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Abstract: The increased integration of renewable energy sources (RESs), such as photovoltaic and
wind turbine systems, in microgrids poses significant challenges due to fluctuating weather conditions
and load demands. To address these challenges, this study introduces an innovative approach that
combines Unscented Transformation (UT) with the Enhanced Cheetah Optimization Algorithm
(ECOA) for optimal microgrid management. UT, a robust statistical technique, models nonlinear
uncertainties effectively by leveraging sigma points, facilitating accurate decision-making despite
variable renewable generation and load conditions. The ECOA, inspired by the adaptive hunting
behaviors of cheetahs, is enhanced with stochastic leaps, adaptive chase mechanisms, and cooperative
strategies to prevent premature convergence, enabling improved exploration and optimization
for unbalanced three-phase distribution networks. This integrated UT-ECOA approach enables
simultaneous optimization of continuous and discrete decision variables in the microgrid, efficiently
handling uncertainty within RESs and load demands. Results demonstrate that the proposed model
significantly improves microgrid performance, achieving a 10% reduction in voltage deviation, a
10.63% decrease in power losses, and an 83.32% reduction in operational costs, especially when
demand response (DR) is implemented. These findings validate the model’s efficacy in enhancing
microgrid reliability and efficiency, positioning it as a viable solution for optimized performance
under uncertain renewable inputs.

Keywords: microgrid management; renewable energy integration; operational efficiency improvement;
unscented transformation; uncertainty propagation; enhanced cheetah optimization algorithm

1. Introduction

The increasing integration of renewable energy sources (RESs), particularly photo-
voltaic (PV) systems and wind turbines (WTs), is transforming the power sector, though it
also introduces significant challenges due to their inherent variability. These sources, while
clean, are intermittent and heavily influenced by weather conditions, which complicates the
management of microgrids (MGs) and necessitates robust optimization approaches. Solar
and wind energy availability fluctuates based on factors such as sunlight exposure and
wind speed, while additional uncertainties stem from varying consumer loads, demand
response (DR) programs, and electric vehicle (EV) charging behaviors [1–4]. The need
to handle these uncertainties has led to advanced optimization techniques, with hybrid
algorithms demonstrating promise in terms of enhancing MG operations. For instance, a
combined PSO and Bat Algorithm (BAPSO) has been applied to optimize solar PV configu-
rations in microgrids, effectively reducing transmission losses and enhancing efficiency [5].
Other approaches integrate various storage and backup systems, employing hybrid algo-
rithms such as zebra optimization and artificial gorilla troops optimizers for maximum
power point tracking, achieving substantial improvements in resource utilization and
response times [6]. Likewise, demand-side management strategies incorporating hybrid
techniques like SHO-MDACGAN have shown potential in minimizing operating costs and
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improving power stability in PV-based microgrids [7]. Additionally, a novel Gravitational
Particle Swarm Optimization Algorithm (GPSOA) that combines the strengths of PSO and
the gravitational search algorithm (GSA) has proven effective in addressing combined
economic and emission dispatch (CEED) challenges in wind–thermal systems by balancing
fuel costs and emission reduction objectives [8]. Another sequential hybrid algorithm, the
PSO-GSA (HPSO-GSA), with dependent random coefficients has demonstrated enhanced
exploration abilities, making it a robust approach for complex optimization scenarios where
premature stagnation is a concern [9].

To address the operational uncertainty, accurate modeling techniques such as Monte
Carlo Simulation (MCS) and the Point Estimate Method (PEM) are frequently used [10,11].
Integrating these uncertainty quantification methods with hybrid optimization algorithms
can effectively optimize both operational costs and reliability in MGs, enhancing energy
management while balancing efficiency and adaptability [12]. Among the widely used
techniques for handling uncertainty in renewable energy sources and load demand is MCS.
The technique involves the simulation of different scenarios generated from probability
distributions of input variables like solar radiation, wind speed, and load profiles. Accurate
results are indeed obtained with MCS, although with very high computational complexity,
especially in large systems. For instance, Ahn et al. have used the sequential MCS method
for scenario estimations, which involves electric, cooling, and heating demand combined
with solar irradiance [13]. Other works have also discussed the effectiveness of MCS in
regard to scenario generation and energy management in MGs [4,14,15].

In contrast, the PEM provides a computationally efficient alternative by approximating
the statistical behavior of random variables using specific points. In fact, the PEM has
been applied to several energy management systems of MGs when computation time
with desired accuracy is of interest. Alavi et al. in [16] utilized the PEM for modeling
power exchanges and optimizing the operations of MGs within uncertain conditions.
Further studies [17,18] emphasize the potential of the application of the PEM to enhance
performance while reducing computational burdens in various microgrid approaches.
According to [19], the PEM cannot handle correlated variables and its error can increase
with the standard deviation of a random input variable.

UT is a nonlinear analytical method that propagates the mean and covariance of
input variables through a nonlinear function [20]. It relies on a reduced number of deter-
ministically calculated samples (sigma points) that capture the statistical distribution of
uncertain variables. The UT is simple to apply and requires low computational time to
estimate the mean and covariance of desired variables [19]. In [21], a comparison of the UT
method, MCS and the PEM is presented in detail. The previous works have presented the
application of the UT method to solve the probabilistic power flow issues in an unbalanced
three-phase microgrid [22], a balanced islanded microgrid with renewable sources [20],
and to provide a power flow solution for a transmission and distribution system [23].

These uncertainties could be dispersed only by using advanced optimization tech-
niques. The optimization methods available in the literature for microgrid energy man-
agement problems may be broadly classified into two groups: classical techniques and
metaheuristics optimization algorithms. Classical techniques mainly comprise mixed-
integer linear programming (MILP) and mixed-integer quadratic programming (MIQP),
which are quite useful in modeling the on/off states of generators and loads [24]. Yet, most
of them require some form of linearization in order to be able to handle the complexity;
hence, there is the development of mixed-integer quadratically constrained programming
(MIQCP), although, in many optimization scenarios, this may not be suitable [25].

Traditional methods include linear programming, quadratic programming, and MILP,
which provide accuracy but are not capable of handling dynamic variables such as market
prices and weather variability with ease [26–28]. The applications of gradient descent,
Quasi-Newton, and Powell’s method fall short because most are stuck to a local optimum
point [29–31].
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Compared to the limitations mentioned above, metaheuristic and heuristic algorithms
can further allow for flexibility and efficiency in terms of handling complex nonlinear
problems. Algorithms of particular note are genetic algorithms (GAs) [32], particle swarm
optimization (PSO) [33], and evolutionary optimization techniques. Indeed, as an exam-
ple of this potential, one hybrid evolutionary optimization algorithm was utilized with
stochastic multi-objective optimization in microgrids within an approach where wind
power forecasts were integrated to lessen the computational load and reduce time con-
sumption [34]. GAs, indeed, have proven to be useful in applications, as they are able to
slice optimization by time up to 23% [35].

Metaheuristic algorithms are exceptionally good at dealing with the intrinsic complex-
ity of microgrid energy management. By their very nature, these algorithms are bio-inspired
and do not make any assumptions about the problem being solved. They make use of
probabilistic search, local investigation, and global optimization techniques. The technique
known as PSO has been used to optimize microgrid performance by solving complex opti-
mization problems regarding control and fault detection [36–38]. Ant colony optimization
(ACO) has also been applied to energy management with the intent of minimizing opera-
tional costs and enhancing renewable energy utilization [39]. Other highlighted MHOAs
are the salp swarm optimization algorithm (SSA) [40], GAs [41], the whales optimization
algorithm (WOA) [42], and gray wolf optimization (GWO) [43], since each will come forth
with varied benefits in regard to tackling microgrid optimization challenges.

They ensure convergence to the optimum solution; however, due to the generally non-
convex problems in microgrid energy management, traditional methods of mathematical
programming cannot handle them [44]. The metaheuristic algorithms discussed above
could be a flexible and computationally efficient alternative solutions for possibly dealing
with nonlinearities–uncertainties possessed by microgrid systems. Hence, such approaches
are currently desired for MGs because of their simplicity and ability towards reducing
computational efforts.

