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Abstract: We propose the ATGT3D an Animatable Texture Generation and Tracking for 3D Avatars,
featuring the innovative design of the Eye Diffusion Module (EDM) and Pose Tracking Diffusion
Module (PTDM), which are dedicated to high-quality eye texture generation and synchronized
tracking of dynamic poses and textures, respectively. Compared to traditional GAN and VAE methods,
ATGT3D significantly enhances texture consistency and generation quality in animated scenes using
the EDM, which produces high-quality full-body textures with detailed eye information using the
HUMBI dataset. Additionally, the Pose Tracking and Diffusion Module (PTDM) monitors human
motion parameters utilizing the BEAT2 and AMASS mesh-level animatable human model datasets.
The EDM, in conjunction with a basic texture seed featuring eyes and the diffusion model, restores
high-quality textures, whereas the PTDM, by integrating MoSh++ and SMPL-X body parameters,
models hand and body movements from 2D human images, thus providing superior 3D motion
capture datasets. This module maintains the synchronization of textures and movements over
time to ensure precise animation texture tracking. During training, the ATGT3D model uses the
diffusion model as the generative backbone to produce new samples. The EDM improves the
texture generation process by enhancing the precision of eye details in texture images. The PTDM
involves joint training for pose generation and animation tracking reconstruction. Textures and
body movements are generated individually using encoded prompts derived from masked gestures.
Furthermore, ATGT3D adaptively integrates texture and animation features using the diffusion model
to enhance both fidelity and diversity. Experimental results show that ATGT3D achieves optimal
texture generation performance and can flexibly integrate predefined spatiotemporal animation
inputs to create comprehensive human animation models. Our experiments yielded unexpectedly
positive outcomes.

Keywords: human body; 3D representations; human motion; 3D texture; texture tracking

1. Introduction

Creating 3D virtual humans that replicate real-world scenarios continues to be a long-
term objective in computer graphics and vision. The ability to generate and track dynamic
3D textures provides virtual characters with high-quality detail and dynamic consistency,
thereby enhancing user immersion. Additionally, in industries such as virtual humans
and film animation, the generated high-resolution textures offer innovative solutions for
creating virtual characters, making them suitable for applications in advertising, film, and
online streaming. Synthesizing texture appearance and tracking models are essential tasks
in creating digital humans, both crucial for achieving realistic, video-like authenticity. To
produce video-like effects, it is essential to generate complete models to enable the accurate
tracking of movements in videos using human textures.

Recent approaches in pose image synthesis tasks [1–7] utilize generative strategies
such as GANs [8] or VAEs [9], guided by 2D pose representations or text, and have
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demonstrated impressive results. However, these methods directly output 2D images of
humans in camera space without generating complete texture maps, limiting their usability
in standard 3D animation pipelines that rely on UV [10] texture mapping for texturing 3D
meshes. UV mapping refers to the process of projecting a 2D texture map onto a 3D model.
Moreover, they often struggle to recover textures from in-the-wild images. Similarly, other
works employ neural rendering pipelines [11–15] to generate view-dependent pose avatars
but fail to produce 3D texture maps.

Other research focuses on complete texture estimation from a single image [3,16–20]
and is capable of recovering 3D texture maps from casual images. Most of these meth-
ods employ CNN architectures [16,21] to infer complete 3D texture maps from a single
image, sometimes incorporating multiview supervision [20] or Transformer-based archi-
tectures [19]. However, these methods are confined to generating textures from images,
which limits their applicability in scenarios requiring animated virtual human synthesis.
Notably, the limited expressive capacity of the network’s latent space often results in low-
detail textures. We believe that these limitations obstruct the development of large-scale,
high-quality 3D human textures and consider this a significant shortcoming in the field.

Closely related to the task of texture estimation are methods aimed at reconstructing
3D human bodies and appearances from a single image [22–26]. These methods can gen-
erate high-fidelity 3D reconstructions, including fine geometric details, but the estimated
appearances are often not explicitly baked into consistent UV texture maps. Moreover, they
are unable to accurately track textures for animated human models.

To address the challenge of accurately tracking textures for animated human models,
we introduce a texture-tracking human animation pose image synthesis method. This
methodology predicts nearly complete 3D texture maps and generates images correspond-
ing to human poses [1–7], requiring the use of synthetic 3D human subjects. For instance,
Saito et al. [6] encoded partial (i.e., visible) UV space appearances into global latent vectors
for the image generator while concurrently correcting the corresponding fields and trans-
ferring local surface details to the target pose. They employed a generative technique for
the synthesis of full 3D human textures. This approach can determine 3D human textures
from single images, which can be directly applied to animated SMPL-X meshes, as shown
in Figure 1.

It is used to create facial expressions with textures, dynamics of body parts, and the
tracking of hand motions conditioned on the texture maps of the human body and animated
model poses. Complete masking of 3D human texture is achieved. Figure 1a displays the
texture map and the 3D human model in various poses. Figure 1b presents images of the
3D human body in different poses.

