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Abstract: General face recognition is currently one of the key technologies in the field of computer
vision, and it has achieved tremendous success with the support of deep-learning technology. Gen-
eral face recognition models currently exhibit extremely high accuracy on some high-quality face
datasets. However, their performance decreases in challenging environments, such as low-light
scenes. To enhance the performance of face recognition models in low-light scenarios, we propose
a face recognition approach based on feature decoupling and fusion (DeFFace). Our main idea
is to extract facial-related features from images that are not influenced by illumination. First, we
introduce a feature decoupling network (D-Net) to decouple the image into facial-related features and
illumination-related features. By incorporating the illumination triplet loss optimized with unpaired
identity IDs, we regulate illumination-related features to minimize the impact of lighting conditions
on the face recognition system. However, the decoupled features are relatively coarse. Therefore,
we introduce a feature fusion network (F-Net) to further extract the residual facial-related features
from the illumination-related features and fuse them with the initial facial-related features. Finally,
we introduce a lighting-facial correlation loss to reduce the correlation between the two decoupled
features in the specific space. We demonstrate the effectiveness of our method on four real-world
low-light datasets and three simulated low-light datasets. We retrain multiple general face recognition
methods using our proposed low-light training sets to further validate the advanced performance
of our method. Compared to general face recognition methods, our approach achieves an average
improvement of more than 2.11 percentage points on low-light face datasets. In comparison with
image enhancement-based solutions, our method shows an average improvement of around 16 per-
centage points on low-light datasets, and it also delivers an average improvement of approximately
5.67 percentage points when compared to illumination normalization-based methods.

Keywords: general face recognition; low-light face recognition; feature decoupling; feature fusion

1. Introduction

With the rise of deep-learning technology, deep learning has been widely applied in the
field of face recognition, leading to significant breakthroughs in face recognition technology.
The accuracy of existing general face recognition models [1–5] on high-quality face datasets
(e.g., LFW [6], CFP-FP [7], AgeDB-30 [8], CALFW [9], and CPLFW [10]) is mostly above
95%, and even as high as 99%, indicating that face recognition technology has become quite
mature under ideal conditions. These models are designed to extract robust facial features
from constrained facial images, thereby enhancing the performance of face recognition
models. However, they have not fully addressed the challenges in some constrained
scenarios. Their performance in these constrained scenarios (e.g., varying lighting, complex
backgrounds, and dynamic environments), particularly in low-light conditions, is still less
than ideal. The general classic face recognition method, such as ArcFace [5] fails to achieve
correct matching in low-light facial images, leading to a significant decrease in performance.
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Therefore, general face recognition models exhibit poor feature extraction capabilities in
constrained environments.

Currently, many efforts [11–16] are focused on developing methods to address face
recognition in low-light scenarios, continuously improving the performance of face recogni-
tion systems in such conditions. However, many of these methods lack generalizability and
are particularly dependent on the training dataset. Based on the above, we aim to develop
a face recognition method that extracts robust facial features in low-light environments,
thereby improving the feature extraction performance of face recognition systems under
low-light conditions. Existing solutions to improve the accuracy of low-light facial image
recognition mainly include three approaches: (1) Methods based on image enhancement
techniques [11,14,17,18]. Image enhancement techniques (e.g., histogram equalization,
adaptive histogram equalization, gamma correction, or deep-learning-based methods) are
first used to enhance low-light facial images, and this process is considered a data prepro-
cessing step. The enhanced images are then transmitted to the face recognition system for
subsequent recognition, as shown in Figure 1a. However, these methods may not only
result in the over-brightening of certain regions of the image and amplification of noise but
also rely on multiple stages, making the process cumbersome, and the enhanced image may
even reduce the recognition performance of the face recognition system. (2) Methods based
on illumination normalization [12,16,19,20], such as using the Retinex theory [21] to normal-
ize illumination variations by decomposing facial images into illumination and reflectance
components, which helps maintain the visual quality of the enhanced image under different
lighting conditions, as shown in Figure 1b. The Retinex method primarily targets these
two components for processing. However, during the identification of these components,
there is a risk of losing facial texture. (3) Methods based on NIR devices [22–25]. By captur-
ing facial images using near-infrared (NIR) spectra, effective imaging can be achieved under
low-light conditions, as shown in Figure 1c. However, NIR is limited by skin reflectance,
has limited anti-interference capabilities, and requires additional equipment costs.

Low light 
enhancement 

module

(a) Illumination-enhanced low-light face recognition method

(b) Illumination normalization-based low-light face recognition method using Retinex theory

DeFFace

Identity 
Representation

Illumination 
Representation

pull

push

Remaining facial 
representation

(d) Our low-light face recognition method based on feature decoupling and fusion scheme

Reconstruction 
Network

Decomposition 
Network

(c) Face recognition based on near infrared camera

Figure 1. Diagrams of different approaches for low-light face image recognition. (a) Illumination-
enhanced low-light face recognition method. (b) Illumination normalization-based low-light face
recognition method using Retinex theory. (c) Face recognition based on near-infrared camera. (d) Our
Low-light face recognition method based on feature decoupling and fusion scheme (DeFFace).

To address these issues, we aim to identify illumination features that are independent
of facial features. In Retinex theory [21], an image is decomposed into reflectance and
illumination components, allowing the human eye to maintain stable color perception
under varying lighting conditions. Retinex enhances images by estimating and removing
the illumination component while preserving the reflectance. Inspired by this theory, we
propose DeFFace, a low-light face recognition method based on feature decoupling and
fusion, as shown in Figure 1d. DeFFace significantly improves face recognition accuracy
in low-light environments by decoupling facial-related features from illumination-related
features. This technology is highly applicable in areas such as security surveillance and
identity verification, providing accurate and reliable recognition even in challenging low-
light conditions. The widespread adoption of the DeFFace model will enhance public
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safety and privacy protection, delivering superior service experiences in intelligent security
systems and digital identity management. Specifically, we decompose facial image features
into two components: facial-related features and illumination-related features. By applying
constrained supervision to the illumination-related features, we effectively mitigate the
impact of lighting variations. Simply applying enhancement techniques to low-light facial
images can lead to issues such as overexposure; therefore, we address lighting effects from
the perspective of feature enhancement.

Our main idea is to extract facial-related features from low-light images that are
unaffected by lighting conditions. To achieve this, we introduce a novel feature decoupling
module (D-Net) that operates at the feature level. D-Net decouples the image into facial-
related features and illumination-related features, addressing the poor performance of
face recognition systems in low-light scenarios from a novel perspective. This approach
eliminates the need for additional preprocessing steps and the associated risks. In D-Net,
we also introduce an illumination triplet loss based on the traditional triplet loss. The
illumination triplet loss controls the decoupled illumination-related features, eliminating
the influence of lighting factors in the image. Additionally, to further obtain purer facial-
related features, we introduce a feature fusion module (F-Net). F-Net extracts the remaining
facial-related features from the illumination-related features and fuses them with the facial-
related features from D-Net. Finally, we introduce a lighting-facial correlation loss, reducing
their correlation in the feature space.

