
Citation: Kummerow, A.; Abrha, E.;

Eisenbach, M.; Rösch, D.

Unsupervised Anomaly Detection

and Explanation in Network Traffic

with Transformers. Electronics 2024, 13,

4570. https://doi.org/10.3390/

electronics13224570

Academic Editors: Mustafa Abdallah

and Xiao Luo

Received: 14 October 2024

Revised: 15 November 2024

Accepted: 19 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Unsupervised Anomaly Detection and Explanation in Network
Traffic with Transformers
André Kummerow 1,* , Esrom Abrha 1 , Markus Eisenbach 2 and Dennis Rösch 1

1 Cognitive Energy Systems, Fraunhofer IOSB, IOSB-AST, 98693 Ilmenau, Germany
2 Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology, 98693 Ilmenau, Germany
* Correspondence: andre.kummerow@iosb-ast.fraunhofer.de

Abstract: Deep learning-based autoencoders represent a promising technology for use in network-
based attack detection systems. They offer significant benefits in managing unknown network traces
or novel attack signatures. Specifically, in the context of critical infrastructures, such as power supply
systems, AI-based intrusion detection systems must meet stringent requirements concerning model
accuracy and trustworthiness. For the intrusion response, the activation of suitable countermeasures
can greatly benefit from additional transparency information (e.g., attack causes). Transformers
represent the state of the art for learning from sequential data and provide important model insights
through the widespread use of attention mechanisms. This paper introduces a two-stage transformer-
based autoencoder for learning meaningful information from network traffic at the packet and
sequence level. Based on this, we present a sequential attention weight perturbation method to explain
benign and malicious network packets. We evaluate our method against benchmark models and
expert-based explanations using the CIC-IDS-2017 benchmark dataset. The results show promising
results in terms of detecting and explaining FTP and SSH brute-force attacks, highly outperforming
the results of the benchmark model.

Keywords: explainable artificial intelligence; network intrusion detection; intrusion response;
anomaly detection; transformers

1. Introduction
1.1. Motivation

Network intrusion detection systems (NIDSs) play a vital role in detecting cyber-
attacks and are an important component in today’s security operation centers. Machine
learning techniques, especially deep learning models, can learn the behavior in network
traces from large network infrastructures. This enables the detection of complex cyber-
attacks from flow-based or packet-based network features. Transformers represent the
state of the art in the processing of sequential data and are applied in various application
domains [1–4]. Thus, they are a promising approach with which to process and analyze the
heterogenous information in long network packet sequences.

The limited availability of attack examples as well as the constant emergence of new at-
tack patterns [5–8] requires unsupervised model training to efficiently distinguish between
benign and malicious network packet sequences. Additional transparency information
about the model’s decisions (e.g., attack causes) can support subsequent decision-making
tasks for intrusion prevention or forensic analysis. This increases the reliability and trust-
worthiness of the model’s decisions and improves the further deployment of data-driven
NIDS applications in the industry.

1.2. Related Work

The application of deep learning models to detect network anomalies or to classify
attack traces has been investigated for many years [7–10]. Most of the research focuses on

Electronics 2024, 13, 4570. https://doi.org/10.3390/electronics13224570 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13224570
https://doi.org/10.3390/electronics13224570
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9620-6008
https://orcid.org/0009-0007-7172-2245
https://orcid.org/0000-0003-4951-622X
https://orcid.org/0000-0001-9393-2082
https://doi.org/10.3390/electronics13224570
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13224570?type=check_update&version=1

Electronics 2024, 13, 4570 2 of 18

solutions that detect cyber-attacks in a classification setting (e.g., using transformers [11],
CNNs [12], or CNN-LSTMs [13]). Anomaly-based cyber-attack detection is significantly
more challenging since it has no prior knowledge of attack examples in the training phase.
Classical machine learning approaches apply statistical analysis, outlier detection models, or
clustering methods to preprocessed and attributed network traffic records. In [14], the authors
introduce an empirical anomaly score learning method with regularized self-representations
on network flows using the Bot-IoT [15] and USNW-NB15 [16] datasets. An intrusion detection
and prevention framework is presented in [17] that uses deep autoencoders, OC-SVM, and
DBSCAN clustering on network flow features from the CSE-CIC-IDS2018 [18] dataset. A multi-
dimensional anomaly detection method that uses Poisson canonical polyadic decomposition
(CPD) is evaluated in [19] via its application to host authentication events, network flow
records, and banking transaction logs. The authors of [20] combine an ensemble clustering
approach with a neural network classifier to detect cyber-attacks in the NSL-KDD [21] and
TON-IoT [22] datasets. Lastly, [23] tested six classical anomaly detection algorithms (e.g.,
Isolation Forest) on the NSL-KDD and ISCX-2012 [24] datasets.

