broader statistical context. By fine-tuning the fusion coefficients,
the system can enhance its sensitivity to real-time threats, ensuring that critical features
are highlighted to improve detection accuracy. Specifically, if a spike in packet size or
frequency is detected, the AFF mechanism may increase the weight of binary features to
focus on the packet contents that reveal the attack’s nature, thereby improving the system’s
responsiveness to evolving attack strategies. Consequently, upon the integration of the AFF
mechanism, it transforms the feature vectors for each traffic class in the prototype network
into convex combinations of feature vectors generated from the two representation types.
For each sample i, the computation of its feature vector ei is as follows:

ei = α · g(ri) + (1− α) · h(ti) (4)

where h(ti) represents the feature vector derived from statistical feature ti after extraction,
and g(ri) is the feature vector derived from binary flow data representation ri after extrac-
tion. The two types of feature vectors should be generated within the same dimensional
space to ensure that AFF correctly produces the final fused feature vector. In this equation,
α is the adaptive fusion coefficient, and its magnitude depends on the feature vectors h(ti)
of each sample. The specific calculation method is as follows:

α =
1

1 + exp(−a(h(ti)))
(5)

where a denotes the adaptive fusion network. The generated α values range from (0, 1)
and essentially represent the weight of the binary data stream feature vector g(ri) within
the final feature vector ei. Depending on the specific scenario, the value of the adaptive
blending coefficient α can fluctuate, thereby modifying the reliance of ei on the two types
of feature vectors.

4.4. Overall Architecture

The overall architecture of AFF is depicted in Figure 4. AFF consists of two compo-
nents: a feature extraction network and an adaptive fusion network. The feature extraction
network comprises two distinct architectures, each responsible for extracting features
from the sample’s binary data stream representation and statistical features, generating
feature vectors of the same dimensions. The adaptive fusion network uses the feature
vector corresponding to the statistical features as input and outputs an adaptive fusion
coefficient within the range (0,1). This coefficient is used to generate the sample’s final
feature vector according to Formula 4. The progressive operation of these two constituents,
situated between the intrusion detection model’s input and the prototype network, leads to
a subsequent improvement in the overall model’s performance. The overall architecture of
AFF is depicted in Figure 4.
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Figure 4. Overall architecture of AFF.

Binary data stream feature extraction network. After data preprocessing, the repre-
sentation of binary flow data essentially consists of 5 grayscale images, each with a size of
16 × 16 pixels. To expedite network convergence, enhance model accuracy, and improve
generalization capabilities, we choose a Residual Network (ResNet) architecture over the
traditional convolutional network structure for binary data stream feature vector extraction.
Subsequently, a vector is generated for each data packet in the network traffic, which
corresponds to a grayscale image. As the input representations are alignment processed,
the multiple feature vectors obtained after passing through the ResNet maintain their
alignment characteristics. This allows for dimension reduction by taking the average of
the multiple feature vectors that constitute a three-dimensional tensor. Ultimately, this
process yields the feature vector for binary flow data. The ResNet architecture is composed
of four residual blocks, and each convolutional layer within these blocks has a kernel size
of 5 × 5 and a stride of 1. Rectified Linear Unit (ReLU) serves as the activation function,
while max-pooling layers with a kernel size of 2 and a stride of 2 are present only in the
first three residual blocks.

Statistical feature extraction network. The input statistical feature are represented
as a 76-dimensional vector. The feature extraction network for statistical features is a
nonlinear multilayer perceptron (MLP), composed of fully connected layers, activation
functions, dropout layers, and additional fully connected layers as shown in Figure 4. The
activation function used is ReLU. The statistical features are finally transformed into a
512-dimensional feature vector, which matches the dimensionality of the binary data stream
feature vector.

Adaptive fusion network. The adaptive fusion network also employs an MLP with a
network structure similar to that of the statistical feature’s feature extraction network. How-
ever, a sigmoid function is added before the output, allowing the input 512-dimensional
statistical feature vector to generate an adaptive fusion coefficient α within the range (0,1).
Following the convex combination of the two types of feature vectors, each sample’s feature
vector is used as input for the prototypical network.
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4.5. Training Strategy

To illustrate, Algorithm 1 provides insight into how the prototypical network operates
with the introduction of the Adaptive Feature Fusion Mechanism.

Algorithm 1: Training an episode for the prototypical network with AFF. M is
the total number of classes in the training set. N is the number of classes in each
episode. K is the number of supports for each class. KQ is the number of queries
for each class. R and T are the feature vector sets for binary data stream and
statistical features.