Model & Texture
Human model: pick up box with texture exmple

Smpl-X model: Body and Hand motion

(a)
(b)

Figure 1. This framework facilitates the generation and tracking of animated textures for 3D vir-
tual images.
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We utilize the appearance texture maps from the HUMBI dataset and employ our
proposed TED module, which encompasses the generation of appearance texture and
the assessment of eye loss in a complete texture map (see Section 4.2), and we also use
the 3D human models from the AMASS human motion pose dataset as a baseline for
action parameters. Our framework establishes a model for 3D animated texture generation
and tracking named ATGT3D. In Section 4.1 depicts the overall structure of ATGT3D.
Initially, ATGT3D gathers positional and spatial features of the human eye from an image
and generates a complete human texture map using a simple autoencoder through our
proposed Eye Diffusion Module (EDM). Detailed information is available in Section 4.1.
Subsequently, by converting to capable 3D animation parameters of SMPL-X within the
AMASS dataset, the selection of varying forward paths facilitates effective gesture-to-
gesture and audio-to-gesture modeling, respectively. Once the reconstructed latent features
are obtained, ATGT3D establishes correspondences at different time frames to decode local
facial and body poses and decode human texture map parameters from pretrained global
motion pose parameters, hence completing the tracking of textures and models.

Overall, our contributions are as follows:

1. We propose the EDM, which enhances 3D human texture parameters through the
use of texture seeds and diffusion models, generating nearly complete 3D human
texture maps.

2. We introduce a human motion PTDM for mesh-level animatable human model
datasets. It is a straightforward and effective texture motion tracking framework
that can generate temporally coherent texture motions from a single image.

3. Using the BEAT2 and AMASS datasets, we develop an outstanding human and pose
synchronization model using only three seed poses, capable of generating body and
facial gestures. This significantly enhances the fidelity and diversity of the results.

2. Related Work

Recently, numerous methods have achieved notable success in image pose synthesis
tasks [1–7]. Other studies focus on complete texture estimation from a single image [3,16–20],
demonstrating effectiveness in reconstructing 3D texture maps from images. In this dis-
cussion, we explore the most relevant human texture generation methods for 3D human
models, primarily focusing on texture tracking.

2.1. Model Transformation

The parameterized 3D body model SMPL [27] represents the human body. It can be
conceptualized as a base model with a series of deformations applied. Based on these defor-
mations, Principal Component Analysis (PCA) [28] is performed to derive low-dimensional
shape parameters that characterize the body’s shape. Meanwhile, the body’s pose is de-
scribed through a kinematic tree, which outlines the rotational relationship between each
joint and its parent node in the tree. This relationship is represented as a three-dimensional
vector, and the local rotational vectors of each joint collectively define the pose parameters
of the SMPL model.

Although the SMPL model is widely used, it lacks specific features such as articulated
hands and expressive faces. The SMPL-X model [29] addresses these deficiencies by inte-
grating hands and faces; however, while SMPL-X extends SMPL technology, the two models
are not fully interchangeable. Notably, despite the shape and pose parameters of SMPL and
SMPL-X looking very similar, they are not directly transferable. In particular, joint positions
in SMPL-X differ from those in SMPL, making the pose (θ) parameters incompatible.

In this section, we outline a tool for converting parameters between these models. This
process involves fitting one model to the other to recover the corresponding parameters.
Specifically, it involves establishing a mapping between the SMPL and SMPL-X models
by locating the nearest point on the SMPL mesh for each SMPL-X vertex. The process
includes storing indext

i , the position of the nearest point within a triangle, and [ai, bi, ci],
the barycentric coordinates of the nearest point relative to the SMPL triangle.
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SMPL and SMPL-X share identical topology up to the neck, and the coordinate centers
of these points are represented as [1.0, 0.0, 0.0]. We also maintain a mask of valid vertices
to exclude mismatched points between the two meshes, such as the eyeballs or inside of
the mouth. Having established these correspondences between the models, we can align
the SMPL-X annotations with the SMPL ones, constructing a proposed SMPL annotation
based on the SMPL-X topology, as shown in Equation (1):

vSMPL-X
i = ai ∗ vSMPL

f 0
i

+ bi ∗ vSMPL
f 1
i

+ ci ∗ vSMPL
f 2
i

, (1)

With a mesh conforming to the SMPL-X topology, our goal is to determine the SMPL-
X parameters that best describe this mesh: the pose parameters θ, shape parameters β,
expression parameters ψ, and translation parameters γ. We use an iterative optimization
scheme to recover these parameters for the model.

SMPL-X is an animatable parametric 3D body model that integrates the body, face, and
hands. It consists of N = 10,475 vertices and K = 54 joints. Utilizing the shape parameters
β, pose parameters θ (which encompass body joint poses θb, jaw pose θ f , and hand pose θh),
and expression parameters ψ, the SMPL-X model depicts the human body as M(β, θ, ψ), as
illustrated in Equation (2):

M(β, θ, ψ) = W(T(β, θ, ψ), J(β), θ, W)

T(β, θ, ψ) = T + Bs(β) + Be(ψ) + Bp(θ),
(2)

where T represents a mean shape template, and Bs, Be, and Bp correspond to shape,
expression, and pose blend shapes, respectively. W is the linear blend-skinning function
that adapts T(β, θ, ψ) to the target pose θ, utilizing the skeleton joints J(β) and skinning
weights W ∈ RN×K.

2.2. Texture Repair

Latent diffusion models (LDMs) [30] decompose the image formation process into
a continuous sequence of denoising autoencoders. This paper explores the in-painting
capabilities of latent diffusion models for images. However, adapting diffusion models
to three-dimensional human bodies introduces two significant challenges: spatial regu-
larization for multiview consistency and 3D perception for converting 2D images into
3D tasks.