In summary, the contributions of this paper can be summarized as follows:

• We propose DeFFace to mitigate the effects of illumination factors on face recognition
systems through feature enhancement to enhance the recognition performance of face
recognition systems in low-light environments.

• We introduce a D-Net that decouples the image into facial-related features and
illumination-related features. Additionally, we introduce a new illumination triplet
loss to control the illumination-related features in the decoupling module using un-
paired identity ID training. We also introduce an F-Net to further obtain pure facial-
related features and introduce a lighting–facial correlation loss to reduce the correlation
between the two features.

• We validate our method against existing low-light face recognition methods and
several general face recognition methods on four real-world low-light datasets and
three simulated low-light datasets. The experimental results indicate that our method
achieves compelling results, demonstrating its effectiveness and superiority.

2. Related Work

In the field of face recognition research, privacy and security issues are increasingly
gaining attention. The collection and use of facial data inherently raise concerns about
personal privacy, especially when such data can be easily exploited if proper security
measures are not in place. Moreover, adversarial attacks on face recognition systems have
become a growing concern, where attackers can modify or forge images to manipulate the
system into returning incorrect recognition results, thereby threatening both data privacy
and system security [26]. Recent studies, such as Baia et al. [27], have shown how emotion
adversarial attacks (EAAs) can be used to shield privacy by intentionally obstructing
emotion recognition systems. This demonstrates the importance of integrating adversarial
defense mechanisms to enhance privacy protections in facial recognition systems. Therefore,
when designing face recognition models, it is crucial to consider not only their performance
under varying lighting conditions but also their robustness against adversarial attacks
and their potential impact on privacy [28]. Although this study focuses on enhancing
recognition performance in low-light environments through feature decoupling and fusion
techniques, we recommend that future research incorporates adversarial defense strategies
to improve model robustness and protect user privacy while ensuring system security.

In this section, we revisit prior work on general face recognition methods and low-light
face recognition techniques.
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2.1. General Face Recognition

Face recognition, as a crucial research area in computer vision, has witnessed signifi-
cant advancements. Presently, some deep-learning-based face recognition methods exhibit
outstanding performance on various general high-quality face datasets (e.g., LFw [6], CFP-
FP [7], and CPLFW [10]) by employing innovative loss functions [2–5,29–31]. However,
their performance tends to degrade on low-quality face datasets (e.g., IJB-S [32] and Tiny-
Face [33]). Recent research [1,2] has optimized face recognition performance by focusing
on image quality, emphasizing the relationship between feature norm and image quality,
and making significant progress in enhancing the accuracy of low-quality face images. Al-
though these deep-learning face models have improved face recognition accuracy to some
extent in constrained conditions, facial matching under varying lighting conditions still
poses challenges.

2.2. Low-Light Face Recognition

Some existing face recognition models exhibit poor generalization ability in low-light
scenarios. Many studies aim to improve the accuracy of face recognition under low-light
conditions. The main solutions are as follows.

Low-light face recognition based on VIS images can be roughly divided into the
following two main categories: (1) Low-light face recognition methods based on image
enhancement techniques. Lu and Gan [18] applied Gaussian filtering to handle pixel noise
at the bottom to mitigate low-light effects and introduced histogram enhancement (HE)
for low-light image enhancement. However, traditional enhancement methods suffer from
issues such as over-enhancement and noise amplification, which can even damage face
recognition systems. Bendjillali et al. [17] improved the contrast-limited adaptive histogram
equalization (CLAHE) algorithm for face image enhancement, which can handle local con-
trast more delicately compared to traditional HE methods. Fan et al. [11] created three
low-light face image datasets and designed an FC task-driven low-light enhancement net-
work (Low-FaceNet) to enhance low-light images before recognition. Le and Kakadiaris [14]
proposed the SeLENet model, emphasizing that existing image enhancement methods
have not been optimized for face images. The authors designed a decomposition and
reconstruction network based on the Retinex theory and used a semi-supervised learning
method with spherical harmonic coefficients to enhance and reconstruct lighting conditions.
Hu et al. [13] also proposed a low-light face recognition technique called FIN-GAN based
on the Retinex theory and GAN. However, the authors introduced too many loss functions
during implementation, which increased computational costs and optimization difficulty.
Among these enhancement methods, most aim to produce an enhanced version of the
low-light image, essentially a normal brightness image. However, determining whether
an image has normal or low brightness is highly subjective and difficult to quantify with
data. (2) Methods based on feature enhancement. Fang and Li [34] demonstrated the effec-
tiveness of this approach under illumination variations by using a sparse representation
classification method and Gabor wavelet transform, adaptively selecting the optimal atoms
for each feature to be effectively represented during classification. Huang and Chen [12,16]
obtained feature images between the original and enhanced images through a designed fea-
ture restoration module, exploring the generation of robust feature images to enhance the
performance of deep face recognition models in low-light environments. Wang et al. [20]
employed Generative Adversarial Networks (GANs) to address the image pairing problem,
enhancing the quality of low-light face images through adversarial training. Miao and
Wang [19] proposed a knowledge-guided representation decoupling network and illumina-
tion offset loss for low-light face recognition, where the loss helped maintain the consistency
of decoupled illumination-related features. (3) Based on NIR-VIS images. Infrared image
capture is one of the technical solutions for low-light face recognition, as shown in Figure 1c.
There are also many scholars who have conducted research on NIR-based solutions.
Lezama et al. [22] proposed a face recognition method based on near-infrared and visible
light (NIR-VIS) technology, which processes input data through cross-spectral hallucina-
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tion and low-rank embedding, facilitating the analysis of features from different spectral
images. This approach offers a new solution for face recognition in low-light scenarios.
Miyamoto et al. [35] proposed a joint feature distribution alignment learning (JFDAL)
method for NIR-VIS and VIS-VIS face recognition. This approach addresses domain dis-
crepancies between NIR and VIS images while maintaining the discriminative power of
VIS features. He et al. [25] proposed an adversarial cross-spectral face completion method
for NIR-VIS face recognition, using GANs with texture inpainting and pose correction
to generate high-resolution VIS images from NIR inputs, improving synthesis accuracy
and quality. However, NIR face recognition requires additional hardware (NIR cameras),
making it potentially more efficient and cost-effective to work within the VIS image domain.
Table 1 summarizes the main methods for low-light face recognition introduced in this
section, including general FR approaches, NIR-VIS FR approaches, and VIS image-based
approaches. It presents the advantages and limitations of these techniques in low-light face
recognition scenarios.

Table 1. Comparison of different low-light face recognition methods.