Data: Training set Dtrain = {((ri, ti), yi)} where yi ∈ {1, ..., M}, ri ∈ R, ti ∈ T.
Dk

train = {((ri, ti), yi), yi = k}.
Result: Episode loss L(θ) for the sampled episode.
V ← RandomSample({1, ..., M}, N);
for k in V do

Sk ← RandomSample(Dk
train, K);

Qk ← RandomSample(Dk
train\Sk, KQ);

S
′
k ← ∅;

for (ri, ti) in Sk do
α← 1

1+exp(−a(h(ti)))
;

ei ← α · g(ri) + (1− α) · h(ti);
S
′
k ← S

′
k + (ei, yi);

end
Q
′
k ← ∅;

for (ri, ti) in Qk do
α← 1

1+exp(−a(h(ti)))
;

ei ← α · g(ri) + (1− α) · h(ti);
Q
′
k ← Q

′
k + (ei, yi);

end
Pk =

1
N ∑(ei ,yi)⊂S′k

fϕ(ei)

end
L(θ)← 0;
for k in {1, ..., N} do

for (ei, yi) in Q
′
k do

L(θ)← L(θ) + 1
N×K [d( fϕ(ei), Pk) + log∑N exp(−d( fϕ(ei), Pk))];

end
end

5. Experiments and Analysis
5.1. Datasets

Due to the lack of datasets specifically generated for few-shot learning scenarios in
the field of intrusion detection, a common practice is to select widely used datasets from
the network security domain as the foundation and construct few-shot tasks by redefining
samples. In order to evaluate the proposed model, we select the CICIDIS2017 [25] and
ISCX2012 [26] datasets as benchmarks, with the following reasons:

1. To achieve the acquisition of two different data representations, the chosen datasets
should provide unprocessed network traffic files rather than pre-extracted feature
vectors.

2. The selected datasets have corresponding labels for each sample, which simplifies the
process of model learning and metric calculation.

3. The selected datasets encompass a variety of protocols and types of attacks, making it
possible to simulate real-world network attack scenarios effectively.
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These datasets are widely recognized for their comprehensive coverage of various at-
tack types and protocols, providing a solid foundation for training and evaluating intrusion
detection systems. After filtering and reconstruction, normal traffic and five attack types
from the CICIDS2017 dataset, along with normal traffic and four attack types from the
ISCX2012 dataset, are combined into a new dataset without altering or selecting samples.
Detailed information about the two reconstructed datasets is provided in Table 1.

Table 1. Coding and numbers for the types of traffic.

Benchmark Code Type of Traffic Numbers

CICIDS2017

DDoSc DDoS with LOIT 45,168
DoSc DoS(All types) 29651
FTPc FTP-BruteForce 3958

Infiltrationc Infiltration 66,913
SSHc SSH-BruteForce 2464

Benignc Benign 241,041

ISCX2012

DDoSi DDoS 19,282
DoSi HTTP DoS 3204

Infiltrationi Infiltration 8984
SSHi SSH-BruteForce 4957

Benigni Benign 168,878

For the convenience of presenting and analyzing the results of subsequent experiments,
we assign specific codes to each type of traffic, with the main code representing the traffic
category and the subscript indicating its original dataset. The subscript “i” indicates data
from ISCX2012, while the subscript “c” indicates data from CICIDS2017.

5.2. Metrics

Intrusion detection is fundamentally a classification problem, making accuracy the
most commonly used performance metric. Accuracy measures the proportion of correctly
classified samples against the total test samples, reflecting the model’s predictive capability.
Recall is also critical in this domain, indicating the ratio of true positives to the total positives
identified by the model, which is essential for assessing the detection of malicious samples.
In multi-class experiments, we use micro-precision and micro-recall, which provide the
average precision and recall across all categories as key evaluation metrics.

5.3. Experimental Settings

In order to comprehensively and deeply investigate the proposed approach, we design
three categories of experiments with different objectives.

The first category of experiments aims to explore whether the prototype network incorpo-
rating the AFF mechanism can effectively address intrusion detection problems in a few-shot
scenario and whether the proposed method outperforms existing solutions. To this end, the
first category of experiments is conducted based on the restructured CICIDS2017 dataset and
is divided into two settings: binary classification tasks and multi-class classification tasks. In
the binary classification tasks, we select four attack categories from the dataset as the data
source and 70% of the benign samples for the meta-training set, reserving one category for
the meta-test set. The test set comprises all attacks, including the few-shot attack category,
along with the remaining normal data flow samples. By choosing different attack categories
as the source of the test set, as the number of combinations C(5,1) = 5, we can construct five
parallel experiments. In order to explore the impact of different sample sizes K on detection
performance, this experiment is conducted under the settings of K = 1 and K = 5.