Initially, we train a domain-specific diffusion model capable of generating unwrapped
3D human body textures, simultaneously learning multiview consistency. To enable the
3D perception required for 2D-to-3D tasks (e.g., deriving 3D textures from monocular
input), we identify pixel-to-surface correspondences [31], projecting image pixels onto
an incomplete 3D texture map. By capitalizing on the inherent 2D structure within the
domain-specific diffusion model, we effectively correct the incomplete 3D texture map.

To synthesize a complete 3D texture from images in the HUMBI dataset, we initially
train a specialized eye-domain diffusion module (EDM) to generate clear, unwrapped 3D
textures of human eyes. Subsequently, to provide the necessary 3D perception for 2D-to-3D
tasks (e.g., creating 3D textures of the human body), we locate the 3D texture map within
the HUMBI dataset. We compute the pixel-to-surface correspondences [31], specifically
those related to the eyes, to project image pixels and compile a complete 3D texture map.
By exploiting the inherent 2D structure of the eye-specific diffusion model, we amend the
incomplete 3D texture map.

Our approach is also related to body synthesis methods driven by text descriptions [32–34].
These methods utilize GANs [8], VAEs, or diffusion models [1] combined with comprehen-
sive visual language pretraining models (like CLIP [35]) to regulate the output. Although
these models can create 3D textured human bodies and animate them based on text input,
they face challenges in generating consistent texture maps or adeptly adapting to local
views for texture estimation in images. We propose a pipeline built on the novel Eye
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Diffusion Module, capable of recovering high-quality textures and performing natural
human model fitting operations.

2.3. Motion Tracking

To initialize the SMPL-X body shape and pose parameters, we employ MoSh++ [36,37]
using data derived from motion capture markers. Given the captured marker positions
S ∈ RT×K×3, predefined marker position offsets d ∈ RK×3, and a user-defined vertex-
to-marker function (H), our objective is to accurately determine body shape β ∈ R300,
pose θ ∈ RT×55×3, and translation parameters γ ∈ RT×3. The optimization involves
a differentiable surface vertex mapping function S(β, θ, γ) and a vertex normal func-
tion N (β, θ0, γ0). For each frame, the latent markers m̃ ∈ RT×K×3 are computed as
m̃i ≡ SH(β, θi, γi) + dNH(β, θi, γi). An evaluation formula is proposed, where the valida-
tion of the action is performed using the average minimum difference across three frames
in the model action sequence, as explained in Section 4.2.

Lp =
1

f rame n

n

∑
i=i

SH(β, θi, γi) + dNH(β, θi, γi), (3)

2.4. Literature Review

The application of diffusion models in 3D texture generation and tracking has garnered
increasing attention. By incrementally adding detail noise during the generation of complex
3D textures, diffusion models can effectively enhance texture precision and realism.

GAN [8] and VAE [32] methods exhibit certain limitations in dynamic scenes. While
GANs can generate realistic 2D textures, they struggle to maintain texture consistency
in 3D animated scenes, particularly during rapid movements and multiangle transitions,
often resulting in texture blurring and distortion. Although VAEs demonstrate stability
in producing diverse textures, they fall short in detail resolution compared to diffusion
models and struggle to maintain texture continuity amid complex pose variations. These
limitations restrict the applicability of GANs and VAEs in dynamic 3D scenarios. To ad-
dress these challenges, ATGT3D introduces the EDM and PTDM to achieve higher-quality
dynamic texture generation. The EDM focuses on generating high-resolution eye texture
details, leveraging the progressive refinement capabilities of diffusion models to ensure
realism across multiangle and dynamic scenes. The PTDM employs temporal modeling
to synchronize pose and texture tracking, effectively overcoming the texture consistency
issues encountered by traditional methods in fast-motion and complex animated scenes. In
comparison, ATGT3D demonstrates superior robustness and detail accuracy in dynamic
scenarios, offering an innovative solution for virtual human and 3D animation generation.

3. Datasets and Preprocessing

In this section, we introduce the HUMBI [38] dataset used for acquiring texture images,
the AMASS [37] dataset leveraged for integrating texture with human models, and the
BEAT2 [32] dataset employed for evaluating the effects.

3.1. HUMBI Dataset

The HUMBI dataset [38] is an extensive multiview dataset designed to capture hu-
man body expressions in natural clothing. It was captured at a frequency of 60 Hz with
107 GoPro HD cameras from 772 different subjects. It is organized by subject, with each
subject having four expression sessions. Each session features a sequence of frames (tempo-
ral instances), with each frame containing up to four representations: multiview images, 3D
keypoints, 3D meshes, and appearance (texture) maps. We utilize the frontal appearance
maps from HUMBI for texture mapping in this study, and we take the 32nd appearance of
HUMBI with multiple angles as the frontal image.
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3.2. AMASS Dataset

AMASS [37] is a comprehensive and diverse database of human motion that combines
15 different optical marker-based motion capture datasets into a single framework and
parameterization. We utilized a novel dataset of 4D body scans concurrently recorded with
marker-based motion capture to evaluate MoSh++ [37] and fine-tune its hyperparameters.
The unified representation delivered by AMASS simplifies its application in animation,
visualization, and the generation of deep learning training data. This dataset is significantly
richer than previous collections of human motion, collecting over 40 h of motion data from
more than 300 subjects and over 11,000 actions.

AMASS consists of 40 h of motion capture data, 344 subjects, and 11,265 actions.
The original datasets constituting AMASS feature between 37 and 91 variably distributed
motion capture markers. Each frame in AMASS includes SMPL 3D shape parameters
(16 dimensions), DMPL soft tissue coefficients (8 dimensions), and complete SMPL pose
parameters (159 dimensions), which encompass hand joints and global body translation.
We utilize the SMPL to SMPL-X model to derive the animation features of the SMPL-X
model within the AMASS dataset.