Despite the emergence of various approaches to modeling uncertainties and optimiza-
tion techniques in microgrids, most of the gaps still remain. MCS is able to model renewable
energy sources and load demands accurately with high precision but also introduces high
computational complexity, especially for large-scale systems. On the contrary, the PEM
offers computational efficiency but limits handling correlated variables and increases error
when higher standard deviations are experienced. Traditional methods in optimization,
like MILP and quadratic programming, are based on linearization techniques that may
not fit well with the complex nature of microgrid problems. On the other hand, a num-
ber of promises from metaheuristic algorithms like the GA and PSO can solve complex
optimization issues. However, notwithstanding their promising potential, most of these
conventional methods inherently suffer from a number of drawbacks, such as premature
convergence, nonlinearities handling difficulty, and balancing exploration and exploitation
processes. These result in mediocre near-global optima, especially for complex systems
like microgrids with renewable energy sources that have a high variability and uncertainty.
While both of these methods assure reasonable global search capabilities, solution fine-
tuning in the latter stages of optimization is relatively poor, which leads to reduced system
performance for adaptability and precision-intensive scenarios.

The original conventional cheetah optimization (CO) [45], inspired by the hunting
behavior of cheetahs, overcame several challenges by increasing the balance between
exploration and exploitation. However, like many other conventional algorithms, it still
suffers from a number of limitations regarding global exploration, especially while dealing
with complex multi-objective problems involving high uncertainty. In application to
unbalanced three-phase distribution networks, appropriate optimization of both continuous
and discrete decision variables might not be achieved by the CO due to its tendency
towards premature convergence in view of fluctuating renewable energy and load demands.
Advanced methods are thus of utmost necessity in handling their inherent uncertainties
and improving, in general, the operational efficiency of microgrids. Combining these
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methods with advanced uncertainty modeling approaches for unbalanced three-phase
distributions is still a challenge. In fact, there is a real need for better methods that are
capable of integrating all the strengths of uncertainty modeling and different optimization
techniques in order to enhance efficiency and reliability in microgrids.

This work integrates UT and the ECOA for optimal microgrid planning and operation.
The system under investigation is an imbalanced three-phase distribution system and
therefore bridges the highlighted research gaps. This paper extends earlier research by:

• Applying UT to model uncertainty propagation in nonlinear functions for the more
accurate transmission of uncertainty in terms of renewable energy supply and load
demand. This technique avoids a couple of major limitations associated with MCS
and the PEM in the imbalanced three-phase distribution system, given the lower
computational workload involved in modeling the uncertainties.

• The advanced metaheuristic optimization algorithm inspired by cheetahs’ hunting na-
ture proposes stochastic leaps and adaptive chase mechanism cooperation approaches
that enhance the global exploration capability by removing it from premature con-
vergence in order to converge into a robust solution for complicated optimization
problems in unbalanced three-phase systems.

• UT and ECOA inclusions create a comprehensive framework within our approach
to continuous and discrete optimization variables of microgrid operations. A combi-
nation of UT will improve resilience in managing uncertainties in renewable energy
sources and load demand for efficient unbalanced three-phase distribution systems.

• The proposed framework can reduce network losses by 10.63%, operational costs by
83.32%, and voltage profile variation by 10% when simulation results are considered.
In addition, the inclusions of DR programs further enhance the efficiency of the
system and the highly effective and dependable paradigm for microgrid planning and
operation in unbalanced three-phase distribution networks.

• The paper contributes by applying and comparing the performances of the GA, PSO,
conventional CO, and two hybrid algorithms, such as GPSOA and HPSO-GSA, in
the optimal management of microgrids. It further indicates the weaknesses of both
the GA and PSO in dealing with uncertainties and falling into the local optima. The
CO drains more, though it still shows its weakness in highly complex scenarios.
These comparisons highlight the importance of the ECOA, which is able to yield
better results in terms of minimizing power losses, voltage deviation, and overall cost
of operation.

In a nutshell, this research further develops the state of the art in terms of micro-
grid optimization through a methodology that overcomes the main limitations affect-
ing existing approaches to the problem thanks to advanced uncertainty modeling com-
bined with sophisticated optimization techniques, conceived for unbalanced three-phase
distribution systems.

The paper is organized as follows: Section 2 elaborates on problem formulation,
including a description of the objectives and constraints of the microgrid optimization
problem. Section 3 describes Unscented Transformation in uncertainty modeling while
examining the use of UT in dealing with the intermittency of renewable energy sources.
Section 4 elaborates on the proposed algorithm, investigating the integration of UT into
the ECOA. Section 5 gives the simulation results, showing the performance comparison
between the proposed method and conventional approaches. Conclusions are drawn in
Section 6, which also summarizes the main findings and proposes future research directions.

2. Problem Formulation

The objective of the research is to find, out of several generation options, the most
efficient energy management approach in a three-phase unbalanced MG. This means the
minimization of operational critical metrics (i.e., the total cost, including costs caused by
emission, operation, and maintenance) and assurance of voltage stability with a minimum
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of active power losses. In this regard, the problem is a multi-objective optimization problem
subjected to microgrid operational and stability requirements.

2.1. Decision Variables

The problem includes the nature of the optimization procedure involved in a microgrid
operation that possesses a mix of characteristics, including continuous and discrete decision
variables. These are subsequently categorized below:

The continuous variables can be defined for this problem as the power outputs and
the flows at every time-step t:

• PPV(t): Active power output from the PV system.
• PWT(t): Active power output from the WT.
• PDR(t): Power reduction achieved through DR.
• PGrid(t): Power purchased from the main grid.
• PBESS(t): Power associated with charging or discharging the battery energy storage

system (BESS).
• PDG(t): Active power generated by the diesel generator (DG).
• PMT(t): Active power generated by the microturbine (MT).

These variables are collectively expressed as:

Xcont = [PPV(t), PWT(t), PDR(t), PGrid(t), PBESS(t), PDG(t), PMT(t)] ∀t ∈ T (1)

The discrete decision variables determine the bus and phase allocations for dis-
tributed energy resources (DERs), which are crucial for managing three-phase imbalances in
the microgrid.

• Bus Allocation Variables (Bbus):

Bbus = [BPV(t, b), BWT(t, b), BDR(t, b), BGrid(t, b), BBESS(t, b), BDG(t, b), BMT(t, b)] ∀b ∈ B, ∀t ∈ T (2)

where BDER(t, b) indicates the bus location b for each DER at time t.

• Phase Assignment Variables (Bphase):

Bphase = [ϕPV(t, p), ϕWT(t, p), ϕDR(t, p), ϕGrid(t, p), ϕBESS(t, p), ϕDG(t, p), ϕMT(t, p)] ∀p ∈ P , ∀t ∈ T (3)

where ϕDER(t, p) denotes the phase p (A, B, or C) assigned to each DER at time t.
The full set of decision variables for the optimization problem is:

X = [Xcont, Xdisc] ∀t ∈ T (4)

2.2. Objective Functions

The optimization problem is formulated to minimize the following three objective
functions:

2.2.1. Total Power Losses (J1)

J1 = ∑Llines
l=1 (ra

l · I
a
l (t)

2 + rb
l · I

b
l (t)

2 + rc
l · I

c
l (t)

2) ∀t ∈ T (5)

where ra
l , rb

l , and rc
l are the resistances of line l in phases A, B, and C, respectively, and Ia

l (t),
Ib
l (t), and Ic

l (t) are the corresponding line currents.

2.2.2. Voltage Deviation (J2)

This objective ensures voltage levels across all buses and phases remain within accept-
able limits.

J2 =
1
3
× (

√
∑Nbus

n=1 (1−|Va
n (t)|)

2 +
√

∑Nbus
n=1

(
1−

∣∣Vb
n (t)

∣∣)2
+

√
∑Nbus

n=1 (1−|Vc
n(t)|)

2) (6)
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2.2.3. Total Cost (J3)

J3 = CPV(t) + CWT(t) + CBESS(t) + CDG(t) + CMT(t) + CGrid(t) + CDR(t) (7)

• Cost of PV and WT Systems.

The total cost of PV and WT systems can be expressed as:

CRES,ζ(t) = CFIX,ζ + CVAR,ζ × Pζ(t) ∀t ∈ T , ∀ζ ∈ {PV, WT} (8)

In this equation, CRES,ζ(t) is the total cost of the renewable energy source ζ (which
could be a PV system or WT) at time t. The term CFIX,ζ represents the fixed cost, CVAR,ζ
is the variable cost of the renewable energy source ζ, while Pζ(t) is the power output of
source ζ at time t.

The fixed cost is calculated as:

CFIX,ζ =
CINV,ζ × r

(1− (1 + r)−TLife)× 8760×CFζ
(9)

Here, CINV,ζ represents the initial investment cost of source ζ, r is the discount rate,
TLife is the expected lifetime of the system in years, and CFζ is the capacity factor of source
ζ. The number 8760 represents the total hours in a year.