For the multi-classification tasks of intrusion detection, our objective is for the model to
correctly classify traditional attacks with a substantial number of samples and, concurrently,
accurately identify categories of attacks with limited samples. Hence, we opt for three
types of attacks, along with normal data flow samples, to compose the meta-training
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set. Additionally, we select one attack category to simulate a scenario with few shots for
constructing the dataset. In the multi-class classification tasks, a total of 5 experiments are
conducted, and the sources of meta-training and meta-testing data for each experiment are
shown in Table 2. Similar to the binary classification tasks, the multi-class classification
tasks are also performed under the settings of K = 1 and K = 5.

Table 2. Multi-classification tasks settings.

Number Meta-Testing Meta-Training

1 DDoSc FTPc Infiltrationc SSHc Benignc
2 DoSc DDoSc Infiltrationc SSHc Benignc
3 FTPc DDoSc DoSc SSHc Benignc
4 Infiltrationc DDoSc DoSc FTPc Benignc
5 SSHc DoSc FTPc Infiltrationc Benignc

The second category of experiments aims to investigate the effectiveness of the AFF
mechanism, examining whether the adaptive fusion mechanism can indeed enhance the
performance of the prototype network. We conduct ablation experiments on binary and
multi-class classification tasks under the K = 5 setting using the restructured CICIDS2017
dataset to observe the enhancement effect of the AFF mechanism on the prototype network.

The third category of experiments aims to explore the feasibility of the proposed model
in practical applications. We conduct cross experiments on the restructured CICIDS2017
and ISCX2012 datasets. By selecting one dataset as the source of meta-training and meta-
testing while using the other to simulate real-world data, we observe the performance of
the proposed model when the source of meta-training and meta-testing samples differs.
This experiment is conducted under the K = 5 setting and includes binary and multi-class
classification tasks.

5.4. Classification Experiments on the Reconstructed CICIDS2017 Dataset

The test results for binary classification tasks in the first category of experiments are
shown in Tables 3 and 4. As shown below, the proposed method performs well in both
binary and multi-class classification intrusion detection tasks, consistently maintaining
high accuracy and recall values during testing. The value of the adaptive mixing coefficient
α is shown in Table A1 in the Appendix A under various experimental settings.

Table 3. Detection results of binary classification tasks on reconstructed CICIDS2017 dataset.

Few-Shot Type
K = 1 K = 5

Acc (%) Rec (%) Acc (%) Rec (%)

DDoSc 99.34 99.57 99.74 99.84

DoSc 97.30 98.59 99.76 99.55

FTPc 99.98 99.99 99.98 99.99

Infiltrationc 93.49 96.16 97.74 98.26

SSHc 99.97 99.99 99.99 99.99

Overall 97.62 98.86 99.44 99.53
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Table 4. Detection results of multi-classification tasks on reconstructed CICIDS2017 dataset.

Few-Shot Type
K = 1 K = 5

Acc (%) Rec (%) Acc (%) Rec (%)

DDoSc 98.87 98.93 99.15 99.32

DoSc 95.35 97.58 97.15 98.32

FTPc 99.92 99.98 99.93 99.99

Infiltrationc 94.85 95.02 98.71 99.56

SSHc 99.89 99.92 99.95 99.99

Overall 97.78 98.29 98.98 99.44

An analysis of these two tables leads to the following conclusions:

1. The choice of few-shot types has a noticeable impact on the experimental results, a
phenomenon that is consistent in both binary and multi-class tasks. For example,
selecting SSHc as the few-shot type results in favorable performance in both binary
and multi-class tasks, while choosing Infiltrationc leads to a significant decrease in
accuracy and recall in both types of experiments.

2. The selection of the K value has a clear influence on the results. When K is increased
from 1 to 5, various data groups in both types of experiments show varying degrees of
improvement. Such results are reasonable since more samples imply that the model
can extract more useful information, providing a more reliable basis for classifying
training set samples.

Subsequently, we compare our proposed method with existing research that uses the
same benchmark dataset, CICIDS2017. The results are presented in Tables 5 and 6. Table 5
demonstrates that, in binary classification tasks, the prototype network incorporating the AFF
mechanism stands out among existing few-shot intrusion detection methods, displaying a
clear advantage.