To streamline data loading and balance the proportions between the model and
comparison datasets, we selected subsets from the five datasets in AMASS that feature the
highest number of motion instances and the shortest recording time. The selection strategy
is illustrated in Figure 2, and Table 1 detailed the motions and minutes for the top five
subsets of the dataset.

Figure 2. The AMASS dataset is sorted based on the attributes with the most actions (motions) and
the least time (minutes). The light blue bars represent subsets of the dataset not utilized in the study,
dark blue bars remaining subsets were selected for evaluation and experimentation.

Table 1. Details of the top five subsets, categorized by number of poses and minutes, for selected
subsets of the AMASS dataset.

Dataset Subjects Motions Minutes

KIT [39] 55 4232 661.84
BMLrub [40] 111 3061 522.69

WEIZMANN [39] 5 2222 505.35
CMU [41] 96 1983 543.49

BMLmovi [42] 89 1864 174.39
Only the first 5 sub-datasets are selected here.
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“The KIT [39,43] Bimanual Manipulation Dataset” and “WEIZMANN” [44] form a
multimodal dataset that emphasizes learning tasks involving bimanual manipulation. The
dataset includes detailed whole-body motion data, complete configurations of both hands,
and 6D poses and trajectories of all associated objects. This dataset covers 12 everyday
bimanual household activities performed by two healthy subjects. Each activity features
significant intra-action variations, with three repetitions of each variation, resulting in
a total of 588 recorded demonstrations. A total of 21 household items were utilized to
perform various actions. Furthermore, researchers have developed tools and methods
for standardizing the representation and organization of multimodal sensor data in large-
scale human motion databases. They have also extended the Master Motor Map (MMM)
framework to allow the mapping of collected demonstrations to a human reference model,
segmentation, and annotation of recorded manipulation tasks. These tools are publicly
accessible in the KIT Whole-Body Human Motion Database.

BMLrub [40] transforms biological motion, such as human gait, into a format ana-
lyzable by linear statistical methods and pattern recognition techniques. Using gender
classification as an example, the study constructs a simple classifier and benchmarks it
against psychological data from human observers. The findings suggest that the dynamic
aspects of motion carry more information about gender than do structural cues influenced
by motion. This dataset has significantly advanced gait recognition research by introducing
a novel method for analyzing and understanding human gait patterns.

The MoVi dataset, developed by Saeed Ghorbani and colleagues and published in
PLoS One, is an extensive, multipurpose dataset encompassing human movement and
video. Noteworthy for its multimodality, the MoVi dataset incorporates optical motion
capture, video data, and IMU data. It furnishes researchers with extensive resources for
exploring human pose estimation, action recognition, motion modeling, gait analysis, and
body shape reconstruction.

3.3. BEAT2 Dataset

To generate full-body human poses from audio and masked gestures, EMAGE [32]
introduced the BEATX dataset, which combines MoShed SMPL-X body parameters and
FLAME head parameters to enhance the modeling of head, neck, and finger movements.
As a high-quality, community-standardized 3D motion capture dataset, BEATX stands out
for its detail. The subset BEAT2, which is part of this dataset, comprises 60 h of data that
merge SMPL-X limb parameters with FLAME facial parameters, specifically targeting the
modeling of head, neck, and fingers movements. In this methodology, the full-body BEAT2
dataset is employed as validation data for human texture motion tracking.

4. Generation Architecture

Our method comprises two components: texture generation (EDM) and the tracking
and matching of texture with modeled action poses (PTDM). High-quality textures for
matching the human animation model can be found in the texture maps in the appearance
section of the HUMBI dataset; texture maps are compared, revealing that improvements
are necessary to satisfy the requirements for realistic human reconstruction. Notable issues
include ghosting in the reconstructed eyes and pose tracking inaccuracies.

During the training process of the ATGT3D model, the learning rate was set to
2.5 × 10−4, demonstrating a well-balanced performance and enabling the model to con-
verge within a reasonable number of epochs. We employed the Adam optimizer for
parameter updates, which provides robust handling of high-dimensional parameters. The
batch size was set to 64, fully leveraging hardware resources. We recommend using a GPU
with at least 24 GB of VRAM to support the batch size requirement of 64. Additionally, dis-
tributed training can further enhance training speed. For different datasets or application
scenarios, adjustments to the learning rate and batch size may be necessary.
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4.1. Eye Diffusion Module (EDM)

To address the ghosting issue in the reconstructed eyes, a common method [19,21]
begins by constructing an incomplete texture map using a coarse geometric proxy [27] and
inferring pixel-to-surface correspondences [45]. This is followed by employing an image-
to-image translation framework to repair or estimate the incomplete textures. Nonetheless,
the limited detail expressiveness of existing methods prompted us to propose a pipeline
based on the SMPL-X model and the image diffusion model [30].

Our proposed pipeline utilizes the image diffusion model [30] to recover high-quality
textures, as visualized in Figure 3. Subsequent sections detail the selection of the texture
map and its application in estimating complete 3D textures from SMPL-X using monocular
RGB images.

eye box

eye location

Fourier 

embedding

MLP

D
e

co
d

e
r

Eye Diffusion Module

t
Z 0Z

Complete 

texture map full

texturemap samples

input image mask

Detectron2

LDM

Part partial 

texture map

regL

2

eyereg LL
texture
L

Loss Function

Figure 3. Overview of the proposed method for texture recovery estimation from a single image.