The variable cost is given by:

CVAR,ζ = CO&M,ζ (10)

In this case, CO&M,ζ is the operation and maintenance cost for the renewable energy
source ζ.

• Cost of the BESS

The cost of the BESS (battery energy storage system) operation is expressed as:

CBESS(t) = CFIX,BESS +
(

CCHG × Pch
BESS(t) + CDSG × Pds

BESS(t)
)
+ γTOU(t)× PBESS(t) (11)

This equation then gives the overall cost of operating the BESS at time t. Note that
CBESS(t) is the total cost of the BESS operation at time t, CFIX,BESS is the fixed cost of the
BESS, and the terms CCHG and CDSG then represent the variable charging and discharging
costs, respectively, while Pch

BESS(t) and Pds
BESS(t) are the power charged to and discharged

from the BESS at time t. γTOU(t) is the time-of-use (TOU) electricity price at time t; PBESS(t)
is the total BESS power (both charging and discharging) at time t.

The fixed cost of the BESS is calculated as:

CFIX,BESS =
CINV,BESS × r

(1− (1 + r)−TLife,BESS)× 8760×CFBESS
(12)

Here, CINV,BESS is the investment cost of the BESS, r is the discount rate, TLife,BESS is
the expected lifetime of the BESS in years, and CFBESS is the capacity factor of the BESS.
The number 8760 represents the total hours in a year.

The variable costs of charging and discharging are expressed as:

CCHG = CO&M,CHG , CDSG = CO&M,DSG (13)

where CO&M,CHG and CO&M,DSG are the operation and maintenance costs for charging and
discharging the BESS, respectively.

• Cost of DG, MT, and Grid Power

The cost of operating DG, MT, and grid power systems is modeled as:

CGEN,ξ(t) = CFUEL,ξ(t) + CEMI,ξ(t) + CO&M,ξ(t) ∀t ∈ T , ∀ξ ∈ {DG, MT, Grid} (14)
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where
CFUEL,ξ(t) = αξ × Pξ(t) + βξ × P2

ξ (t) + γξ (15)

CEMI,ξ(t) =
(
µCO2 + µSO2 + µNOx

)
× Pξ(t) (16)

CO&M,ξ(t) = κξ × Pξ(t) (17)

Specific equations are as follows, in which CGEN,ξ(t) is the total generation cost of
technology ξ at time t, which includes fuel cost CFUEL,ξ(t), emission cost CEMI,ξ(t), and
operation and maintenance cost CO&M,ξ(t), while Pξ(t) is the power output of technology
ξ at time t. The form of the fuel cost function contains a linear term with coefficient αξ and
a quadratic term with coefficient βξ . The emission cost depends on the unit costs for the
emissions of CO2, SO2, and NOx, labeled by µCO2 , µSO2 , and µNOx , respectively. Opera-
tion and maintenance costs depend on coefficient κξ . ξ is in use for different generation
technologies, such as DG, MT, and the grid, while T represents the set of time periods
under consideration.

Finally, CDR(t) represents the costs associated with DR at time t:

CDR(t) = βI/C × PDR(t) + λ×E[VSI(t)] (18)

In this equation, βI/C represents the cost coefficient for interruptible or curtailable
loads, while PDR(t) denotes the voluntary load reduction at time t. The parameter λ serves
as a weighting factor for balancing cost and grid stability, and E[VSI(t)] stands for the
expected voltage stability.

For unifying the scales of these objectives, each objective function is normalized:

J′i =
Ji − Jmin

i
Jmax
i − Jmin

i
∀i ∈ {1, 2, 3} (19)

The aggregate objective function to be minimized is:

Jtotal = J′1 + J′2 + J′3 (20)

2.3. Dynamic Pricing-Based DR

This DR program encourages a load reduction in response to real-time electricity
prices. The reduction in power due to DR is modeled as:

PDR(t) = γ×
(

π(t)
πbase

)
×∑N

i=1 PLoad(t, i) (21)

where PDR(t) is the power reduction at time t due to DR, γ is a proportionality constant
reflecting the sensitivity of the load to price changes, π(t) is the real-time electricity price
at time t, and πbase is the base-line price. ∑N

i=1 PLoad(t, i) represents the total load, which is
the sum of the individual consumer loads at time t, where N reflects the total number of
consumers.

This formulation would be subject to the following constraints:

−α(t)×∑N
i=1 PLoad(t, i) ≤ PDR(t) ≤ α(t)×∑N

i=1 PLoad(t, i) (22)

where α(t) is the utmost allowable load reduction or increase, ensuring that the DR does
not exceed certain limits.

2.4. Adaptive Load Shedding Algorithm

The adaptive load shedding algorithm dynamically optimizes load reduction to mini-
mize total operational costs while maintaining grid stability:

min
PDR(t)

(Ctotal(t) + λ×E[VSI(t)]) (23)
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In this equation, Ctotal(t) represents the total operational cost at time t, λ is a weighting
factor that balances the cost and grid stability, and E[VSI(t)] is the expected value of the
voltage stability index (VSI) at time t, which measures the grid’s stability under the current
load conditions.

2.5. Constraints

The optimization is subject to several constraints, ensuring the microgrid operates
within its physical and operational limits:

2.5.1. Power Flow Constraints

• Active Power Balance:

PPV(t) + PWT(t) + PDG(t) + PMT(t) + PGrid(t) + PDR(t)± PBESS(t) = PLoad(t) + Ploss(t) (24)

This equation ensures that the total power supply equals the demand plus losses at all
times. Here, PPV(t) is the power generated by the PV system at time t, PWT(t) is the WT
power output, PDG(t) is the power from DG, and PMT(t) is the power from MT. The power
imported from the main grid is denoted by PGrid(t), while the power reduction resulting
from DR is denoted by PDR(t). The power of the BESS is denoted by the term PBESS(t),
which can be either positive (discharging) or negative (charging). PLoad(t) represents the
entire load demand on the demand side, while Ploss(t) represents the power losses in
the system.

• Reactive Power Flow:

Qflow(n, t, m, p) = ∑m∈B (|Vn(t, p)|·|Vm(t, p)|·|Ynm|·sin(θn(t, p)− θm(t, p)− ϕnm(t, p)) ) (25)

This equation represents the reactive power flow between nodes in the power system.
Here, Qflow(n, t, m, p) denotes the reactive power flowing from node n to node m at time t
with phase p. The term |Vn(t, p)| is the magnitude of the voltage at node n and |Vm(t, p)| is
the magnitude of the voltage at node m. |Ynm| represents the magnitude of the admittance
between nodes n and m. The angle difference θn(t, p)− θm(t, p) is adjusted by the phase
angle ϕnm(t, p), which accounts for the phase shift introduced by the admittance. The sine
function captures the reactive power component of the flow.

2.5.2. Voltage and Current Limits

• Line Current Limits:∣∣Il(t, p)
∣∣≤ Il,max ∀l ∈ Llines, ∀t ∈ T , ∀p ∈ P (26)

This constraint ensures that the current flowing through each transmission line l does
not exceed its maximum allowable value Il,max at any time t and for any phase p.

• Voltage Magnitude Limits:

Vmin ≤|Vn(t, p)|≤ Vmax ∀n ∈ B, ∀t ∈ T , ∀p ∈ P (27)

This constraint ensures that the voltage magnitude at each node n remains within the
specified minimum Vmin and maximum Vmax limits at all times t and under all conditions p.

2.5.3. DER Operational Limits

0 ≤ Pζ(t) ≤ Pζ,max ∀ζ ∈ {PV, WT, BESS, DG, MT, Grid}, ∀t ∈ T (28)

This constraint ensures that the power output Pζ(t) from each type of distributed
energy resource (DER) ζ is within the range from 0 to its maximum allowable output Pζ,max
at all times t.
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2.5.4. Integer Constraints

1 ≤ Bbus, Bphase ≤ Nbus, Nphase (29)

This constraint ensures that the integer variables Bbus and Bphase are within the al-
lowable range, where Nbus and Nphase represent the total number of buses and phases,
respectively.

3. UT for Uncertainty Modeling

In modern microgrids, the integration of renewable energy sources, like PV systems
and WTs, introduces considerable uncertainty in terms of their operation due to the vari-
ability of weather conditions. Consequently, there is intrinsic uncertainty in load demand,
which makes energy management even more complicated [34]. We employ UT as a robust
way of propagating uncertainty through nonlinear functions describing the operation of
the microgrid.