Intrusion detection for multi-class classification in few-shot scenarios is a relatively
recent research area, with few existing comparative studies available for reference. As
illustrated in Table 6, besides the approach proposed in this paper and SPN and Cs, the
other methods rely on a large volume of samples for training and do not utilize few-shot
learning techniques. Table 6 further illustrates that, even when working with highly con-
strained sample sizes, the method outlined in this paper consistently delivers commendable
detection performance. This accomplishment carries paramount significance within the
dynamic landscape of real network environments characterized by the emergence of novel
attack scenarios.

Table 5. Comparison of binary classification detection results and the number of samples in the
proposed method and related research works.

Method Feature Type Number Acc (%) Rec (%)

Siamese Capsule [26] Binary Data Stream 5 93.87 96.45
Siamese Capsule [26] Binary Data Stream 20 95.56 98.31

FC-Net [18] Binary Data Stream 5 94.33 99.17
FC-Net [18] Binary Data Stream 10 94.64 99.62
FCAD [27] Statistical 5 94.30 N/A
FCAD [27] Statistical 10 97.10 N/A
FCAD [27] Statistical 20 98.60 N/A
FS-IDS [11] Binary Data Stream + Statistical 5 97.51 99.00

Few-Shot with L2F [19] Statistical 10 94.66 96.68
AFF-ProtoNets Binary Data Stream + Statistical 1 97.62 98.86
AFF-ProtoNets Binary Data Stream + Statistical 5 99.44 99.53
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Table 6. Comparison of multi-classification detection results and the number of samples in the
proposed method and related research works.

Method Feature Type Number Acc (%) Rec (%)

DNN Statistical 93,500 97.71 96.64
CFS-BA-ensemble [28] Statistical 125,973 99.30 99.21

MAGNETO-B [29] Binary Data Stream + Statistical 100,000 99.28 N/A
MAGNETO-S [29] Binary Data Stream + Statistical 100,000 99.24 N/A

CES-IDS [30] Binary Data Stream + Statistical 137,183 98.67 N/A
LSTM-CNN-MAM [31] Binary Data Stream + Statistical 20,562 99.92 99.78

MEMBER [32] Binary Data Stream + Statistical 222,288 99.42 N/A
Graph2vec [33] Statistical 16,379 99.63 99.36

SPN [34] Binary Data Stream 5 93.78 92.44
Cs [35] Statistical 1000 95.20 N/A

AFF-ProtoNets Binary Data Stream + Statistical 1 97.78 98.29
AFF-ProtoNets Binary Data Stream + Statistical 5 98.98 99.44

5.5. AFF Effectiveness Experiments

To evaluate the effectiveness of the AFF mechanism, a series of ablation experiments is
conducted under consistent data preprocessing conditions. With K set to 5, the experimental
results for both the prototype network and the prototype network integrated with the AFF
mechanism in binary and multi-class tasks are presented in Figure 5. Figure 5 illustrates the
comparison between two models: one that employs the AFF mechanism, integrating two
types of features (left), and another that relies solely on binary data stream (right). In each
heatmap, the vertical axis represents the types of meta-testing traffic in the experiment,
while the horizontal axis indicates the types of traffic involved. The values in the heatmap
range from 0.95 to 1.00, with darker colors signifying higher classification accuracy for the
corresponding types of traffic.
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Figure 5. Accuracy of ablation experiments for binary and multi-class tasks. This figure shows the
accuracy results from the ablation experiments.

Figure 5 clearly demonstrates a substantial improvement in the performance of the
prototype network across both binary and multi-class tasks due to the presence of the
AFF mechanism, as indicated by the darker colors in the heatmap on the left compared to
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the one on the right. This enhanced accuracy in traffic classification for both tasks can be
explained by two key perspectives that highlight the overall improvements across different
types of samples within each task:

1. From the perspective of the fundamental reasons for few-shot learning shortcomings,
a key factor is the information loss due to insufficient samples. The AFF mechanism
addresses this by integrating two types of features, effectively supplementing the
missing information and optimizing the overall model.

2. From a theoretical standpoint, the prototype network without the AFF mechanism
serves as a special case of our proposed model, relying exclusively on binary data
stream for traffic classification. Consequently, the introduction of the AFF mechanism
guarantees that the overall performance will be at least as strong as that of the model
that relies solely on a single type of feature.