We explored how LDM [30] adapts to the 3D human appearance in the texture genera-
tion section and how to produce comprehensive 3D texture maps, including eyes, through
the 3D-to-2D parameterization of surfaces (i.e., UV mapping of the mesh surfaces). By
directly managing the UV maps, we encode the 3D appearance of the human body onto 2D
images, thus enhancing the potential of LDM models for appearance synthesis, restoration,
and manipulation.

In generating complete texture maps, we implement category-specific prior retention
loss, enabling the model to synthesize target subjects with minimal training samples. We
fine-tune the model using one UV texture map from SMPL-X for 1500 iterations.

The process of eye texture reconstruction in the 3D human model is depicted in
Figure 4, where initially, Detectron2 [46] extracts the human body region from the input
image, creating the corresponding segmentation mask. Subsequently, the Latent Diffusion
Model (LDM) processes this image to generate a partial human texture map. This partial
texture map lacks the detailed features in the eye area and some edges that are present in a
complete texture map, which we aim to produce with a focus particularly on the eye area.

Initially, the eye area is detected and located, yielding the eye frame and position.
This position is then subjected to Fourier Embedding to capture its spatial information,
which is fed into a multilayer perceptron (MLP) [47] to extract features. These features are
combined with the generated texture map and input into a diffusion model targeting the
eye area specifically. This model enhances the eye area details by learning from sample
texture map data.

The EDM not only reconstructs the eye area details but also ensures the uniformity of
the overall texture. Lastly, the outputs from the eye diffusion model are merged with the
partial texture map to produce a complete human texture map. This achieves the goal of
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detail recovery in the eye area of the 3D human model, with the diffusion model playing a
crucial role in enhancing the eye details while maintaining overall texture consistency.

This loss function is specifically engineered to reconstruct fine-grained details in the
eye region, focusing on capturing subtle features such as eye contours, iris details, and
variations in lighting that are essential for achieving photorealism. The formula for the loss
function is presented in Equation (4):

Leye = E(x,y)∈Reye

[
∥Ireal(x, y)− Ipred(x, y)∥2

2

]
, (4)

where (x, y) ∈ Reye are the pixel coordinates within the eye region, where Reye, Ireal(x, y)
denotes the intensity of the pixel in the actual eye region and Ipred(x, y) represents the
predicted pixel intensity of the generated eye texture. Moreover, notation ∥ · ∥2

2 indicates
the squared error norm. This function measures the pixel-wise difference between the real
and the generated eye textures, ensuring faithful reconstruction of intricate details in the
eye area.

The Overall Texture Consistency Loss Function, denoted as Ltexture, ensures that the
texture remains consistent throughout the entire 3D model, thus preventing discontinuities
or artifacts at the UV map boundaries. It promotes smooth transitions between different
texture map regions.

Ltexture = E(x,y)∈T

[
∥Ireal(x, y)− Ipred(x, y)∥2

2

]
+ λ · Lsmooth, (5)

Here, (x, y) ∈ T represent the pixel coordinates within the entire texture map T,
Ireal(x, y) is the ground-truth pixel intensity in the texture map, and Ipred(x, y) is the
predicted pixel intensity. The term Lsmooth is a regularization component that ensures
smooth transitions across adjacent UV regions, while λ is a weighting factor that controls
the influence of the smoothness term. This function evaluates the similarity between
predicted and real textures across the entire map, maintaining smoothness at UV seams
or borders.

To combine both the eye detail and texture consistency losses into a unified framework,
we define the total regularization loss Lreg as follows:

Lreg = (Leye + Ltexture)
2, (6)

In Equation (6), the square of the sum of the Leye and Ltexture terms, represented as
Lreg = (Leye + Ltexture)2, is used to penalize larger deviations more heavily. By squaring
the sum, the function increases the loss value more significantly for larger errors, which
encourages the model to reduce both Leye and Ltexture as much as possible. This approach
is often used in loss functions to emphasize greater accuracy, as even slight improvements
in reducing the overall error become more impactful when squared. Additionally, squaring
the total regularization loss enforces a more unified and cohesive structure by strongly
discouraging inconsistencies in both eye details and texture consistency. This combined loss
enhances both precise eye texture reconstruction and consistent overall texture mapping,
thereby ensuring high visual fidelity for the 3D human model’s appearance.

4.2. Pose Tracking Diffusion Module (PTDM)

The SMPL-X model, along with the pose parameters, is updated for each frame.
Thus, we represent these parameters for the current frame f as M f (β, θ f ). The pose
parameters and the animated avatar mesh for the current frame are represented by θ f and
M f , respectively.

The SMPL-X model is described in Equation (1), where W denotes the standard
linear blend skinning function. This function calculates the output 3D mesh based on the
pose joint i, pose parameter a, and blend weight v. The skinned template T is delineated
in Equation (2), where T represents the template’s average shape, and BS, BE, and BP
symbolize the blend shape functions for shape, facial expression, and pose, respectively.
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BS is computed using the shape parameter β and PCA-based [28] shape weights S; BE is
derived from the facial expression parameter ψ and the PCA-based expression weights e;
and BP is derived from the pose parameter θ using the PCA-based pose weights P. The
PCA basis is extracted from the samples via PCA.