UT is a statistical methodology that is used to calculate the mean and covariance of a
random variable that undergoes a nonlinear transformation. Unlike traditional methods,
such as MCS, UT relies on a deterministic sampling technique, called sigma points, to
accurately capture the mean and variance of the transformed variable using minimal
computational resources [19,46].

In the context of the modeling of the microgrid, the most important uncertainties
are considered to be produced by a case of renewable energy generation and one of load
demand. The generation of renewable energy, such as from PVsystems and WTs, varies due
to changes in irradiance and wind speed, respectively. Similarly, load demand follows a
temporal pattern that changes with the time of day, climatic and meteorological conditions,
as well as with consumers’ patterns of behavior.

3.1. UT Procedure

Let Z be the vector of uncertain variables comprising renewable generation and
load demand. UT is applied to propagate this uncertainty through nonlinear power flow
equations as well as the overall optimization problem.

For an n-dimensional random variable, Z with mean, Z and a covariance matrix, PZ
UT determines 2n + 1 sigma points

{
Zi}2n

i=0 according to the following formulae:

Z0 = Z (30)

Zi = Z +

(√
(n + λ)PZ

)
i
, i = 1, 2, . . . , n (31)

Zi+n = Z−
(√

(n + λ)PZ

)
i
, i = 1, 2, . . . , n (32)

where λ is a scaling parameter given by λ = α2(n + κ)− n, where α is a small positive
constant and κ is a secondary scaling parameter.

Each of the sigma points, Zi, is propagated through the nonlinear functions modeling
the power flow equations and operational constraints of the microgrid. For a nonlinear
function f(·), the transformed sigma points are computed as:

Yi = f(Zi), i = 0, 1, . . . , 2n (33)

The mean and covariance of the transformed variable Y are estimated as:

Y = ∑2n
i=0 W(m)

i Yi (34)

PY = ∑2n
i=0 W(c)

i (Yi − Y)(Yi − Y)T (35)
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where W(m)
i and W(c)

i are weights for the mean and covariance, respectively:

W(m)
0 =

λ

n + λ
, W(c)

0 =
λ

n + λ
+ (1− α2 + β) (36)

W(m)
i = W(c)

i =
1

2(n + λ)
, i = 1, . . . , 2n (37)

Here, β is a parameter that incorporates prior knowledge of the distribution of Z, such
as β = 2 for Gaussian distributions.

3.2. Incorporating UT into Microgrid Optimization

This is where, in the microgrid optimization problem, the UT algorithm enhances the
problem capability for handling uncertainties involved in renewable generation and load
demand. The incorporation of UT will hence make the optimization framework capable of
handling the mentioned uncertainty in the objective functions and constraints effectively.
This can be written as considering the robustness in the final solution against the inherent
variability in the system for UT-generated sigma points in the objective functions, which
include total cost, voltage deviation, and power losses.

Putting this into a modified objective function, including the uncertainty provided by
the following:

JUT
total = ∑2n

i=0 W(m)
i Jtotal(X, Zi) (38)

where Jtotal(X, Zi) is the total objective function evaluated at the i-th sigma point Zi and X
is the vector of decision variables.

Furthermore, the constraints are checked at all the sigma points to ensure that the
constraints are valid along the range of the uncertain variables. This may be expressed as:

Subjectto : gk(X, Zi) ≤ 0, ∀k, ∀i = 0, 1, . . . , 2n (39)

This concept keeps the microgrid’s operational states within safe limits of operations,
given the uncertainties in renewable energy generation and load demand. The incorpo-
ration of UT into the optimization problem gives robustness to the problem for the more
reliable and efficient operation of microgrids.

4. The Proposed Algorithm
4.1. Overview of the Cheetah Optimizer (CO)

The CO is an optimization algorithm inspired by the hunting strategy of cheetahs [45].
It is based on the different strategies that a cheetah deploys in locating its prey, such as
scanning, stalking, and rapid acceleration, that enable it to efficiently locate and capture
the hunted object. The CO could demonstrate promising performance in regard to various
optimization problems due to its appropriate balance between exploration and exploitation
through different intelligent search strategies. However, while the CO is good at finding
near-optimal solutions, there are some issues in terms of evading the local optima and
keeping diversity in the search space. These might engender premature convergence and
poor performance in complex high-dimensional optimization problems.

We try to address these challenges by proposing the Enhanced Cheetah Optimization
Algorithm, which tries to improve upon the original CO by introducing dynamic and
adaptive mechanisms that amplify global exploration and finesse in the exploitation phase.
The ECOA avoids such risk from the local optima, further increasing the convergence
speed and enhancing the overall robustness of the algorithm in solving such complex
optimization tasks using introduced stochastic processes and cooperative strategies.
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4.2. Enhanced Cheetah Optimization Algorithm (ECOA)

The ECOA is an enhanced version of the original Cheetah Optimizer. In the enhanced
variant of the Cheetah Optimization Algorithm, the mechanism of exploration and exploita-
tion has become much more sophisticated, involving several major adaptive mechanisms
and stochastic processes that enhance performance and avoid the local optima. Below, the
key elements of the ECOA are outlined.

4.2.1. Exploration by Stochastic Jump Strategy

The ECOA’s exploration is based on a stochastic jump technique inspired by Lévy
flights. This method allows for big, dynamic jumps in the search space, which contributes
to improved global exploration. During iteration t + 1, the position of the i-th cheetah in
the j-th dimension is updated:

X(t+1)
i,j = Xt

leader,j + ϵ · Lévy(j) · γt
i,j, (40)

where

• Xt
leader,j is the leader position in the j-th dimension at iteration t.

• ϵ is a small positive constant controlling the jump intensity.
• Lévy(j) is a random vector derived from the Lévy distribution.
• γt

i,j is the step size at iteration t, dynamically adjusted based on the cheetahs’ rela-
tive position.

The step size of γt
i,j in Equation (40) changes dynamically in the ECOA, using the

cheetah’s role and position in the population, i.e., it naturally balances the exploration and
utilization through this adaptative mechanism:

γt
i,j = κ · (Xt

prey,j − Xt
i,j), (41)

where κ is a scaling factor that depends on the amount of distance that one is from optimum.
The second-best solution guides the search in Equation (40). In every iteration, Xt

leader,j
drives the search. In such a way, the ECOA refines the search in regions around the
best-known solutions, improving convergence:

4.2.2. Stationary Ambush Strategy

If the ECOA finds promising regions, then a stationary ambush strategy is employed
which saves energy by reducing all unnecessary movements. Early convergence is pre-
vented, with the position update rule being defined as:

X(t+1)
i,j = Xt

i,j (42)

This would imply that the cheetah does not move from its position to maintain stability.

4.2.3. Adaptive Chase Mechanism

The ECOA introduces an adaptive chase mechanism during the exploitation phase,
wherein cheetahs adjust their positions based on the optimal solution (prey). The position
update is defined as:

X(t+1)
i,j = Xt

prrey,j + ηi,j · ζt
i,j, (43)

where ηi,j is the randomness factor, simulating unpredictable movements during the chase.
ζt

i,j represents the cooperative interaction factor.
The ECOA enhances the performance by incorporating a mechanism of cooperative

interaction among cheetahs. This mechanism helps to increase cooperation inside the
population, significantly enhancing convergence rates and robustness against local optima:

ζt
i,j = Xt

i,j − Xt
k,j, (44)
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Here, Xt
k,j is upper neighborhoods (other cheetah position at the same dimension

developing the cooperative search).
The psedue-code of ECOA is summarized in Table 1.

Table 1. Pseudo-code for the ECOA.

Step Description Equation/Details

1 Define parameters D: dimensionality, n: population size, MaxIt: maximum iterations
2 Generate initial population Generate X0

i for i = 1, 2, . . . , n and evaluate fitness
3 Initialize iteration counter t← 1
4 Main loop While t ≤ MaxIt do
5 Sort and select Sort population, select prey Xprey and leader Xleader
6 Iterate over each cheetah For each cheetah i do
7 Select neighbor Select neighbor cheetah k
8 Randomly select dimensions J ⊂ {1, 2, . . . , D}, size d =

⌈
D

randi⌈ D
3 ⌉

⌉
9 Stationary ambush Xt

i,j ← X(t−1)
i,j for all j ∈ J

10 Calculate parameters Update Ht
i

11 Ambush condition If Ht
i > 0.25 then

12 Exploration strategy X(t+1)
i,j ← Xt

Prey,j + ϵ · Lévy(j) · γt
i,j

13 Otherwise, use exploitation Else
14 Exploitation strategy X(t+1)

i,j = Xt
prrey,j + ηi,j · ζt

i,j
15 End condition check End If
16 Update position Update X(t+1)

i,j if new position is better
17 End cheetah iteration End For
18 Update best solutions Update prey Xprey and leader Xleader
19 Increment iteration t← t + 1
20 End main loop End While
21 Return best solution Return Xprey as the best solution

The ECOA achieves automatic optimal parameter acquisition through several adaptive
strategies that dynamically adjust as the algorithm progresses. First, the stochastic jump
strategy enhances global exploration by using Lévy flights to allow for large, adaptive
jumps in the search space. The step size γt

(i,j) adjusts automatically based on each chee-
tah’s position and role, facilitating a smooth transition from exploration in early stages to
exploitation as optimal solutions are approached.