Option Author Method Database Limitation Advantage

General FR

Schroff et al. [36] FaceNet LFW/Youtube Faces DB Low recognition rate Processing time
Wang et al. [29] CosFace LFW/AgeDB Illumination Measure of angle
Deng et al. [5] ArcFace LFW/IJB-B Illumination Excellent class spacing

Huang et al. [3] CurricularFace LFW/CFP-FP Complexities of CNN Large-scale dataset

Kim et al. [1] AdaFace IJB-S/TinyFace Computationally
complex Robustness

NIR-VIS FR

Lezama et al. [22] – CASIA NIR-VIS 2.0 Quality of generated
VIS images No need for retraining

He et al. [25] – Oulu-CASIA Reliance on paired data
for training Multi-scale discriminator

Miyamoto et al. [35] SFDAL Oulu-CASIA Performance trade-off
between NIR and VIS

Preserved VIS domain
performance

VIS FR

Bendjillali et al. [17] – CMU-PIE
Effectiveness dependent

on enhancement
techniques

Deep-learning
architectures

Fan et al. [11] Low-Face Net LFW* Too many pre-trained
models Improved visual quality

Huang and Chen [12] FRNetFuse SoF Low recognition rate Robustness
Miao and Wang [19] – CASIA NIR-VIS 2.0 Robustness Illumination offset loss

Hu et al. [13] FIN-GAN ExtendedYaleB Performance on
in-the-wild data

Reduced computational
complexity

Overall, among the three main approaches discussed above, our method offers several
advantages. Compared to the NIR-based approach, we do not require additional near-infrared
devices, which reduces cost. Compared to image enhancement techniques, we do not need
to generate intermediate enhanced images, avoiding issues like overexposure and noise that
may arise from enhanced images, and allowing us to focus directly on improving the perfor-
mance of low-light face recognition systems. Finally, compared to general face recognition
methods, our approach significantly enhances the robustness of generic face recognition mod-
els in low-light scenarios. Additionally, existing image enhancement techniques are mostly
designed for processing scene-type images, and their performance when handling face-type
images has been less than ideal. Chen et al. [37] pointed out that existing enhancement
techniques might have resulted in “pseudo artifacts” when enhancing faces. This not only
affected visual effects but also interfered with face recognition systems. Additionally, some
solutions [11,38–43] that used image enhancement before face recognition suffered from the
problem of excessive enhancement, which could have adversely affected the performance
of face recognition systems. In response, this paper processes low-light facial images in the
feature space, decoupling the images into illumination-related features and facial-related
features. By processing the decoupled features, it avoids the issues caused by enhancing
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images in the pixel domain. Additionally, an end-to-end approach is employed to simplify
the training steps and reduce computational resources.

3. Methodology

In this section, we provide a detailed description of the construction of our network,
as schematically illustrated in Figure 2, and its details. Sections 3.1 and 3.2 elaborate on the
main content of our decoupling and fusion modules. Section 3.3 introduces the algorithmic
process of mining low-light image triplets and Section 3.4 covers the loss terms.

Feature Extraction

F-Net
(Fusion Net)

Face Recognition 
Module

Softmax-Based 
Loss

L-Module

F-Modulepush

pull

D-Net

Illumination Triplet 
Loss

Lighting-Facial 
Correlation Loss

Figure 2. The DeFFace architecture diagram primarily consists of four parts: backbone, D-Net,
F-Net, and face recognition. The D-Net is constrained by the illumination triplet loss, the F-Net is
constrained by the lighting–facial correlation loss, and the face recognition module is constrained by
the Softmax-based loss.

3.1. Feature Decoupling Module

Image features contain rich information, and in low-light facial images, these features
include both facial and illumination characteristics. In Section 2.2, we have reviewed the
relevant work on feature processing. Fan et al. [11] simply computed the entire image
features, crudely comparing the features of low-light images with those of normal-light
images. They treated the features of normal and low-light images as a whole for learning,
neglecting the complexity of image features and focusing solely on learning the overall
features. Miao and Wang [19] used two feature encoders to extract facial and illumination
features from low-light images and then used a generator to produce images that transition
from one lighting condition to another. The authors considered different categories of
features within the images. However, the model relies on the effectiveness of the generator,
and if the generated images are not realistic enough, it may actually harm the performance
of the face recognition system. In response, this paper introduces a feature decoupling
module (D-Net) to effectively learn facial features and separate them from illumination-
related features, thereby eliminating the influence of illumination on facial features. Related
work [44–48] has shown that feature decomposition is effective. D-Net avoids the adverse
effects brought by image enhancement techniques while also eliminating the influence of
lighting factors. This approach enhances the accuracy of low-light face recognition from a
novel perspective, rather than relying on traditional simple enhancement methods. The
following is the definition and description of D-Net.

D-Net. The core objective of the D-Net model is to decouple the input face image
features into illumination-related features and facial-related features without relying on
illumination labels, ensuring that these two types of features can be independently ex-
tracted and learned. Specifically, the input dataset, data, includes face images captured
under low-light and normal-light conditions, with each image labeled with its identity ID.
The role of the decoupling module in D-Net is to separate the illumination information
from the identity features through a specific network structure, enabling the model to
maintain a high recognition rate despite significant lighting variations while also accu-
rately modeling illumination characteristics, as shown in Figure 3a. During the training
phase, the decoupling module learns from these identity-labeled images. D-Net consists of
two parallel sub-modules: the L-module (lighting feature decoupling module) and the
F-module (facial feature decoupling module). These two sub-modules focus on extracting
different features—while the L-module is responsible for capturing illumination-related
information, the F-module focuses on extracting features related to face identity. When a
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face image passes through the backbone network, these features are simultaneously fed into
both the L-module and the F-module. In this process, the 512-dimensional input features
are passed through the consecutive convolutional layers of both sub-modules, gradually
extracting more abstract feature information. The L-module primarily learns illumination
features, such as changes in brightness and lighting direction, while the F-module focuses
on capturing face identity details, like facial contours and textures. To enhance the dis-
criminative ability of the features, each sub-module’s feature extraction layers apply the
ReLU activation function. This nonlinear activation function introduces nonlinearity into
the model, enhancing its ability to learn complex features. Particularly in the context of
decoupling illumination and facial features, ReLU increases the network’s sensitivity to
subtle differences. By the end of this process, D-Net successfully separates the illumination
information and the identity information from the input image, forming two independent
feature representations. Through this dual-module decoupling structure, D-Net not only
effectively handles variations in lighting conditions but also ensures that facial features
remain consistent across different illumination environments. This feature decoupling
enables D-Net to achieve efficient and accurate face recognition under varying lighting
conditions. This process is represented by Equation (1).

∀I, Fi = D-Net(I), (1)

where I is the input facial image, and F is the decoupled 512-dimensional feature. When
i = 1, F is the decoupled 512-dimensional facial-related feature, and when i = 2, F is the
decoupled illumination-related feature. D-Net represents the decoupling module.

128D
Conv

L-Module

ReLu

Fusion Module

ReLu

AvgPool Linear Sigmoid

F-Module

BN

512D Light Feature

512D Facial Feature
512D

Only Facial  Feature

512D 
Only Light Feature

(a) Detailed network configuration diagram of D-Net (b) Detailed network configuration diagram of F-Net

512D Facial Feature

Illumination 
Triplet Loss

Lighting-Facial 
Correlation Loss

Figure 3. Diagram showing the detailed network configuration of the D-Net and F-Net. Subfigure
(a) presents the detailed configuration of D-Net, and subfigure (b) presents the detailed configuration
of the F-Net.