5.6. Feasibility Experiments

To simulate the real-world application of our trained model, we design a series of
cross-experiments based on the restructured CICIDS2017 and ISCX2012 datasets. Under
the condition of K = 5, we select four attack types’ traffic from the CICIDS2017 dataset
along with normal traffic to form the meta-training set, while we use the entire range of
traffic types from the ISCX2012 dataset as few-shot types for testing. The results for both
binary and multi-class tasks are illustrated in Figure 6.

The left image in Figure 6 illustrates the model’s performance in the binary classi-
fication scenario, where the test set includes malicious traffic samples of DDoSi, DoSi,
Infiltrationi, and SSHi. The right image represents the results of the multi-class experi-
ment under the same experimental settings. Even in the multi-class experiment of the
cross-validation, the overall model maintains a commendable performance, achieving
an accuracy of 90.36%. It is noteworthy that the cross-experiment is conducted under
extreme conditions with K = 5, testing the model on a new dataset with significant vari-
ations from the training dataset. Therefore, the results of the cross-experiment suggest
that the model exhibits robust stability and superior performance in environments with
substantial differences.
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Figure 6. Accuracy and recall of feasibility experiments on the reconstructed ISCX2012 dataset.

6. Applicability

In this subsection, we further clarify the applicability of the proposed approach and
the experimental design, highlighting the following two limitations:

• Unencrypted traffic samples. The research and experiments presented in this study
are predicated on the assumption that the traffic samples utilized are unencrypted. In
instances where traffic is encrypted, the information contained within the payload sec-
tion of the binary data stream representation may be compromised, as the underlying
data become inaccessible for analysis. This limitation poses a significant challenge for
intrusion detection systems, potentially diminishing the effectiveness of our proposed
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method in such scenarios. Furthermore, it is essential to highlight that the traffic
samples from the CICIDS2017 and ISCX2012 datasets employed in the experiments are
also unencrypted; consequently, the results obtained remain uncertain in the context
of encrypted traffic and warrant further investigation.

• Features of samples are limited. To ensure real-time performance in intrusion detection
systems, we extract features by selecting the first five data packets from each network
traffic flow and the initial 256 bytes from each packet. This selection is informed by
findings from [22], which suggest that header information (such as IP and TCP headers)
and the early data within the payload are typically the most informative for sample
classification. However, this methodology entails certain limitations; specifically, it
may lead to the loss of critical information for some malicious payloads that are
present later in the network traffic flow or that extend beyond the first 256 bytes. Such
limitations could significantly affect the classification accuracy for these samples.

7. Conclusions

In the present paper, we introduced a metric-based meta-learning framework designed
to enhance few-shot intrusion detection for both binary and multi-class classification tasks.
By employing metric-based meta-learning to create prototypes after feature extraction
and integrating an Adaptive Feature Fusion mechanism, our approach effectively reduces
information loss, a significant challenge in few-shot learning scenarios.

The results indicate that the proposed method achieves a detection rate of 98.98%
with five-shot samples, outperforming existing few-shot learning techniques. Additionally,
ablation studies confirm that the AFF mechanism enhances accuracy by mitigating informa-
tion loss. Cross-validation on the CICIDS2017 and ISCX2012 datasets further supports the
model’s robustness, with accuracy rates of 92.32% and 90.36% for binary and multi-class
tasks, respectively.

Despite these findings, further evaluation of the model’s performance in real-world
scenarios is needed to assess its generalization capabilities. Moreover, addressing the
challenge of completely unseen samples presents an important area for future research.
Our future work will focus on improving generalization through methods like meta-
regularization and domain adaptation, as well as exploring zero-shot learning to enhance
the model’s applicability in dynamic environments. These efforts aim to further advance
the practical utility of our approach in real-world intrusion detection systems.
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Appendix A

In this section, Table A1 provides the values of the adaptive mixing coefficient α
under various experimental settings. The table reveals that, depending on the specific
configurations, which encompass different classification tasks, K values, and the selection
of few-shot traffic types, the adaptive mixing coefficient α is dynamically adjusted to suit
the circumstances.
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Table A1. The values of the adaptive mixing coefficient α under various experimental settings.

α
Binary Classification Multi-Classification

K = 1 K = 5 K = 1 K = 5

DDoSc 0.9549 0.7508 0.7138 0.6353

DoSc 0.5090 0.5384 0.7034 0.7911

FTPc 0.9419 0.4798 0.9095 0.7258

Infiltrationc 0.4349 0.4206 0.6480 0.6047

SSHc 0.9511 0.4666 0.9281 0.7590
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