In the adaptive chase mechanism, cheetahs modulate their positions relative to the
optimal (prey) solution, using both a randomness factor η(i,j) and a cooperative interaction
factor ζt

(i,j). This dual adjustment creates an inherent balance between the exploration and
exploitation phases without the need for manual tuning, as it adapts in real-time to the
search landscape.

Finally, cooperative interaction among cheetahs contributes to efficient convergence by
fostering collaboration between individuals in the population, helping to prevent premature
convergence to local optima. This adaptive cooperation among neighboring solutions auto-
matically tunes parameters to enhance both convergence speed and robustness. Together,
these strategies enable the ECOA to perform optimally across complex, unbalanced three-
phase distribution networks, facilitating both global and local searches without manual
parameter settings.
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4.3. Implementation of the Proposed Methodology

The steps for solving the problems involved in operation and planning in microgrids
using the ECOA and UT for handling uncertainties are shown in Figure 1 and briefly
explained as follows:

• Step 1: Define input data.

- Initialization of the microgrid data includes the prices for the electric energy, the
load data, and the characteristics of the DERs.

- All the parameters of the algorithm have to be determined: the size of the pop-
ulation, the number of iterations, and the parameters of UT, i.e., the number of
uncertain variables and their respective probability density functions.

• Step 2: Reduce the problem to an unrestricted form.

Convert the constrained optimization problem into an unconstrained one, penalizing
all constraint violations by using a penalty function so that all the solutions satisfy the
operational and safety limits of the microgrid.

• Step 3: Generation of initial population.

Generate an initial population of solutions for the ECOA. Each solution is a feasible
microgrid operation configuration that are generated within prescribed limits; in cases
when constraint violations occur, the solutions are repaired to make them feasible.

• Step 4: Evaluate the objective function using UT.

For each population solution, use UT to propagate the uncertainty in renewable energy
generation and load demand through the power flow equations. Determine the sigma
points for each parameter that is unknown. Transform the sigma points using the
nonlinear microgrid functions and then calculate the goal function 2n + 1 times, where
m represents the number of unknown parameters. Calculate the expected value of the
objective function based on the results of UT.

• Step 5: Choose the best solution.

Keep the best solution, which has the lowest predicted cost or objective value among
the analyzed population.

• Step 6: Apply the ECOA Improvisation Stage.

Update the population using ECOA improvisation mechanisms; explore and exploit
the solution space through interactions between the prey, leader, and other cheetahs.

• Step 7: Improvements to the CO.

Improve the quality of the solutions and increase the convergence and variety of
the population by applying the ECOA’s specific variation operators to the newly
updated population.

• Step 8: Conclusion.

The algorithm terminates if any of the termination criteria (the utmost number of
iterations or the stated objective function value) are satisfied. If they are not, proceed
to Step 4 to continue refining and iterating the solutions.
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5. Simulation Results
5.1. Overview of the Simulated Microgrid System

The difficulties of integrating large amounts of RESs, including PV systems and WTs,
into an imbalanced three-phase distribution network are handled by the simulated micro-
grid system. The model records the dynamic interactions between changing renewable
energy and changing load needs using the IEEE 13-bus test system [47]. Essential technical
details of the generation units can be found in Table 2 [48–50]. In addition, the hourly
active power production of the WT and PV and the hourly load demand forecast are shown
in Figure 2. Based on current laws, particularly those set by the Ontario energy board,
the model’s DR behavior should be affected by its use of a TOU pricing system. In this
scenario, grid electricity accounts for 50% of the base load, MTs provide 10%, and the
remaining demand is met by PV systems, WTs, and the BESS. Stochastic weather patterns
and fluctuating demand are used to simulate the real-time fluctuation of RES output and
load situations. The methodology will find the best power-generating mix—PV systems,
WTs, DGs, MTs, and the BESS—by integrating DR programs and striking a balance between
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supply and demand. The optimization was performed using the ECOA in conjunction with
UT for uncertainty management.

Table 2. Parameters of the utilized resources in the model.

Generation
Source

Parameter
(Unit)
Value

MT
µCO2 (kg/kWh) µSO2 (kg/kWh) µNOx (kg/kWh) βξ (USD/kWh) αξ

(USD/kWh)
γξ

(USD/h)
0.72 0.002 0.091 0.000018 0.03872 1.356

DG
µCO2 (kg/kWh) µSO2 (kg/kWh) µNOx (kg/kWh) βξ (USD/kWh) αξ

(USD/kWh)
γξ

(USD/h)
0.65 0.093 4.483 0.0002 0.03632 1.65

PV
CINV,ζ
(USD) CO&M,ζ (USD/kW) CFζ TLife (years)

6675 × 400 0.012 0.3 25

WT
CINV,ζ
(USD) Oper.cost (USD/kW) CF TLife (years)

1500 × 400 0.00952 0.2 20

BESS
CINV,BESS

(USD)
CO&M,CHG /CO&M,DSG

(USD/kW) CFBESS
TLife,BESS
(years)

1775 × 200 0.05 0.25 25

Grid
µCO2 (kg/kWh) µSO2 (kg/kWh) µNOx (kg/kWh)

0.85 2.14 9.723

DR
βI/C

(USD/kWh)
0.1
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Figure 2. The mean values of (a) wind speed, (b) solar irradiance, and (c) load demand.
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The simulation parameters are chosen to ensure that the results are robust: 25 runs
with 100 iterations and a population size of 50 for each procedure. The conventional CO,
PSO, and GA, as well as two hybrid algorithms (GPSOA and HPSO-GSA), were compared,
and testing revealed that the ECOA performed better in terms of cost minimization and
energy supply optimization under uncertainty. All simulations were run in MATLAB
R2021b on a PC with an Intel i5 processor, 4 GB RAM, and a CPU speed of 2.5 GHz. This
can assure steady performance in computationally intensive optimization processes. The
established approach can provide practical and scalable insights into how a microgrid
operates, allowing for a full assessment of system efficiency and dependability.

5.2. Optimal Power Generation and Resource Contribution (Continuse Variables)

The proposed methodology is used to find the optimal power generation performances
inside a microgrid provided with distributed sources like PV systems, WTs, DGs, MTs,
and the BESS. It also implements various DR programs. The proposed model captures
the temporal variability of the power output of these sources to simulate the performance
under variant conditions, as depicted in Figure 3.
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Figure 3. Microgrid’s Optimal generation scheduling.

The generated PV generation is very negligible in most of the night-time hours (for
example, from hour 1 to hour 5). However, from hour 6, it increases further to midday,
reaching a maximum output of 991.2684 kW at hour #12. The WTs produce a decent
amount relatively stably throughout the day; their peak generation is at hour 19, which
is 837.6866 kW, showing that wind energy is one of the most reliable renewable resources
inside the microgrid. Utility grid power usage varies by the availability of the local
generation. In this case, during low output of the renewable energy sources (from hour 1 to
5 h), utility grid power contributes a minimum, peaking at hour 14 with 531.3536 kW, where
demand and the amount drawn from the microgrid are higher. Dispatchable sources such
as DGs and MTs are of paramount importance for backup power, especially during periods
when the generation from renewable sources is at an all-time low. The peak output for diesel
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generators falls at hour 9, with 211.9006 kW, while peak output for microturbines falls at
hour 5, with 146.9435 kW, contributing quite effectively during these high-demand periods.