3.2. Feature Fusion Module

In Section 3.1, we focus on the decoupling of two essential features: the illuminance-
related feature and the facial-related feature. It is important to note that the illuminance-
related feature often retains some residual facial characteristics, which can lead to a loss
of important identity information during processing. To mitigate this issue and preserve
the integrity of facial features, we have developed a novel feature fusion module, referred
to as F-Net, as illustrated in Figure 3b. The primary objective of F-Net is to effectively
integrate facial features with illuminance features by applying channel-level weighting to
the input illumination feature map. This process begins with a subnetwork that consists of
global average pooling followed by fully connected hierarchical sequences. Through this
architecture, F-Net learns the global statistical information of each channel within the input
feature map. As a result, it generates a specific weight for each channel, which signifies the
relevance of that channel to the extraction of facial features. Once the channel weights are
determined, they are applied to the input illumination feature map. This multiplication
process segregates the features that are associated with the face, emphasizing the channels
that contribute most significantly to facial recognition. The learned channel weights enable
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the model to prioritize features that are crucial for accurately identifying faces while
diminishing the influence of less relevant features. The next step involves recalibrating both
the facial features and the illumination features by performing element-wise multiplication
with the original feature map. This recalibration process results in two distinct sets of
feature representations—one for facial features and one for illumination features—both of
which possess enhanced anti-jamming capabilities. This means that even in challenging
lighting conditions, the model can maintain its ability to recognize faces effectively, as
depicted in Equation (2).

Y = X ⊗ σ(W2 ReLu(W1 AvgPool(X))), (2)

where X denotes the input illumination feature map, and Y denotes the residual facial
features in the illumination feature map, while W1 and W2 represent two linear transforma-
tions. W1 is employed to decrease the number of channels, whereas W2 is used to recuperate
the number of channels.

3.3. Mining of Low-Illumination Facial Triplet Images

To enable the model to better learn illumination characteristics, this paper proposes
an illumination face image triplet based on illumination characteristics, using an unpaired
identity ID training method inspired by the traditional triplet construction concept.

3.3.1. Synthesize Data

In Section 3.1, we outline a given input face image set, data = {low, normal}, in which
every image possesses an identity ID within the two segments of the set. For the normal
subset, acquiring the images inside is relatively straightforward; however, for the low subset,
obtaining facial images under differing lighting conditions with the same ID presents a
significant challenge. Hence, this paper adheres to the low-light image simulation technique
introduced in [49], utilizing a combination of gamma and linear transformations to mimic
low-light images. The detailed expression of the equation is provided in Equation (3).

In
m = β ∗ (α ∗ In

m′)
γ, n ∈ {R, G, B}, (3)

where α and β denote linear transformations. f (x)γ represents a gamma transformation.
The range for the three parameters is as follows: α ⊂ [0.9, 1], β ⊂ [0.5, 1], and γ ⊂ [1.5, 3.5].
Hence, for each identity ID, we possess images under normal illumination as well as facial
images under non-paired random illumination variations.

3.3.2. Mining of Triplet Facial Images Under Low Illumination

We aim to bring same-class low-light face samples closer together in the feature space
while increasing the distance between different-class low-light face samples and normal-
light face samples. To achieve this, we reorganize the initial training data by dividing them
into two pools: a normal-light face image pool and a low-light face image pool. We define
the following: for any low-light sample (anchor), we randomly select a different low-light
sample from the low-light image pool as the positive sample (positive), and randomly
select a sample from the normal-light pool as the negative sample (negative). The triplet
can be expressed by Equation (4).

Ti = {Anchorsm, Positivesn, Negativek}, (4)

where i represents the ith triplet, m and n denote any images in the low-light pool, and
m ̸= n. k represents any image in the normal-light pool. Refer to Algorithm 1.
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Algorithm 1 Random triplet image generation process

1: Input: low_image_pool, normal_image_pool, input_size(height, width)
2: Output: Random triple Ti
3: # Create two pools of images: one in low-light and one in normal light
4: used_as_anchor = set(), used_as_negative = set()
5: available_anchors = low_image_pool() # Filter available anchor
6: if not available_anchors then
7: used_as_anchor.clear()
8: available_anchors = low_image_pool - used_as_anchor
9: end if

10: available_positives = low_image_pool() # Filter available positives
11: if not available_positives then
12: used_as_anchor.clear()
13: available_positives = (low_image_pool - used_as_positive) - {anchor_path}

used_as_positive) - {anchor_path}
14: end if
15: negative_path = random.choice(list(normal_image_pool)) # Filter available negatives
16: return {triple table}

3.4. Loss Function

To effectively reduce the impact of illumination in facial recognition systems and improve
the model’s recognition performance in low-light conditions, we design a loss mechanism to
control the decoupled illumination-related features and facial-related features.

3.4.1. Illumination Triplet Loss

We aim to implement a loss function that controls lighting features in the decoupling
module. As mentioned before, we use the samples in the low image pool as the anchor
and positive, and those in the normal image pool as the negative, to create a lighting
triplet. After going through the decoupling module, the lighting triplet will yield lighting-
related and facial-related features, where the decoupled lighting feature is supervised by
the illumination triplet loss. We calculate the Euclidean distance between the anchor and
the positive and negative samples and set a boundary η value of 0.2 to ensure there is a
sufficient gap between the samples. Our goal is to make the decoupled anchor’s lighting
feature more similar to the lighting feature of the low-light positive sample, and further
from the lighting feature of the opposite normal-light negative sample. This way, we can
eliminate the influence of lighting. The formula is expressed by Equation (5).

Llight = max(0, ∥ Am − Pk ∥2 − ∥ Am − Nn ∥ +η2), (5)

where A represents the anchor, and Am denotes any low-illumination facial sample in the
low-light pool. P is the positive sample, and Pk denotes any low-illumination facial sample
in the low-light pool, with m not equal to k. N is the negative sample, and Nn denotes any
normal brightness sample in the normal-light pool.

3.4.2. Lighting–Facial Correlation Loss

For the decoupled illumination features and facial features, we consider that there
might be some linkage in the feature space. Thus, we introduce a new loss function,
lighting–facial correlation loss, to reduce the correlation between these two features in the
feature space. The formulation of the introduced loss function is shown in Equation (6).

Ll f = ∑i(e
cos2

i − 1), (6)

where cosi represents the cosine similarity between the lighting feature and facial feature of
the ith sample.
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3.4.3. Softmax-Based Loss

In the field of face recognition, most loss functions are designed based on the Softmax
function. Since the features learned from the original Softmax loss might lack the ability to
distinguish some challenging face samples, we adopt Kim et al. [1]’s proposed AdaLoss,
which is represented as shown in Equation (7). AdaLoss is an adaptive quality margin loss
function that adaptively adjusts the loss margin based on the quality of sample features
during training, thus improving the model’s ability to distinguish classified samples.
AdaLoss incorporates an adaptive angular margin and an adaptive additive term, efficiently
adjusting the loss margin for each sample. This allows the model to better focus on the
differences between high-quality and low-quality samples during training.