Deep learning-based approaches use traditional multi-layer perceptron (MLP)-based
autoencoders (AEs) on the statistical features of preprocessed and benign network traffic
records. This is performed in [25] to detect probing or denial-of-service attacks in the
NSL-KDD dataset and employed in [26] to detect botnet attacks in IoT networks. An
ensemble of AEs is presented in [27] to detect flooding or man-in-the-middle attacks on
video surveillance networks. Similar work is performed in [28] to detect cyber-attacks on
an experimental smart home network. Additionally, extensive hyperparameter research
related to MLP-based AEs is performed in [29] on various benchmark datasets (e.g., NSL-
KDD or IoTID20 [30]).

Similar to our approach, in [31], a transformer model with which to forecast network
packet sequences is presented. This uses the vanilla encoder–decoder architecture intro-
duced in [1]. They process categorical, binary, and numerical features from network packet
sequences to detect flooding and scanning attacks in ICS networks. As a downside, this
approach does not incorporate explainability aspects and compresses the individual packet
information through linear transformation, making it difficult to identify its relevance to
benign or malicious network behavior. Our approach processes discrete and continuous
network packet information through individual transformations and calculates a common
feature representation with an interpretable attention mechanism.

Explainable artificial intelligence (XAI) is a well-studied topic, especially regarding deep
learning models [32–35]. For the transparent detection of cyber-attacks, only a little research
has been carried out. This includes an approach specific to variational autoencoders, outlined
in [36], and the anomaly contribution explainer (ACE) outlined in [37], which assumes a
vectorized input and a scalar output (anomaly score). The field of transparent anomaly detec-
tion and anomaly explanation [38] offers alternatives with which to compute transparency
information after detecting cyber-attacks. In [39], layer-wise relevance propagation is used to
explain anomalies detected by a binary MLP-based classifier. The work in [40] extends the
well-known Shapley additive explanations (SHAP) approach to explain anomalies from the
reconstruction errors of deep autoencoders, but requires vectorized model inputs and outputs,
as in the case of ACE. The DAEMON approach outlined in [41] uses adversarial training for
a CNN autoencoder with known prior distribution of the latent space. In [42], proximate
counterfactuals are generated to explain anomalies detected by deep autoencoders. These
previously used explanation techniques are not appropriate for our study as they have exces-
sively strict limitations in terms of the anomaly detection model. Attention-based explanation
methods are more related to our modeling approach. Here, the ATON (attention-guided
triplet deviation network) [43] calculates anomaly scores with an attention coefficient vector
and determines the contribution of each embedding dimension to the model decision. This
approach requires a specific neural network architecture and a specific loss formulation. In
contrast to that, the attention manipulation (AtMan) approach of [44] is more model-agnostic
and perturbs the attention scores of a transformer model to compute their contribution to the

Electronics 2024, 13, 4570 3 of 18

model’s decision. We adapt their approach to implement a sequential explanation procedure
for our combined autoencoder and detection model.

1.3. Paper’s Contribution and Organization

To detect and explain malicious network packets, we propose using a transformer-based
autoencoder to learn the benign network behavior in an unsupervised manner by efficiently
reconstructing the discrete and continuous packet information in network traffic sequences. In
analogy to natural language processing, we treat the sequential network packet information
like words in a sentence using vector representations. The inherent use of multiple attention
mechanisms and their analysis allows for the provision of additional transparency information
at the sequence and packet level. The contribution of this paper can be summarized as follows:

• We outline a transformer-based autoencoder with feature- and self-attention mechanisms
to reconstruct discrete and continuous information from network packet sequences;

• We perform unsupervised detection of malicious network packets with transformer-
based autoencoders in network packet sequences;

• We offer sequential attention perturbation method for explaining the detection of
benign and malicious network packets;

• We perform the evaluation of the explanation results by comparison with benchmark
methods and expert-based true explanations.

The paper is organized as follows. Section 2 explains the model structure and training
objective of the proposed transformer-based network traffic autoencoder. Based on this, the
cyber-attack detection and explanation methods are given in Section 3. A comprehensive
description of the experimental results using the CIC-IDS-2017 [45] benchmark dataset is
provided in Section 4. Section 5 summarizes the research findings and gives an overview
about future work.