The BESS has a significant role that involves smoothing the microgrid energy fluctua-
tions, absorbing the surplus power during low demand, and releasing the stored energy at
peak demand. From this perspective, negative values in the BESS output signify charging
states, while positive values denote discharging states. For instance, a BESS charged during
hours 1–5, when renewable generation is limited, gains extra energy by absorbing the nega-
tive values of −93.24 kW, −104.79 kW, and −128.02 kW to enhance its storage capacity. On
the other hand, this extra stored energy is utilized efficiently during peak demand periods
to meet the high demand while easing the dependence on the grid, as in hour 10, where the
BESS discharges 62.78 kW. This interaction between the BESS and other sources, such as
WT and PV systems, provides an optimum balance between energy supply and demand
during the day, thus improving the general efficiency and reliability of the microgrid.

In fact, DR programs have proven to be efficient in reshaping the load curve, especially
during peak demand hours. The modified load, after the application of DR, is shown in
Figure 4 and indicates a critical reduction in demand from hours 7 to 21. For example,
the original load of hour 9 was 1949.73 kW, which throttles down to 1242.08 kW after the
application of DR. This provided a smoothening effect on the load profile and will reduce
the strain that would otherwise have been placed on the generation units, thus adding to
the system efficiency.
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Figure 4. DR’s effect on the hourly load curve.

5.3. Impact of TOU Pricing on Microgrid Operations

TOU pricing, therefore, grants influence over the optimization of microgrid operations
through segmenting electricity costs into three distinct periods: off-peak at 8.7 ¢/kWh,
mid-peak at 12.2 ¢/kWh, and on-peak at 18.2 ¢/kWh. This form of pricing encourages
the shifting of power generation and consumption for both economic efficiency and opera-
tional reliability.

• Off-Peak Period (Hours 1–6 and 20–24)

From Figure 3, when the off-peak hour is considered to have the lowest price of
electricity, the microgrid prioritizes charging the BESS. The negative values of the BESS in
those periods show the state of the BESS while charging, absorbing excess generation. Still,
at hour 1, −93.24 kW is utilized from the BESS due to the optimization of energy costs.



Electronics 2024, 13, 4563 18 of 30

The wind generation also starts to kick in, albeit at a lower level; therefore, WTs can
supply base energy. This will pretty effectively minimize reliance on the more expensive
grid electricity as the ESS builds its charge for later use.

• Mid-Peak Period: 7–10 h; 17–19 h

During the mid-peak hours of the TOU pricing, WTs and the BESS begin to become
more important in terms of maintaining generation and load balance (see Figure 3). A WT
will start giving its contribution fully with an approximate 630.3 kW output during such
mid-peak periods to help reduce reliance on expensive grid electricity. Meanwhile, the
BESS moves into a discharge state, providing power to reduce further costs. For instance,
in hour 8, it supplies 76.22 kW, which shows that it utilizes the stored energy efficiently to
meet the demand in the period of high pricing.

• On-Peak Period [Hours 11–16]

It is at this point that the microgrid operates when the electricity prices are highest; it
concentrates its strategy on maximizing the deployment of local renewable energy sources,
such as PV systems. As such, during hour 10, for example, the output of PV reaches its
peak of 1083.23 kW and thus reduces dependence on highly expensive grid power. The
WT still provides a considerable amount of energy, with the output reaching 452.73 kW
at hour 11; hence, it is important for the minimization of the operational costs because of
peak pricing. Combining these sources will enable the microgrid system to function during
periods of high demand without incurring many utility costs.

DR programs also emerge as one of the most essential strategies in all periods. For
instance, as shown in Figure 4, at hour 12, DR reduces the load from 2255.29 kW to
1127.64 kW and, hence, works effectively while shifting consumption at a time when the
prices are high. Throughout the process, as shown, the cumulative effect of DR enhances
the microgrid to match the consumption based on the pricing structure. This saves stress on
the grid and also encourages economic efficiency. The efficient TOU pricing methodology,
the optimal generation of WTs, charging and discharging of the energy storage system, and
DR programs together effectively enhance the operational efficiency of the microgrid. An
overall cost reduction in operational costs amounting to 80% from scenarios without such
optimization measures is a testament to the success of this integrated approach in fostering
economic viability while ensuring a reliable and sustainable energy supply.

5.4. Optimal Location-Specific Performance Analysis (Discrete Variables)

The analysis of the optimal generation results points to the performance of not only
each generation option but also specific locations and phases that are important from the
point of view of the distribution network. In that respect, efficiency in the delivery of power
can be guaranteed together with system reliability at different load conditions during the
course of the day.

According to the results indicated in Figure 5, regarding PV generation, the optimal
performance is in Bus 2, Phase A, where solar energy generation is at its peak in the
afternoon. This area receives ideal sunlight, which makes it a perfect site to mount a PV
system. Other phases have relatively smaller outputs of PV, especially Bus 1 and Bus 4,
which further illustrates the need for proper site selection to tap into the full potential of
solar resources effectively.

Figure 6 also identifies Bus 2 as one of the highly contributing buses across all phases,
especially in Phase A and Phase B, which can contribute significant robustness to utility
supply in the stabilization process during periods of smaller renewable outputs.

Figure 7 shows the results of the dispersed WT generation; it can be seen that the
highest contributions are obtained at Bus 2 in Phase A, particularly during the early hours
of the morning. This sort of pattern characterizes the good wind conditions of this point; it
means that wind installations must consider the geographical aspect of siting. The other
buses, like Bus 1 and Bus 4, show low wind output; hence, siting becomes an important
aspect to be considered in regard to WTs.



Electronics 2024, 13, 4563 19 of 30

Electronics 2024, 13, x FOR PEER REVIEW 19 of 32 
 

 

According to the results indicated in Figure 5, regarding PV generation, the optimal 
performance is in Bus 2, Phase A, where solar energy generation is at its peak in the after-
noon. This area receives ideal sunlight, which makes it a perfect site to mount a PV system. 
Other phases have relatively smaller outputs of PV, especially Bus 1 and Bus 4, which 
further illustrates the need for proper site selection to tap into the full potential of solar 
resources effectively. 

 
Figure 5. Optimal results of the PV’s power generation, bus, and phase locations. 

Figure 6 also identifies Bus 2 as one of the highly contributing buses across all phases, 
especially in Phase A and Phase B, which can contribute significant robustness to utility 
supply in the stabilization process during periods of smaller renewable outputs. 

0 5 10 15 20 25
1

2

3

4

5

0 5 10 15 20 25

A

B

C

5 10 15 20
0

200
400
600
800

1000
1200
1400

G
en

er
at

io
n 

(k
W

)
Time (h)

Bu
s

Time (h)

Ph
as

e

Time (h)

Figure 5. Optimal results of the PV’s power generation, bus, and phase locations.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 32 
 

 

 
Figure 6. Optimal results of the grid’s power generation, bus, and phase locations. 

Figure 7 shows the results of the dispersed WT generation; it can be seen that the 
highest contributions are obtained at Bus 2 in Phase A, particularly during the early hours 
of the morning. This sort of pattern characterizes the good wind conditions of this point; 
it means that wind installations must consider the geographical aspect of siting. The other 
buses, like Bus 1 and Bus 4, show low wind output; hence, siting becomes an important 
aspect to be considered in regard to WTs. 

0 5 10 15 20 25
1

2

3

4

5

0 5 10 15 20 25

A

B

5 10 15 20
0

200

400

600

G
en

er
at

io
n 

(k
W

)

Time (h)

Bu
s

Time (h)

Ph
as

e

Time (h)

Figure 6. Optimal results of the grid’s power generation, bus, and phase locations.

Figure 8 further presents the DG at Bus 2, Phase A, which features continued op-
timal output, resonating with its capability of delivering steady power throughout the
day. The installations of DGs within the subject phase are appropriately positioned to
support fluctuating renewable generation and hence deliver a steady supply during peak
demand periods.
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Figure 8. Optimal results of the DG’s power generation, bus, and phase locations.

It can be observed from Figure 9 that the MT outputs are maximized at Bus 2, and
Phase B in particular has been found to be very effective during peak hours. The fact
that MT generation coincides with demand peaks points to its potential contribution to
enhancing the resilience of the system. Future plans of expansion should be biased toward
areas with higher MT outputs so as to maintain a balanced energy supply.
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Figure 9. Optimal results of the MT’s power generation, bus, and phase locations.

The BESS is, according to Figure 10, most effective at Bus 2. It is capable of providing
power during evening peak loads and replenishes its capacity by charging during the day.
Placement of the ESS in this location serves to enable superior management of the energy
flows to ensure that any excess generation from the PV and WT is valorized effectively.
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On the whole, the results depict Bus 2 as the best place of location for most of the
generation options, especially in Phase A. This means that there is a need to have a proper
site assessment during the actual planning of renewable energy projects and also at the
deployment of the DGs. The final result of the outcome is used in showing how critical
location and phase selection are in enhancing the efficiency and reliability of the energy
system and therefore in ensuring a more robust and sustainable power network.