Lada = − log
exp( f (θyi , m))

exp( f (θyi ,m)) + ∑n
j ̸=yi

exp(scosθj)
, (7)

where f (x) is the boundary function regarding the boundary m, and θj is the angle between
the feature vector and jth classifier weight vector. The adaptive boundary function for inter-
class and intra-class adjustment proposed by Kim et al. [1] can handle some low-quality
samples in the data. If the image quality is high, hard samples are emphasized during
training; if the image quality is low, hard samples are not emphasized. We utilize the
adaptive boundary function proposed by AdaFace for sample prediction and classification.
The boundary function f is formulated by Equation (8).

f (θj, m) = scos(θj + Gag)− Gad, j = yi,

f (θj, m) = scos(θj), j ̸= yi,
(8)

where Gag represents the angle function and Gad represents the additional margin function.
It can be expressed by Equation (9).

Gag = −m. ∥̂ Zi ∥, Gad = m. ∥ Zi ∥ +m, (9)

where ∥ Ẑi ∥ is the feature vector. When ∥ Ẑi ∥ = −1, the Gag function turns into ArcFace.
When ∥ Ẑi ∥ = 0, it turns into CosFace. When ∥ Ẑi ∥ = 1, it turns into a shifted negative
angular margin.

3.4.4. Total Loss

The overall loss function formula is shown in Equation (10):

Ltotal = α ∗ Llight + β ∗ Ll f + γ ∗ LAda, (10)

where α represents the weight of illumination triplet loss, β is the weight of lighting–facial
correlation loss, and γ is the weight of AdaLoss.

4. Experiments

In this section, we introduce a comparison of our model’s recognition performance
on low-light face datasets with low-light face recognition methods and some general face
recognition methods. We visualize the recognition results of our method and compare
them with general face recognition methods. Ablation studies are presented to verify the
effectiveness of each module in our model.

4.1. Implementation Details
4.1.1. Training Set

We follow the low-light simulation synthesis scheme proposed by [49] to synthesize
our training set. We select 2500 identities from the CASIA-WebFace [50] dataset for training,
with each ID having eight normal/low-light images. The synthesized training set is referred
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to as LowCASIA-Train, and some of the data for low-light face synthesis are shown in
Figure 4. The first and second rows are the low-light face image set and the normal
illumination face image set, respectively. The third row comprises the triplets generated
from the two sets: the anchor is a low-light face sample, the positive is a low-light face
sample of a different person, and the negative is a normal illumination face sample. Our
method is based on training with unpaired data, meaning we do not require the face
identity IDs in each triplet to be the same. This is a random outcome.

Low light face subset

...

...

Normal light face subset

Lighting triplet
Anchor Positive Negative

Figure 4. Examples from the LowCASIA-Train, where green boxes indicate well-illuminated fa-
cial areas, blue boxes denote low-light facial areas, and yellow boxes represent randomly selected
lighting triples.

4.1.2. Validation Set

We evaluate the performance of our proposed model on several publicly available
low-light and varying illumination face datasets, including four real low-light face datasets:
Extended-YaleB [51], CASPEAL [52], CMU-PIE [53], and SoF (Specs on Faces) [54], and
three simulated low-light datasets: LFW* [6], LaPa-Test [55], and CASIA-Test [56]. We
briefly introduce the details of the dataset in Table 2 and present some examples from the
dataset in Figure 5.

Synthetic low-light face datasetReal low-light face dataset

Extended-YaleB：

CMU-PIE：

CAS-PEAL：

SoF(Specs on Faces)：

LaPa-Test CASIA-Test LFW*

Figure 5. Examples from the validation set. LFW* indicates the Low-light version of LFW.
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Table 2. Description of validation set.

Real/Synthetic Name Total Resolution RGB/Gray

Real Extended-YaleB 1426 128 × 128 Gray
Real CASPEAL 2242 128 × 128 Gray
Real CMU-PIE 1632 128 × 128 Gray
Real SoF 2662 128 × 128 RGB

Synthetic LFW* 13,233 128 × 128 RGB
Synthetic CASIA-Test 500 128 × 128 RGB
Synthetic LaPa-Test 1789 128 × 128 RGB

4.1.3. Training Details

We trained the model on PyTorch 1.10.0 using an NVIDIA RTX 2080 Ti GPU (12
vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz), and we used Mobilefacenets
as the backbone for feature extraction. The batch size was set to 64, and the model was
trained using the SGD algorithm with a momentum of 0.9 and a weight decay of 1 × 10−4.
The input face image resolution to the network was 128 × 128. The training was set to
80 epochs, with an initial learning rate of 1 × 10−4, which decayed by a factor of 10 at
the 20th and 40th epochs. For the values of α, β, and γ in the total loss, we set α = 0.1,
β = 0.1, and γ = 1.

4.2. Comparisons with State-of-the-Art Methods

Based on the review in Section 2.2, we will compare our method with several existing
low-light face recognition approaches. Specifically, we will compare it with illumination normal-
ization methods, image enhancement methods, and several general face recognition methods.

To validate the effectiveness of our proposed method and ensure a fair comparison
with existing illumination normalization methods, we test the face recognition accuracy of
our model on three real-world low-light facial datasets. As shown in Table 3, our method
outperforms these illumination normalization methods, achieving the best performance
across all three datasets. Our method outperforms the second-best approach by 2.8 per-
centage points on the YaleB dataset and by 1.2 percentage points on the CAS-PEAL dataset,
while achieving the best performance on the CMU-PIE dataset.

Table 3. Comparisons of the face recognition rate (%) with illumination normalization schemes.

Methods Extended-YaleB CAS-PEAL CMU-PIE

Original Image 79.1 83.8 99.7
SQI [57] 81.2 84.3 98.2

Retinex-Net [41] 85.2 85.4 98.2
Pixpix-GAN [58] 51.3 70.2 92.4
Cycle-GAN [59] 78.9 82.8 98.0