Rendered normal images can be serve as shape encodings for diffusion models to assist
geometric synthesis [48]. Despite this, the method may encounter challenges in achieving
perfect consistency between geometry and texture. To mitigate this, we computed the
interpolation loss between the latent values of normal images and color images at various
times. We refer to this module as PTCN, which is presented in Equation (5):

∇γLc(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(z̃t; y, t)− ϵ)

∂N
∂γ

∂z
∂N

]
, (7)

where γ = {β, ψ, D} are the geometry-related parameters and z̃ = αzI + (1− α)zN denotes
the interpolated latent code, with zI and zN representing the latent codes for the RGB and
normal images, respectively.

The latent features of the current frame are modulated by learnable quantization
scalers, as depicted in Figure 4.
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Figure 4. Complete texture tracking in our method to match 3D human models.

As shown in Figure 4, the input pose parameters are first normalized to serve as inputs
for generating the initial 3D model. Sequential modeling is then applied to capture dynamic
relationships across multiple frames, ensuring motion continuity. The generated pose
sequence is mapped onto the texture map. Through the motion–texture synchronization
module, the system ensures precise alignment of motion and texture, even during rapid
movements or complex poses, ultimately producing high-quality 3D animation textures
with temporal consistency.

The surface vertex mapping function and the vertex normal function are essential
control points for texture mapping. The pose parameters and translation parameters are
crucial in motion training along the temporal relationship axis.

Given the captured marker positions m ∈ RT×K×3, predefined marker position offsets
d ∈ RK×3, and user-defined vertex-to-marker function H, our objective is to determine
the body shape β ∈ R300, pose θ ∈ RT×55×3, and translation parameters γ ∈ RT×3. The
optimization utilizes a differentiable surface vertex mapping function S(β, θ, γ) and a



Electronics 2024, 13, 4562 11 of 18

vertex normal function N (β, θ0, γ0). For each frame, the potential markers m̃ ∈ RT×K×3

are calculated as follows:

m̃i ≡ SH(β, θi, γi) + dNH(β, θi, γi), (8)

We concentrate on optimizing and fixing d and β for three frames, then optimizing θi
and γi for i ∈ (1 : T) by minimizing the loss term |m̃i − mi|2, which encompasses the data
term, surface distance energy, and markers. This process begins with regularization, pose
and shape priors, velocity constancy, and soft tissue terms. The overall objective function
balances accuracy and plausibility through a weighted sum of these terms.

Subsequently, we employ the Gaussian truncation method, adjusting all data points
that fall outside the 3σ range to conform to the 3σ threshold and integrate with the adja-
cent three frames. However, due to the head markers being worn on a helmet, MoSh++
sometimes produces unnatural head shapes and finger poses.

This diagram illustrates a process for generating dynamic textures on 3D human
models, integrating a parametric human model (SMPL-X), Neural Radiance Fields (NeRFs),
and time-series modeling. This comprehensive process facilitates texture mapping of 3D
human models in dynamic scenes via multistage feature fusion and rendering.

Initially, the input and parameterization stage employs the SMPL-X model to pa-
rameterize the facial and body features of the human body, denoted by fface and fbody,
respectively. These features are processed by an encoder module that captures the geomet-
ric and pose information of both the face and body. These encoded features, along with
the 3D coordinates and viewpoint data of the scene, are subsequently fed into the Neural
Radiance Fields module (PTNeRF).

Within the PTNeRF module, the input features are transposed into a high-dimensional
space using positional encoding, denoted as γ(x, y, z) and γ(θ, ϕ). These positional encod-
ings characterize both the points in 3D space and their viewing directions. Following this,
the features undergo processing through spatial convolutions and multilayer perceptrons
(MLPs) [47], predicting the voxel density σ and the color information for each point. The
NeRF output then creates the density and color fields of the 3D human body through
volume rendering, providing an exhaustive representation of the character.

The time series modeling component utilizes sequential frame data over time to depict
dynamic behavior. The input features for the time series include data from both the current
and previous frames Xt−2, Xt−1, which serve to predict the current frame Xt. Each frame
incorporates three distinct features: the global frame feature fframe, facial feature fface, and
body feature fbody.

These features are cyclically linked along the time axis and undergo updates with each
frame. This method facilitates smooth transitions and ensures consistent texture modeling
over time.

In the final texture fusion and rendering step, the previously generated EDM results are
employed as the initial texture, merging features from the current time frame to maintain
both spatial and temporal texture consistency. By feeding these features into the NeRF
module, the final 3D human model is created through volume rendering. This output
model boasts intricately detailed texture mapping in dynamic scenarios, achieving superior
quality in surface texture restoration on the human body. Time series modeling: Dynamic
texture mapping is realized by sequentially updating features, capturing the dynamic traits
of the character. Neural Radiance Fields (NeRFs): NeRFs serve to create a comprehensive
representation of the 3D human model, while volume rendering techniques are employed
to enhance detail and depth. Texture consistency: By integrating the earlier EDM results, we
ensure consistency and high fidelity across different time frames for the textures produced.
This process achieves realistic rendering of 3D human textures in dynamic settings by
extensively leveraging parametric human models, NeRFs, and time series data.
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4.3. ATGT3D Network Architecture

The temporal sequence modeling in the EDM and PTDM draws upon classical time
series techniques, including the VAE method, which performs well in modeling continuity
for dynamic pose and texture generation. VAE is also widely used in the generation and
prediction of sequential data, and its stability in producing continuous frame sequences
provides a solid theoretical foundation for our approach.