2. T-NAE: Transformer-Based Network Traffic Autoencoder

The general structure of the proposed transformer-based network traffic autoencoder
(T-NAE) is given in Figures 1 and 2 and is based on previous work in [46,47]. Section 2.1
describes the input data and the preprocessing steps. A detailed description of the different
encoder and decoder components of the model is given in Section 2.2. Section 2.3 explains
the training objective of the model.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 19

Figure 1. The encoder structure of the transformer-based network traffic autoencoder.

Figure 2. The decoder structure of the transformer-based network traffic autoencoder.

2.1. Preprocessing of Discrete and Continuous Network Packet Information
The efficient processing of network packet information in the T-NAE model requires

some transformation steps. The discrete packet information (see Table 1) is tokenized us-
ing a fixed vocabulary with 𝑉 entries.

To limit the size of the vocabulary and to improve the model’s generalization capa-
bility, the following preprocessing steps are applied:
• We reduce the extracted packet structures to a combination of common network lay-

ers (e.g., Ethernet, IP, TCP, HTTP);
• We transform the IP addresses and the TCP ports into a 4-tuplet (see Table 1).

Em
be

dd
in

g

xMAC

To
ke

ni
ze

r

xMAC

xIP

xFlag

Fe
at

ur
e-

A
tte

nt
io

n

xIP

xFlag

xD

XD XP

Tr
an

sf
or

m
er

Positional
encoding

+

Po
ol

in
g

t=1...T

Re
LU

Li
ne

ar

xTime

xPayload

xP

xLenxC

XC

xTime

xLen

xPayload

trainable
not trainable

V
ec

to
riz

e

 Z

Packet-wise encoder Temporal encoder

[] Concenation

Re
LU

Tr
an

sf
or

m
er

Positional
encoding

+

X̂P

Softmax

Li
ne

ar

Softmax

Softmax

t=1...T

U
ps

am
pl

in
g

x̂P

Li
ne

ar

p̂MAC

p̂IP

p̂Flag

P̂

X̂C

[]

x̂C

x̂Time

x̂Payload

x̂Len

Temporal decoder Packet-wise decoder

Z

trainable
not trainable

[] Concenation

Figure 1. The encoder structure of the transformer-based network traffic autoencoder.

Electronics 2024, 13, 4570 4 of 18

Electronics 2024, 13, x FOR PEER REVIEW 4 of 19

Figure 1. The encoder structure of the transformer-based network traffic autoencoder.

Figure 2. The decoder structure of the transformer-based network traffic autoencoder.

2.1. Preprocessing of Discrete and Continuous Network Packet Information
The efficient processing of network packet information in the T-NAE model requires

some transformation steps. The discrete packet information (see Table 1) is tokenized us-
ing a fixed vocabulary with 𝑉 entries.

To limit the size of the vocabulary and to improve the model’s generalization capa-
bility, the following preprocessing steps are applied:
• We reduce the extracted packet structures to a combination of common network lay-

ers (e.g., Ethernet, IP, TCP, HTTP);
• We transform the IP addresses and the TCP ports into a 4-tuplet (see Table 1).

Em
be

dd
in

g

xMAC

To
ke

ni
ze

r

xMAC

xIP

xFlag

Fe
at

ur
e-

A
tte

nt
io

n

xIP

xFlag

xD

XD XP

Tr
an

sf
or

m
er

Positional
encoding

+

Po
ol

in
g

t=1...T

Re
LU

Li
ne

ar

xTime

xPayload

xP

xLenxC

XC

xTime

xLen

xPayload

trainable
not trainable

V
ec

to
riz

e

 Z

Packet-wise encoder Temporal encoder

[] Concenation

Re
LU

Tr
an

sf
or

m
er

Positional
encoding

+

X̂P

Softmax

Li
ne

ar

Softmax

Softmax

t=1...T

U
ps

am
pl

in
g

x̂P

Li
ne

ar

p̂MAC

p̂IP

p̂Flag

P̂

X̂C

[]

x̂C

x̂Time

x̂Payload

x̂Len

Temporal decoder Packet-wise decoder

Z

trainable
not trainable

[] Concenation

Figure 2. The decoder structure of the transformer-based network traffic autoencoder.

2.1. Preprocessing of Discrete and Continuous Network Packet Information

The efficient processing of network packet information in the T-NAE model requires
some transformation steps. The discrete packet information (see Table 1) is tokenized using
a fixed vocabulary with V entries.