Supervised
CycleGAN [60] 80.4 84.3 98.5

AJGAN [15] 86.8 87.4 99.9
FIN-GAN [13] 93.4 92.4 99.9

Ours 96.2 93.2 100

Our method does not rely on image enhancement techniques. To investigate why
our method still outperforms image enhancement-based methods in low-light scenarios.
we conduct a quantitative comparison between our method and these approaches on
both a real low-light dataset and a synthetic low-exposure dataset. As shown in Table 4,
these low-light face recognition methods based on image enhancement techniques exhibit
varying degrees of performance degradation. RetinexNet-enhanced images achieve only
34.29% recognition performance on LFW*, while the best enhancement method, Low-Face
Net, achieves only a 75.63% recognition rate on LFW* after enhancement. Our method
outperforms the best Low-Face Net by 9.92%. On the real low-light face dataset SoF, we
also outperform the best method by 14.27%, indicating that enhancing low-light images as
a preprocessing step for face recognition systems is not very feasible.
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To further illustrate the effectiveness of our method, we compare our approach with
some general face recognition methods. For a fair comparison, the general face recognition
methods were trained using the same training data and hyperparameters as our approach.
The backbone used was Mobilefacenets, and the training set was LowCASIA-Train. Ac-
cording to the results shown in Table 5, on the LFW* dataset, our performance is 85.55%,
which is 1.47% higher than the second-best. On the CASIA-Test dataset, our performance
is 91.18%, which is 2.8% higher than the second-best. On the LaPa-Test dataset, our best
performance is 92.38%, which is very close to the second-best at 92.36%. Our method
performs excellently across all three datasets, with the most significant improvement on the
CASIA-Test dataset. This demonstrates the effectiveness of our method on low-light face
datasets. Additionally, to further illustrate the poor performance of general face recognition
methods in low-light scenarios and the superiority of our method in such conditions, we
used the publicly available ArcFace model (ArcFace+) for testing on these three low-light
datasets. As shown in the first row of Table 5, ArcFace+ performed 4.39% worse on LFW*,
12.45% worse on CASIA-Test, and 1% worse on LaPa-Test compared to our method. This
also indicates that general face recognition models perform poorly in low-light scenarios,
falling short compared to specialized low-light face recognition algorithms.

Table 4. Comparisons of the face recognition rate (%) with image enhancement method.

Methods LFW* SoF

LIME [42] 70.33 72.95
RetinexNet [41] 34.29 64.04

SSIENet [43] 70.46 78.56
RUAS [40] 66.71 39.16

Zero-DCE [38] 63.98 77.05
Zero-DCE++ [39] 69.11 49.20
Low-Face Net [11] 75.63 83.99

Ours 85.55 98.26

Table 5. Comparisons of the face recognition rate (%) with general face recognition methods.

Method LFW* CASIA-Test LaPa-Test

ArcFace+ [5] 81.16 78.73 79.87

CenterLoss [30] 83.63 88.38 91.47
CosFace [29] 81.89 85.60 91.24
ArcFace [5] 83.29 87.98 90.67
CurricularFace [3] 84.05 86.78 92.06
AdaFace [1] 83.95 85.95 92.36
ElasticFace [4] 84.08 86.80 91.46

Ours 85.55 91.18 92.38

Our method demonstrates significant advantages in low-light face recognition, ex-
celling not only in experimental results but also in methodological innovation. First, the
proposed feature decoupling and fusion network effectively captures facial features under
low-light conditions, enhancing the model’s adaptability to varying illumination levels
through its optimized architecture. This structured approach to feature extraction allows
us to bypass the need for image enhancement preprocessing, avoiding the distortions
and performance degradation often seen in traditional methods. Additionally, the con-
sistent performance of our method across various low-light datasets highlights its broad
adaptability to different lighting conditions, further enhancing the model’s generalizability.
These innovations ensure that our method not only surpasses state-of-the-art techniques
in accuracy but also offers greater stability and robustness when dealing with complex
low-light environments.
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4.3. Exploratory Experiments

Exploration of different low-light training set versions. To explore the impact of
training set configurations on our method, we created three types of synthetic low-light
datasets for training. We also considered variations in image resolution and the number of
IDs to provide a more comprehensive comparative analysis. Although we propose three
types of training sets with different low-light levels, in Table 5, we use CASIA-TrainA as
the unified training set for quantitative analysis with general face recognition models. Our
method still achieves the best performance, indicating that our approach does not rely on a
specific training set. We adjust the LowCASIA-Train proposed in Section 4.1.1, resulting in
three versions: LowCASIA-TrainA, LowCASIA-TrainB, and LowCASIA-TrainC. A represents
the current version we are using, B indicates fewer low-exposure images than A, γ ⊂ [2.0, 4.0],
and C denotes more low-exposure images than A, γ ⊂ [1.0, 3.0]. We conduct investigations
into the effects of these different dataset versions under consistent model structures and other
hyperparameter settings. The experiment results are shown in Table 6.

Table 6. The impact of different versions of low-light training sets on the face recognition rate (%)
of DeFFace.

TrainData Resolution IDs Total LFW* LaPa-Test CASIA-Test

LowCASIA-TrainA

128 × 128 8 20 k 85.55 92.38 91.18
250 × 250 8 20 k 80.23 88.25 87.89
128 × 128 16 40 k 83.07 91.80 89.97
250 × 250 16 40 k 81.58 89.72 88.43

LowCASIA-TrainB

128 × 128 8 20 k 83.72 92.15 87.55
250 × 250 8 20 k 79.11 90.01 90.71
128 × 128 16 40 k 81.79 88.51 89.92
250 × 250 16 40 k 79.08 88.79 88.63

LowCASIA-TrainC

128 × 128 8 20 k 84.63 92.26 89.57
250 × 250 8 20 k 83.44 91.29 90.32
128 × 128 16 40 k 83.92 90.16 89.71
250 × 250 16 40 k 82.51 89.23 90.28

According to Table 6, the variations in brightness levels, resolutions, and the number
of IDs in the three different versions of the training sets have different impacts on the
experimental results. The LowCASIA-TrainA version, configured with a resolution of
128 × 128 and 8 IDs, demonstrated the best performance. In this study, we use LowCASIA-
TrainA as the training set for all experiments, with a total of 20,000 samples.

Exploration of D-Net setting. The D-Net plays a crucial role in our approach. In this
section, we conduct an experiment to investigate the impact of the number of convolutional
layers in the decoupling module on the model’s performance. First, by setting the number
of conv layers in the two sub-modules of the decoupling module from 1 to 6 (if greater
than 6, the model will not converge), we explore the model’s face recognition rate on the
LFW* and CASIA-Test datasets. As shown in Figure 6 left, we can see that the performance
is best when the number of convolutional layers in the decoupling module is two, and
the performance decreases as the number of layers increases. This also demonstrates the
significant impact of configuring different convolutional layer counts in the decoupled
module in our approach. Since the decoupling module consists of two parallel sub-modules,
we also explore the face recognition rate of different conv layer combinations in different
sub-modules on the LFW* and CASIA-Test datasets. Here, we select parallel modules with
three layers or fewer for combination. According to Figure 6 right, in these six combinations
of different layers of L-modules and F-modules, the combination of a one-layer L-module
and a two-layer F-module performs the best, which is also the best D-Net configuration in
our proposed approach.

Exploration of D-Net output dimension. To explore the influence of the final output
dimension of the last layer of D-Net in our approach, we compare the impact of different
final layer output dimensions of our approach in D-Net on the face recognition rates of the
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LFW*, LaPa-Test, and CAS-PEAL datasets, with the decoupling module scheme fixed as
a two-layer conv F-module and a one-layer conv L-module as previously described. As
shown in Table 7, the model performed best when the output dimension was 512, and
performance did not continue to improve with increasing dimensions across the three
datasets. Therefore, we chose 512-D as our optimal configuration.