5.5. Impact of the Proposed Model on Voltage Deviation, Energy Losses, and Costs

The proposed model has huge consequences for, but not limited to, key performance
indicators like voltage deviation, energy losses, and operational costs. A deeper look into
such impacts is presented which proves the effectiveness of the model in enhancing the
overall stability, efficiency, and, therefore, economic viability of the network.

The significant voltage stability improvements were realized after the execution of
the proposed model within the studied periods. Figure 11 clearly shows that the values
of VD (voltage deviation) were always about 1.489 to 1.490, representing a significant
deviation with significant questions about the reliability of the distribution network. After
implementation, the VD was proven to reduce significantly during peak operational hours.
For example, in the first hour, the VD reduced from 1.48966502 p.u to 1.340699 p.u, and
similar patterns continued throughout the entire day, as depicted with the 24th hour
reducing from 1.48970899 p.u to 1.340902 p.u. The foregoing results totally represent how
well the model works in controlling voltage deviations, thus enhancing power delivery
stability and reliability within microgrids.
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Figure 11. Voltage deviations before and after the proposed optimization EM model.

Among other elements, the model has provided voltage stability. There was also a
significant reduction in the loss of energy. Figure 12 shows the reduction in energy loss to
be constant both before and after the implementation of the model. Before optimization,
the losses were at their peak of 37.10 kW during hour 21. However, with the use of the
proposed model, energy losses went down considerably: in hour 1, energy losses went
from 9.61 kW to 8.66 kW, while, by hour 24, the extra losses were from 11.44 kW to 9.95 kW,
reflecting improved system efficiency. Total energy losses, which were 499.76 kW before
implementation, went down to 446.65 kW after implementation, underlining the capabil-
ity of the model for optimization in energy distribution and indicating that less energy
loss occurs.
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Figure 12. Microgrid losses before and after the proposed optimization EM model.

In the end, the model contributed to a significant impact on the total costs related to
different sources in the microgrid generations.

The total microgrid operation cost with RESs is USD 220,921.39, as represented in
Table 3. Compared to a non-RES scenario, which was a total of USD 1,324,587, this is a
huge cost reduction. In detail, the breakdown includes the following: PV at USD 8667.05,
grid power at USD 20,756.11, WTs at USD 40,142.04, and distributed generation at USD
38,145.56. Added to this are microturbines at USD 8715.11 and ESS at USD 61,655.70, while
DR accounted for USD 42,839.82.

Table 3. Daily costs of the test system using proposed method.

PV Grid WT DG MT BESS DR Total

Cost (USD) 8667.055 20,756.11 40,142.04 38,145.56 8715.105 61,655.7 42,839.82 220,921.3863

The huge cost difference underlines the financial advantages of integrating RES into
the microgrid, thus proving it feasible both from an environmental and economic point of
view. These findings should be able to validate the proposed model with voltage stability
improvement, energy loss reductions, and huge cost savings. Thus, a robust solution for
the optimization of MGs can be derived.

5.6. Results Comparison with Other Algorithms and Stochastic Methods

This section compares the performance of the proposed ECOA with other techniques
that traditionally have been used in microgrid management. For this purpose, the main
performance indicator under study is the fitness function values JUT

total.
In optimization algorithms, various parameters play a crucial role in determining

their performance and effectiveness. For instance, in the HPSO-GSA, the parameters are
set as follows: wmax = 0.9 and wmin = 0.4 (inertia weights), and c1min = 0.5, c1max = 2.5,
c2min = 0.5, and c2max = 2.5 (cognitive and social coefficients) [9]. The parameter T f = 20
represents the iteration interval cycle and Smin = 4 refers to the minimum size of the swarm.
Similarly, the GPSOA employs parameters such as c3 = c4 = 0.5 (acceleration factors) along
with ωmax = 0.9, ωmax = 0.4, and c1 = c2 = 2 (cognitive and social factors) [8]. The PSO
algorithm typically uses ω = 0.7 (inertia weight) with c1 = c2 = 2 (cognitive and social
coefficients). The GA is characterized by a crossover rate of 0.8 and a mutation rate of 0.1. In
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contrast, our proposed ECOA does not require parameter settings, similar to the traditional
CO algorithm [45], which streamlines its implementation and enhances its applicability in
diverse optimization scenarios.

The simulation results show that the ECOA outperforms the applied traditional and
hybrid optimization techniques. As reflected in Table 4, the best minimum fitness value
gained by the ECOA was 2.090865, with its maximum value being 2.101378, featuring a
mean of 2.089554 and a small standard deviation of 0.01126, representing the high stability
and reliability of the ECOA. For its part, the GA has an average fitness of 2.412126; PSO
and the conventional CO algorithm reached means of 2.33533 and 2.225719, respectively.

Table 4. Comparative results of the fitness function values (JUT
total) obtained by the applied Optimiza-

tion Algorithms.

Algorithm Min Max Mean SD CPU Time (s)

GA 2.346278 2.46748 2.412126 0.031894 67.65
PSO 2.283724 2.393773 2.33533 0.02973 42.15
CO 2.187906 2.286634 2.225719 0.02943 55.02

GPSOA 2.120345 2.210457 2.145893 0.025870 51.47
HPSO-GSA 2.105437 2.202345 2.135672 0.020110 57.85

ECOA 2.090865 2.101378 2.089554 0.01126 46.26

Furthermore, the GPSOA and HPSO-GSA hybrid algorithms also demonstrated com-
petitive performance, with mean fitness values of 2.145893 and 2.135672, respectively.
These results underline the effectiveness of hybrid algorithms in enhancing optimization
outcomes in microgrid management. In addition, as can be seen from Table 4, the ECOA’s
CPU time of 46.26 s indicates that this algorithm has good competitiveness in terms of
effectively throwing a balance between its efficiency and performance. In contrast, the GA
took 67.65 s, meaning that, besides producing worse optimal results, it was even slower
compared to the ECOA.

Moreover, the GPSOA and HPSO-GSA also exhibited competitive results, with mini-
mum fitness values of 2.120345 and 2.105437, respectively, and CPU times of 51.47 s and
57.85 s. Although both hybrid algorithms showed improved performance over the GA,
the ECOA remains the superior choice regarding both optimal results and
computational efficiency.

Looking closer, the convergence characteristic is somewhat different, as shown in
Figure 13. The highest value of 3.5 was initiated by the GA, which showed relatively slow
convergence with noticeable fluctuations during the first iterations that then stabilized
after the thirty-fifth iteration, with a value of around 2.346278. Thus, the final value
was approached rather gently, and the convergence behavior followed a step-like pattern.
Meanwhile, PSO started from a relatively lower point, 3.0, and decreased much more
smoothly before converging to 2.283724 until iteration 60. This one turned out to be
an immensely smoother algorithm where the fitness curve did not suddenly increase
erroneously often, which indicates the strength of this algorithm in spreading its coverage
over the solution space. Meanwhile, the behavior of the conventional CO algorithm was
similar, starting at approximately 3.1, and, after 40 iterations, it converged to 2.187906. Yet,
its convergence was marked by slower fitness reductions compared to the ECOA, and
hence it was less efficient in its approach to the optimal solution.

While all other algorithms were showing convergence attitudes, the ECOA, however,
showed the fastest convergence rate among the compared algorithms. This algorithm, with
an initial value starting at around 3.0, has successfully fallen below its fitness to 2.090865
within just 30 iterations and has kept that value constant, with a maximum of limited
fluctuation thereafter. Thus, the ECOA’s convergence curve is comparatively smooth,
indicating that this algorithm executes accordingly in minimizing an objective function in
uncertain renewable generation conditions.
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The hybrid algorithms, GPSOA and HPSO-GSA, also exhibit competitive convergence
characteristics. However, the ECOA’s overall speed and stability remain advantageous: the
GPSOA starts from a higher initial value of 4.2 and shows a gradual reduction, reaching
a fitness of around 2.12035 by iteration 70. Additionally, while the GPSOA maintains a
smooth convergence curve, its rate of descent is slower than the ECOA’s. This indicates
that the GPSOA, though efficient, is less aggressive in its convergence approach compared
to the ECOA’s rapid optimization. The HPSO-GSA, which begins at an initial value of
3.8, demonstrates a slightly faster convergence than the GPSOA, reaching a final fitness of
2.10544 by iteration 60. The HPSO-GSA’s stable curve and minimal fluctuations indicate an
effective performance; however, the ECOA still outpaces it, reaching an optimal value in
fewer iterations.