Table 1. Overview of discrete input features.

Input Feature Encoding Type

Packet structure (trimmed) [1. . .N]
MAC source address

MAC destination address [1. . .N]

IP source address
IP destination address

0: no address
1: equals previous source address

2: equals previous destination address
3: new address

TCP source port
TCP destination port

0: no port
1: system port
2: register port

3: dynamic port
TCP flag [1. . .N]

To limit the size of the vocabulary and to improve the model’s generalization capability,
the following preprocessing steps are applied:

• We reduce the extracted packet structures to a combination of common network layers
(e.g., Ethernet, IP, TCP, HTTP);

• We transform the IP addresses and the TCP ports into a 4-tuplet (see Table 1).

This allows the model to handle the dynamic assignment of IP addresses (e.g., via
DHCP services) as well as the dynamic usage of TCP ports from the network clients. Only
the MAC address and TCP flag information are taken as raw inputs. Missing packet
information (e.g., IP address of UDP packets) is treated as a special token. The continuous
packet information is listed in Table 2. The packet time difference is extracted from the
ethernet layer timestamps of the current and previous network packets. The raw inputs
are normalized before being passed into the neural network, whereas missing packet

Electronics 2024, 13, 4570 5 of 18

information is treated as zero. In total, the T-NAE model processes D discrete and C
continuous input features from each network packet.

Table 2. Overview of continuous input features.

Input Feature (Unit) Encoding Type

Packet time difference (ms)
Packet length (bytes)

IP checksum
IP length (bytes)
TCP checksum

TCP payload size (bytes)
TCP stream number
TCP time delay (ms)

TCP window size

Numeric

2.2. Two-Stage Encoder and Decoder Structure

From the encoder–decoder architecture shown in Figures 1 and 2, we distinguish
between a packet level (packet-wise encoder/decoder) and a sequence level (temporal
encoder/decoder) by learning from network packets. At the packet level, the discrete
and continuous inputs are transformed so that there is a single feature vector per network
packet. At the sequence level, we compute a compact latent representation based on the
learned temporal dependencies existing between the packet feature vectors.

The encoder learns a latent representation Z from a given sequence of T network packets,
including the discrete information XD and the continuous information XC, such that

XD =
[

xt=1
D . . . xt=T

D

]
with XD ∈ RT×D (1)

XC =
[

xt=1
C . . . xt=T

C

]
with XC ∈ RT×C (2)

The packet-wise encoder fEnc,P(·) includes a feature-attention layer (derived from [48]) and
a linear layer with Q hidden units (see Figure 1). The computation of the feature vector
xP ∈ RQ for each network packet in the sequence is given by

xP = fEnc,P([xD, xC], θEnc,P) (3)

Hence, the weights and biases θEnc,P are shared across all network packets. For this, each
piece of discrete packet information is mapped via vector embedding using the vocabulary
with V entries. The feature-attention layer combines discrete and continuous packet
information vectors as a weighted sum into a single vector representation xA with

xA = ∑i=D+C
i=1 αixi (4)

Therefore, the continuous inputs are vectorized to match the dimensions of the discrete
inputs (size of the vocabulary V). The attention weights αi are computed for each piece of
discrete and continuous packet information xi as follows:

si = tanh(WSxi + bS) (5)

αi =
exp(si)

∑i exp(si)
(6)

More detailed information is provided in [48]. The temporal encoder fEnc,T(·) includes a
transformer block with a self-attention mechanism followed by a linear layer with P hidden
units and a 1D average pooling operation. A more detailed overview of the transformer
block used is given in Figure 3.

Electronics 2024, 13, 4570 6 of 18

Electronics 2024, 13, x FOR PEER REVIEW 6 of 19

The packet-wise encoder 𝑓୬ୡ,ሺ∙) includes a feature-attention layer (derived from [48]) and
a linear layer with 𝑄 hidden units (see Figure 1). The computation of the feature vector 𝑥 ∈ ℝ୕ for each network packet in the sequence is given by 𝑥 = 𝑓୬ୡ,൫ൣ𝑥ୈ, 𝑥େ൧, 𝜃୬ୡ,൯ (3)

Hence, the weights and biases 𝜃୬ୡ, are shared across all network packets. For this, each
piece of discrete packet information is mapped via vector embedding using the vocabu-
lary with 𝑉 entries. The feature-attention layer combines discrete and continuous packet
information vectors as a weighted sum into a single vector representation 𝑥 with 𝑥 = 𝛼𝑥ୀୈାେୀଵ (4)