In Figure 5, our method utilizes SMPL-X [29] to generate 3D human models, specifi-
cally focusing on the face and body parts of SMPL-X. We employ model action prompts
to track body movements consistent with real-world scenarios. A key component in this
process is the shape encoding within the rendered image diffusion model, crucial for inte-
grating body prompt features. The Pose Tracking Computation Network (PTCN) calculates
potential interpolation loss values for different images across various times. The calculation
method for PTCN is detailed in Equation (5) of Section 4.2. The Full Texture Module is
tasked with restoring high-quality textures using the image diffusion model. We apply
benchmark textures from the texture map to restore texture images in the HUMBI dataset
using the image diffusion model. These texture images include those of the human eye.
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Figure 5. Texture generation as well as tracking and matching graphs of textures with modeled
action poses.

5. Experiments and Results

We evaluated the model’s capability to extract image textures for each subject in the
HUMBI [38] dataset. Animation features from the SMPL-X [29] model were derived from
the AMASS [37] dataset, with the BEAT2 [32] dataset serving for comparison. Expressive
full-body animated avatars were created, and their quality, as well as texture–geometry
consistency, was assessed. Results were documented with a training, validation, and
test split of 85%, 7.5%, and 7.5%, respectively. Finally, the effectiveness of each module
was analyzed.

To comprehensively evaluate the performance of ATGT3D, we selected multiple
baseline methods, such as GAN and VAE-based 3D texture generation approaches, for
comparison. Table 2 presents the quantitative results of different methods regarding texture
quality and consistency. In Figure 6, we showcase high-resolution images of the texture
details generated by each method, with annotated key areas to assist readers in understand-
ing the distinctions between approaches. Additionally, we further assessed each method’s
performance in complex poses by measuring pose and texture consistency errors. Figure 7
illustrates the error variations across dynamic scenes, showing that ATGT3D demonstrates
superior robustness in long-term dynamic tracking compared to baseline methods.
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In our experiments, we utilized the Ubuntu 20.04 operating system, the PyTorch 2.1.0
framework, and a server equipped with two Nvidia RTX 4090 GPUs and 64 GB of memory.
After 15,000 training iterations over 50 h, we obtained the final results.

(a) (b)

Figure 6. Part (a) depicts the texture map processed using the image diffusion model to recover
high-quality texture. Part (b) shows the untrained texture map. Clearly, the clarity of the eye part is
superior in image (a) compared to image (b).

EMAGE 

Model

EMAGE 

Texture

AMASS 

pick up 

Model

AMASS 

pick up 

Texture

AMASS 

jump 

Model

AMASS 

jump

Texture

(a)

(b)

(c)

Figure 7. Examples ofmultiple actions across multiple datasets. From top to bottom: natural human
postures of various actions for (a) AMASS jump Model and AMASS jump Texture, (b) AMASS
pick-up Model and AMASS pick-up Texture, and (c) EMAGE Model and EMAGE Texture.

5.1. Eye Reconstruction

Enhancing eye details is crucial in this processing procedure as eyes are the most
expressive part of the face. Advanced texture processing techniques significantly improved
the realism of the 3D model, particularly when viewed up close, making it essential for
enhancing the expressiveness of virtual characters in real-world applications.

We address the issue of eye ghosting after reconstruction by introducing the LDM [30]
model for appearance synthesis and restoration in Section 4.1. This model employs category-
specific prior preservation loss during the generation of complete texture maps, enabling
synthesis of the target subject with a minimal number of training samples. The results are
demonstrated in Figure 6.

Figure 6 illustrates the significant differences in the 3D human model before and
after facial texture processing, emphasizing the eye details. Figure 6a demonstrates the
3D model without EDM processing, where the facial area, especially around the eyes,
lacks clarity, resulting in a blurred overall appearance that reduces the model’s realism,
particularly in high-precision areas such as the face.

Conversely, Figure 6b displays the model after EDM processing, where eye details
are significantly enhanced, exhibiting more defined textures, realistic contours, improved
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lighting, and material representation. This enhancement elevates the visual effects of the
face and renders the overall model more vivid and realistic.

5.2. Motion Texture Reconstruction

We utilized the AMASS [37] and BEAT2 [32] model evaluation reports. The AMASS
model undergoes rigorous screening and quality control, providing a rich and diverse
sample of human motion ideal for evaluating human posture and shape estimation methods.
BEAT2 features body data refined by animators and hand data filtered by annotators. The
texture tracking effects of the 3D human model under various actions are illustrated in
Figure 7, which includes the jumping motion from the AMASS dataset (a), picking action
from the AMASS dataset (b), and speaking action from the EMAGE method (c). To ensure
consistency, we converted the models in the AMASS dataset from SMPL to SMPL-X,
optimized their textures using the Eye Diffusion Module (EDM), and trained them through
the Pose Tracking and Diffusion Module (PTDM).

We compared different action sequences of SMPL-X 3D human models from the
AMASS dataset to those from the BEAT2 dataset. Each model was evaluated on movements
of fixed duration to determine the sequence that best captured quality. The results are
displayed in Figure 7.

In part (a), the model shows precise posture tracking during jumping motions. Even
with significant movement, the texture details remain clear, effectively conveying natural
folds in clothing and muscle lines. The model exhibits strong dynamic consistency, with
overall movements appearing coherent and smooth. In part (b), the picking-up motion
demonstrates the model’s performance during relatively subtle motion changes. The waist
bending and arms extending are accurately tracked. The texture maintains high fidelity dur-
ing dynamic transitions, and the alignment of facial and clothing textures corresponds well
with the movements. Part (c) features EMAGE action with relatively smaller movements;
however, the model’s tracking remains accurate, particularly in expressing hand move-
ments naturally. Although movements in this section are more static compared to parts
(a,b), texture mapping maintains clear details, such as facial expressions and body contours.