Exploration of backbone setting. To study the impact of different feature extractors
on our model’s performance, we conduct multiple experiments using several common
convolutional neural network architectures as the model’s backbone. These architectures
included ResNet [61], VGG [62], iResNet [63], and Mobilefacenets [64]. We trained each
different backbone network using the same data and parameters and tested them on LFW*,
CASIA-Test, and CAS-PEAL to ensure the comparability of the results. As shown in Table 8,
among all the feature extraction networks, Mobilefacenets performed the best in our
approach. Based on the experimental results, we chose Mobilefacenets as the final selection.

Figure 6. Left depicts the performance of decoupling sub-modules with identical layer configurations,
while right illustrates the performance of decoupling sub-modules with varying numbers of layers.

Table 7. The impact of the D-Net output dimension on the face recognition rate (%) of DeFFace.

Output Dimension LFW* LaPa-Test CAS-PEAL

256 80.83 92.26 90.99
512 85.55 92.38 93.17
1024 83.28 92.83 91.35
2046 83.22 79.13 92.44

Table 8. The impact of the backbone setting on the face recognition rate (%) of DeFFace.

Backbone LFW* CASIA-Test CAS-PEAL

ResNet50 64.45 86.78 90.99
ResNet100 63.58 84.78 91.08
iResNet100 56.09 81.13 91.26

VGG16 56.14 80.33 92.24
Mobilefacenets 85.55 91.18 93.17

Exploratory classification loss. We conduct a detailed exploration of the effectiveness
of our chosen classification loss function, AdaLoss, by comparing its performance against
various commonly used face recognition loss functions within our framework. Classifica-
tion loss plays a crucial role in guiding the optimization of neural networks and directly
influences the performance of face recognition models. Therefore, we evaluate several
widely used loss functions, including ArcFace loss, CurricularFace loss, and CosFace loss, to
benchmark the performance of AdaLoss in our proposed low-light face recognition model.
AdaLoss introduces an adaptive weighting mechanism that dynamically adjusts the contri-
bution of harder samples during training, effectively addressing the imbalance between
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easy and hard samples in face recognition tasks. This adaptability is especially important
in low-light conditions, where the complexity of facial features can vary significantly. By
focusing more on challenging samples, AdaLoss enhances the model’s ability to learn
discriminative features in difficult lighting scenarios. Through a series of experiments, we
compare the performance of AdaLoss against other loss functions across several datasets,
including LFW* and LaPa-Test. As shown in Table 9, AdaLoss consistently outperforms
other loss functions. Specifically, when compared to ArcFace loss, AdaLoss improves
the recognition rate by 1.92% on LFW* (from 83.63% to 85.55%) and 0.26% on LaPa-Test
(from 92.12% to 92.38%). Similarly, when benchmarked against CosFace loss, AdaLoss
demonstrates improvements of 2.83% on LFW* (from 82.72% to 85.55%) and 0.60% on
LaPa-Test (from 91.78% to 92.38%).

These experiments confirm that AdaLoss provides significant advantages over other
classification loss functions, particularly in scenarios where lighting conditions are sub-
optimal. Its ability to dynamically balance sample difficulty contributes to the overall
improvement of face recognition accuracy, making it an essential component of our
proposed model.

Table 9. Comparison of different loss functions on LFW and LaPa-Test.

Loss LFW* LaPa-Test

ArcFace loss [5] 83.63 92.12
CosFace loss [29] 82.72 91.78

CurricularFace loss [3] 83.26 91.29
AdaFace loss [1] 85.55 92.38

Exploration of complexity. In the context of face recognition systems, especially under
challenging conditions such as low-light environments, the complexity of the proposed
model plays a critical role in its practical applicability. The complexity of the model is
measured by factors such as computational cost, model size, inference time, and the number
of parameters. The purpose of this section is to explore the key factors contributing to
the complexity of the DeFFace model and their impact on real-world applications. While
DeFFace provides significant performance improvements in low-light face recognition, its
increased computational cost, model size, and inference time must be carefully evaluated
to ensure practical usability. By investigating optimization techniques, future research
can address these complexities and ensure that the DeFFace model remains effective and
scalable across various environments. As shown in Table 10, the comparison reveals that
our model achieves an effective balance between complexity and efficiency. With 1.43 M
parameters and 310.85 M FLOPs, it is significantly more lightweight than FRNetFuse [12]
and CurricularFace [3], which have much larger model sizes and higher computational costs.
Despite its smaller size, our model maintains competitive performance, with a reasonable
inference time of 0.006 s and 176.16 FPS, making it suitable for real-time low-light face
recognition tasks.

Table 10. Comparison of parameters, FLOPs, FPS, and inference time for different models.

Method Number of Parameters FLOPs FPS Inference Time (s)

Low-faceNet [11] 5.18 M 300.99 M 295.98 0.013
Zero-DCE [38] 4.80 M 1297.61 M 770.55 0.004

ArcFace [5] 1.20 M 2275.74 M 182.23 0.011
FRNetFuse [12] 32.67 M 29,964.08 M / 0.015

CurricularFace [3] 65.18 M 12,117.20 M 76.91 0.013
Ours 1.43 M 310.85 M 176.16 0.006

In this section of exploratory experiments, we conduct a detailed investigation into
the low-light training set versions, the D-Net configuration, the D-Net output dimension,
and the feature extraction backbone network. The goal is to determine the optimal hy-
perparameter settings for each component to ensure the best possible performance of the
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DeFFace model in low-light face recognition tasks. We explore three different versions of
the low-light training set: LowCASIA-TrainA, LowCASIA-TrainB, and LowCASIA-TrainC.
Based on the experimental results, LowCASIA-TrainA demonstrates the best performance
across all test sets, so we select it as the final training set version for all experiments, as
shown in Figure 4. Next, by adjusting the number of convolutional layers in the decou-
pling module, we determine that the optimal configuration consists of a combination of
one low-light decoupling CNN layer and two face decoupling CNN layers, as shown
in Figure 6. This becomes the final D-Net setting in our method. In terms of the D-Net
output dimension, the experiments reveal that an output dimension of 512 yields the best
performance across various datasets, as shown in Table 7. Thus, 512-D is chosen as the final
output dimension of the D-Net. Additionally, we compare the performance of ResNet50,
ResNet100, iResNet100, VGG16, and Mobilefacenets as feature extractors. Among these,
Mobilefacenets achieves the best results on all test sets, as shown in Table 8. As a result, we
select Mobilefacenets as the final feature extraction backbone network.

Through these exploratory experiments, we successfully identify the optimal hyperpa-
rameter settings for the DeFFace model, as shown in Table 11, ensuring its best performance
in low-light face recognition tasks.

Table 11. Optimal parameter configuration.