These findings show that the ECOA is indeed a powerful and effective technique for
the management of microgrid systems, especially when their operation is under uncertain
renewable generations.

Finally, to better understand the performance of the proposed UT approach, simulation
results are further analyzed together with other stochastic frameworks such as MCS and
the PEM. In Table 5, the proposed UT has a cost function value of JUT

total = 2.090865, which
is competitive in accuracy against the MCS at a higher value of 2.091234.

Table 5. Comparison of Cost Function Value in Different Stochastic Frameworks.

Method JUT
total CPU Time (s)

MCS [10] 2.091234 137.00
PEM [18] 2.090950 37.10

Proposed UT 2.090865 46.26

While the MCS indeed gave a comprehensive representation of the uncertainties, it
required significantly more computational time (137 s) compared with both the PEM at
37.10 s and the proposed UT method at 46.26 s. The results show that the UT approach
does strike a good balance in terms of performance for both computational efficiency and
accuracy, hence being robust in performing microgrid management under uncertainty.
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5.7. Discussion

The results from this work identified the ECOA in terms of optimizing microgrid
management. The results clearly depict the ECOA as outperforming all traditional and
hybrid optimization techniques, such as the GA, PSO, the conventional CO, the GPSOA, and
the HPAO-GSA, by most of the key performance indicators. The statistical analysis of the
fitness function provides supportive evidence for the ECOA in terms of performance, where
the average value is 2.090865 with a low standard deviation of 0.01126. Therefore, it proves
that the algorithm is capable of dealing with various operating conditions in a consistent
and reliable mandate, which plays an important role in microgrid applications due to the
high variability and uncertainty associated with the integration of renewable sources.

Table 6 presents a comparison of optimization algorithms applied to microgrid man-
agement, focusing on key performance attributes such as convergence speed, final fitness
value, stability, computational efficiency, and exploration–exploitation balance. The ECOA
stands out with the fastest convergence rate, the lowest final fitness value, and a consis-
tently smooth stability profile, indicating its effectiveness in achieving optimal solutions
under uncertain conditions. The GPSOA and HPSO-GSA exhibit a balanced exploration–
exploitation approach and moderate stability, though they converge at a slower rate than
the ECOA. This comparison highlights the ECOA’s robust performance in minimizing
objective functions, which is especially suited for renewable energy scenarios that require
rapid, stable convergence.

Table 6. Comparison of optimization algorithms based on key performance attributes.

Algorithm Convergence
Speed

Final Fitness
Value Stability Computational

Efficiency
Exploration–

Exploitation Balance

GA Moderate Moderate Moderate Moderate Low

PSO Moderate High High Moderate Moderate

CO Moderate Moderate Moderate High Low

ECOA High Very Low Very High High Balanced

GPSOA Moderate Low Moderate Moderate Balanced

HPSO-GSA Moderate Low High Moderate Balanced

The reduction in voltage deviation, as realized across the run, demonstrates how
effective the proposed model is in enhancing voltage stability across the microgrid. The
VD values in the network before optimization were relatively high and consistent, which
could tend to pose potential instability and reliability concerns in practical scenarios. With
the application of the ECOA in conjunction with UT, it can be observed that the model
minimized these VD values substantially by up to 10%. These improved voltage profiles in
all time periods indeed confirm the relevance of using advanced optimization techniques
in order to provide flat voltage profiles, especially in unbalanced distribution networks
with high RES penetration. This will be very important when trying to handle intermittent
systems like PV systems and WTs, which may create disturbances in generation and further
deteriorate voltage imbalances.

The model applied in this contribution has reduced energy losses significantly. Before
optimization, high energy losses were witnessed, especially during peak demand peri-
ods. In this context, the presented model performs an efficient dispatch of resources of
generation, including PV systems, WTs, DG, MTs, and the BESS, which enhances overall
efficiencies within the microgrid system. This is the capability of the model in streamlining
the process of energy distribution to cut down on wastages to improve efficiency. The
reduction from 499.77 kW to 446.65 kW is proof of the reduction in losses, which is very im-
portant in the sense that reduced losses translate into more efficient energy usage, reduced
environmental impacts, and lower operating costs for microgrid operators in the long term.
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Perhaps the most striking result is the drastic reduction in total operational costs when
renewable energy sources were integrated into the microgrid. This put the total cost of
operation with RES integration at USD 220,921.39 against USD 1,324,587 without RES. The
large difference in cost indicates the economic viability of integrating renewable energy
into microgrids. Furthermore, the breakdown of the costs shows a relative decrease in
overall operational costs with the inclusion of RESs like PV systems and WTs. Additionally,
the BESS and DR programs will serve to optimize energy consumption patterns and further
reduce dependence on these relatively highly valued external sources of energy. Results
also show that further investment in RESs and storage technologies could lead to larger
long-term cost savings, hence supporting the transition toward more sustainable and
cost-effective energy management frameworks.

A number of limitations exist in the present model. The price modeling for the
optimization process is simplified and does not fully capture the complexities inherent
in real-world electricity pricing structures, which are influenced by market fluctuations,
time-of-use (TOU) rates, and demand elasticity. This simplification may reduce the model’s
ability to accurately reflect the economic signals that drive consumer behavior and energy
consumption patterns.

While the model has demonstrated significant improvements across various perfor-
mance metrics, concerns regarding the computational efficiency of the Enhanced Cheetah
Optimization Algorithm (ECOA) persist, particularly when applied to larger-scale micro-
grid systems. The algorithm’s performance may vary under different environmental and
demand conditions, especially when confronted with extreme fluctuations in renewable
energy outputs or sudden changes in load patterns. This variability could affect both the
convergence speed of the algorithm and the quality of the optimal solution.

Furthermore, the issues of improving computational efficiency and scalability will
be paramount in ensuring the practical applications of the model. Future research could
explore adaptive mechanisms within the ECOA to enhance its responsiveness to changing
conditions as well as strategies for managing scalability. Hierarchical optimization ap-
proaches and parallel processing capabilities could extend the applicability of the proposed
method across diverse microgrid scenarios.

In general, the ECOA has proven to be a robust optimization tool for microgrid
management, effectively addressing the challenges posed by renewable energy integration
and load variability. The notable improvements in voltage stability, energy efficiency, and
cost reduction exhibited by the proposed model contribute to the development of more
resilient and sustainable power systems. Addressing the identified limitations will be
crucial for enhancing the model’s performance and applicability in real-world scenarios.
Overall, the results offer a promising pathway for sustainable energy management practices
and the integration of higher levels of renewable energy into the grid, underscoring the
need for continuous research and innovation in this field.

6. Conclusions

This paper presents a comprehensive framework for optimizing microgrid manage-
ment by integrating the Enhanced Cheetah Optimization Algorithm (ECOA) with Un-
scented Transformation (UT). The proposed model effectively addresses the complexities
associated with variable renewable energy sources and fluctuating load demands, resulting
in significant improvements in key performance metrics. Specifically, the optimization
yielded an overall cost of operation of USD 220,921.39, representing a reduction of over 83%
reduction, a decrease in overall power losses to 446.65 W (more than 10%), and an excellent
voltage stability deviation of 10%. The integration of UT enhances decision-making under
uncertainty, allowing for the precise propagation of variability through nonlinear func-
tions, which is critical for effective energy management in environments with fluctuating
renewable generation. While the proposed optimization framework demonstrates signif-
icant effectiveness, the performance of the Enhanced Cheetah Optimization Algorithm
(ECOA) may fluctuate under varying environmental and demand conditions, especially
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during extreme shifts in renewable energy output or sudden changes in load patterns. Such
variability can influence the algorithm’s convergence speed and the quality of the optimal
solution. Future research could investigate the development of adaptive mechanisms
within the ECOA to improve its responsiveness to these changing conditions. Additionally,
although the current framework shows effectiveness in terms of the specified microgrid
configurations, its scalability to larger systems or more complex microgrid architectures
requires further exploration. Strategies for managing scalability—such as hierarchical opti-
mization approaches or parallel processing capabilities—could be developed to broaden
the applicability of the proposed method across diverse microgrid scenarios. To enhance
the model’s performance in dynamic energy environments, future research should also con-
sider integrating adaptive forecasting techniques and investigating emerging technologies.
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