Overall, the comparison of the three sections demonstrates the PTDM’s exceptional
performance across various motion types, maintaining consistent model posture during
significant movements and exhibiting a high texture fidelity in subtle motions. Clearly our
model delivers robust texture generation and model tracking across different datasets.

FGD [49] (X, X̂) is defined as the distance between the Gaussian means and covari-
ances of the latent features of human gestures X and the produced gestures X̂. FGD is used
to assess the realism of body postures. The Frechet Inception Distance (FID) [50] is used to
evaluate the distributional discrepancy between generated and real movements, where a
lower FID score indicates better performance. The FID metric employs a geometric feature
that produces a Boolean vector representing geometric relationships between specific body
keypoints in the motion sequence. Furthermore, a kinematic feature extractor converts
velocity and acceleration data into the motion sequence. We calculate Diversity [51] by de-
termining the average L1 distance between multiple body gesture clips. To assess Diversity,
as outlined in [51], we calculate the average L1 distance between multiple body gesture
clips. For hand data, we compute the vertex Mean Squared Error (MSE) [52] to quantify po-
sitional discrepancies and the vertex L1 error, also known as LVD [53], between the ground
truth (GT) and the generated hand vertices. Additionally, we calculate landmark velocity
differences to evaluate the velocity discrepancies between predicted ground truth (p-GT)
and generated hand landmarks. We contrast our methods with leading state-of-the-art
techniques in body posture and hand motion generation. For this purpose, we replicate
body and hand generation methods independently. As detailed in Table 2, with three-frame
seed poses, our method exceeds previous state-of-the-art algorithms.
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Table 2. Multi-metric Performance Comparison with State-of-the-Art Methods (↓ indicates lower is
better, ↑ indicates higher is better, bold indicates the best value).

FGD ↓ FID ↓ Diversity ↑ MSE ↓ LVD ↓

Baseline 13.080 6.941 8.3145 1.442 9.317
+VQVAE 9.787 6.673 10.624 1.619 9.473

+4 VQVAE 7.397 6.698 12.544 1.243 8.938
FACT 6.673 6.371 12.954 1.203 8.998

+Masked Hints 5.423 6.794 13.057 1.180 9.015
PTDM (ours) 5.214 6.641 13.213 1.091 8.265

We employ FGD [49] to evaluate the realism of body posture, measuring Diversity [51]
by calculating the mean L1 distance across multiple body posture segments. For facial
expressions, we calculate the vertex MSE [52] to assess the positional distance and vertex
LVD [53] between ground-truth and generated facial vertices. This approach maintains the
authenticity of body movements while enhancing the facial details to resemble real-world
scenarios more closely.

With the availability of 3D ground-truth scans, we can compute the error of rendered
textures based on camera-space pixels. Under the multiview evaluation protocol for
high-resolution images, as detailed in Table 3, SMPLitex surpasses the state-of-the-art
method [19] in both Structural Similarity Index Measure (SSIM) [54] and Learned Perceptual
Image Patch Similarity (LPIPS) [55] metrics.

Table 3. SSIM and LPIPS Performance Comparison Across Methods (↑ indicates higher is better, ↓
indicates lower is better, bold indicates the best value).

SSIM ↑ LPIPS ↓

CMR [56] 0.7142 0.1275
HPBTT [20] 0.7420 0.1168
RSTG [16] 0.6735 0.1778

TexGlo [19] 0.6658 0.1776
SMPLitex [57] 0.8648 0.0695

ATGT3D (ours) 0.9173 0.0215

We evaluated our method both qualitatively and quantitatively on the AMASS dataset
and five publicly accessible datasets from BEAT2 [32], demonstrating performance that
matches leading texture estimation methods. Compared to existing methods, SMPLitex [57]
accommodates both low-resolution and high-resolution images and maintains robustness
across multiview consistency metrics. An upward arrow in the SSIM section indicates
that a higher SSIM value signifies better similarity between the reconstructed image and
the ground truth (the higher the value, the better the similarity). In the LPIPS section, a
downward arrow indicates that a lower LPIPS value represents better perceptual similarity
(the lower the value, the less distortion).Bold values highlight the best performance in
each metric.

The PTDM proposed in this paper significantly enhances human motion realism.
Limitations in simulating garment movement also emerge, particularly with light and
flowing fabrics such as silk. The discrepancy between the movement trajectories of the
clothing and the human body results in blurred textures and body details. Future research
will focus on integrating physical simulations to bolster model robustness across diverse
materials and complex motions or incorporating additional datasets to improve adaptability
for intricate garment dynamics.

6. Conclusions

We propose a comprehensive texture mapping method, animating 3D virtual human
texture tracking (ATGT3D), which introduces the EDM to estimate the complete 3D human
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texture from a single image using a seed image of human texture. Additionally, we present
the PTDM, designed to achieve precise texture tracking for the animation of 3D virtual
humans based on SMPL-X body parameters. The results with our modules exceed those
of current methods based on Generative Adversarial Networks (GANs) or Variational
Autoencoders (VAEs). Despite the high quality of our results, ATGT3D has limitations,
particularly when the clothing in the input image is in motion, such as being blown by the
wind away from the body, which can degrade ATGT3D’s sampling conditions, leading
to mismatches between the texture and the body. Our future work will aim to naturally
reconstruct any clothing onto the 3D human model.
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