TrainData D-Net Setting D-Net Output Dimension Backbone

LowCASIA-TrainA 1-layer L-module 512-D Mobilefacenets2-layer F-module

4.4. Qualitative Visualization

To qualitatively evaluate the effectiveness of our proposed method for low-light face
recognition, we conducted a visualization comparison against two state-of-the-art methods
on the LFW* dataset. Given a low-light image, we obtained the rank-10 results in the dataset
through similarity scores. Figure 7 presents a comparative visualization of the rank-10
results for a sample low-light image using our method and two general face recognition
models. The results are arranged in descending order of similarity scores.

DeFFace. Figure 7a illustrates the results obtained by our proposed DeFFace method.
Clearly, our method can retrieve the most relevant matches. In rank-10 matching, the first
four retrievals are correct, and the confidence scores are higher than those of the other
two methods. The overall performance is noticeably superior to other methods, showing
outstanding performance in low-light environments.

ArcFace*. The second row, shown in Figure 7b, presents the results of ArcFace*.
ArcFace* was trained using our training dataset LowCASIA-Train. Five out of the top
ten matching results are correct matches. However, the top-ranked match is not cor-
rect. Additionally, our method demonstrates significantly higher confidence levels com-
pared to ArcFace*. This indicates that although ArcFace* shows improvements in visual
quality and matching success rate, its performance under extreme low-light conditions
remains suboptimal.

ArcFace. The third row, shown in Figure 7c, displays the top ten matching results
retrieved by the ArcFace model. Here, ArcFace is tested directly using the open-source
ArcFace-trained model. The ArcFace model failed to correctly match the relevant faces
under low-light conditions, with all top ten results being incorrect matches, highlighting
the model’s limitations in handling extreme low-light conditions.

The qualitative comparison clearly shows that our method outperforms existing
face recognition methods in low-light face recognition. The matches retrieved by our
method exhibit higher relevance, indicating that our approach effectively addresses the
challenges posed by low-light conditions. This is further supported by the quantitative
results presented in Section 4.2, where our method significantly outperforms the other
scheme in terms of recognition accuracy.
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0.525 0.523 0.518 0.510 0.505 0.486 0.486 0.483 0.479 0.476

0.971 0.969 0.966 0.965 0.965 0.964 0.964 0.964 0.964 0.964

Alvaro_Uribe

Is the same person Not the same personConfidence score

(b) ArcFace*

Rank10: Confidence score from high to low

(a) Ours

(c) ArcFace

Figure 7. The visualized results of rank-10 retrieval on the low-light face dataset LFW* using our
method and the ArcFace method are presented. Using the person on the far left as an example, the
green dashed box indicates a match as the same person, the yellow dashed box indicates a different
person, and the blue and orange text boxes represent confidence scores. We display the top rank-10
visualization results from high to low.

4.5. Ablation Study

In this section, we further analyze the reasons behind the superior performance
of DeFFace in low-light face recognition. We conduct ablation experiments to verify
the effectiveness of our proposed D-Net, F-Net, illumination triplet loss, and lighting–
facial correlation loss, and their impact on model performance. Here, we present the face
recognition rate on LFW* and CASIA-Test. To verify the impact of the decoupling module,
we use Mobilefacenets [64] and AdaLoss [1] as the baseline, retraining with cross-entropy
loss while discarding the relevant component modules and losses in our approach. Then,
we add the decoupling module and illumination triplet loss to the baseline. As shown in
Table 12, after incorporating D-Net and the lighting-triple loss, our approach achieves a
0.72% improvement on LFW* and a 1.22% improvement on CASIA-Test. Next, we add
the F-Net to the combination of the baseline, D-Net, and the lighting-triple loss, achieving
an improvement of 0.22% on LFW* and 2.83% on CASIA-Test. This indicates that the F-
Net can effectively extract residual facial-related features from coarse illumination-related
features and fuse them with the facial-related features in the D-Net. Finally, adding the
lighting–facial correlation loss resulted in an improvement of 0.66% on LFW* and 1.18%
on CASIA-Test. The lighting–facial correlation loss can effectively reduce the correlation
between disentangled facial-related features and illumination-related features in the feature
space. Our optimal configuration is above the baseline, adding D-Net and illumination
triplet loss (Llight), F-Net, and lighting–facial correlation loss (Ll f ) to the baseline.

To verify the advantages of unpaired training datasets, we do not rely on paired
data for training; we conduct additional experiments using paired data training under
the optimal configuration. In the final row of the table, we present the results of these
experiments. We replace the standard training data with paired data, where each pair
consists of one low-light and one normal-light image of the same subject. Contrary to our
expectations, the performance of paired data training is not as effective as unpaired data
training. Specifically, the performance on LFW* showed a slight decrease, and a similar
trend is observed on the CASIA-Test dataset. This suggests that while paired data training
can provide some benefits in terms of consistency between illumination conditions, it may
also introduce limitations due to the restricted variability in training data. The outstanding
performance is also due to our proposed D-Net and multiple loss constraints. Therefore,
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our unpaired data training strategy remains the optimal approach for enhancing low-light
face recognition performance.

Table 12. Ablation study of the DeFFace on the LFW* and CASIA-Test dataset.

Baseline D-Net + Llight F-Net Ll f Paired Data LFW* CASIA-Test

✓ 83.95 85.95
✓ ✓ 84.67 87.17
✓ ✓ ✓ 84.89 90.00
✓ ✓ ✓ ✓ 85.55 91.18

✓ ✓ ✓ ✓ ✓ 85.44 87.60

5. Conclusions and Future Work

In this paper, we propose DeFFace, an innovative unpaired end-to-end solution for
low-light face recognition. Leveraging the decomposition concept from the Retinex theory,
DeFFace decouples facial-related and illumination-related features through a feature decou-
pling module (D-Net) and refines the facial features with a feature fusion module (F-Net).
To further reduce the correlation between these features, we introduce a lighting-facial
correlation loss. Our method supports accurate ID matching using a single low-light image
and enables large-scale recognition tasks. Experimentally, DeFFace outperformed general
face recognition methods by approximately 2.11%, image enhancement-based solutions by
around 16%, and illumination normalization methods by 5.67%. These results demonstrate
the effectiveness and robustness of DeFFace, even in the absence of paired normal-light
and low-light images.

While the focus of this paper is on enhancing low-light face recognition through feature
decoupling and fusion, it is crucial to consider the robustness of the underlying model,
as this directly affects the system’s resilience to adversarial attacks. Although adversarial
robustness is not the central topic of this work, we recognize that face recognition systems
are susceptible to such manipulations, which could pose significant threats to data privacy
and security. Future research could explore incorporating defense mechanisms against
adversarial attacks to strengthen the model’s robustness, as securing facial recognition
systems against these threats is increasingly important in this field.

Moreover, while we have demonstrated the effectiveness of our method under low-
light conditions, our evaluation of the model’s performance in scenarios involving partial
occlusion and image blurriness is limited. Expanding the test datasets to include such
complex, real-world conditions would be a valuable direction for future research, ensuring
the model’s reliability in a wider range of challenging environments.
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