Therefore, the continuous inputs are vectorized to match the dimensions of the discrete
inputs (size of the vocabulary 𝑉). The attention weights 𝛼 are computed for each piece
of discrete and continuous packet information 𝑥 as follows: 𝑠 = tanh൫𝑾ௌ𝑥 + 𝑏ௌ൯ (5)

𝛼 = 𝑒𝑥𝑝ሺ𝑠)∑ 𝑒𝑥𝑝ሺ𝑠) (6)

More detailed information is provided in [48]. The temporal encoder 𝑓୬ୡ,ሺ∙) includes a
transformer block with a self-attention mechanism followed by a linear layer with 𝑃 hid-
den units and a 1D average pooling operation. A more detailed overview of the trans-
former block used is given in Figure 3.

Figure 3. The structure of a multi-head self-attention block (K: keys; Q: queries; V: values).

The temporal encoder computes the latent representation 𝒁 ∈ ℝ× from the se-
quence of packet feature vectors 𝑿 such that 𝒁 = 𝑓୬ୡ,൫𝑿, 𝜃୬ୡ,൯ (7)

The 1D average pooling (see Figure 1) further enhances the compression of the latent space
by reducing the sequence length to 𝑀 steps.

The decoder reconstructs the discrete information 𝑷 and the continuous information 𝑿େ using the input from 𝒁. Here, the temporal decoder 𝑓ୈୣୡ,ሺ∙) uses an upsampling oper-
ation, followed by a dense layer and a transformer block, to compute the reconstructed
sequence of packet feature vectors 𝑿 ∈ ℝ×୕ as follows: 𝑿 = 𝑓ୈୣୡ,൫𝒁, 𝜃ୈୣୡ,൯ (8)

The packet-wise decoder 𝑓ୈୣୡ,ሺ∙) includes a dense and softmax layer with which to com-
pute a probability vector for each piece of discrete packet information (e.g., �̂�େ,ୱ୰ୡ ∈ ℝ)
from a given reconstructed packet feature vector 𝑥ො. This results in a probability matrix 𝑷ୈ ∈ ℝୈ× for a single network packet. We use another dense layer to compute the recon-
structed continuous packet information 𝑥ොେ from the same feature vector 𝑥ො such that

N
or

m
al

iz
at

io
n

+

K

Q

V

Y

trainable not trainable

Re
LU

Li
ne

ar

+

N
or

m
al

iz
at

io
n

Linear

SD
PLinear

Linear

Li
ne

ar

SDP...scaled dot product

Figure 3. The structure of a multi-head self-attention block (K: keys; Q: queries; V: values).

The temporal encoder computes the latent representation Z ∈ RM×P from the sequence
of packet feature vectors XP such that

Z = fEnc,T(XP, θEnc,T) (7)

The 1D average pooling (see Figure 1) further enhances the compression of the latent space
by reducing the sequence length to M steps.

The decoder reconstructs the discrete information P̂ and the continuous information
X̂C using the input from Z. Here, the temporal decoder fDec,T(·) uses an upsampling oper-
ation, followed by a dense layer and a transformer block, to compute the reconstructed
sequence of packet feature vectors X̂P ∈ RT×Q as follows:

X̂P = fDec,T(Z, θDec,T) (8)

The packet-wise decoder fDec,P(·) includes a dense and softmax layer with which to compute
a probability vector for each piece of discrete packet information (e.g., p̂

MAC,src
∈ RV)

from a given reconstructed packet feature vector x̂P. This results in a probability matrix
P̂D ∈ RD×V for a single network packet. We use another dense layer to compute the
reconstructed continuous packet information x̂C from the same feature vector x̂P such that[

P̂D, x̂C
]
= fDec,P(x̂P, θDec,P) (9)

As in case of the packet-wise encoder, we apply the packet-wise decoder for each network
packet within the sequence with shared weights θDec,P. This results in a probability tensor
P̂ ∈ RT×D×V for the reconstructed discrete packet information with

P̂ =
[
P̂t=1

D . . . P̂t=T
D

]
(10)

2.3. Model Training and Hyperparameter Optimization

The T-NAE model is trained by minimizing the reconstruction errors between the
estimated (p̂) and true (p) discrete packet information with a cross-entropy loss LCE and by
minimizing the reconstruction errors between the estimated (x̂C) and true (xC) continuous
packet information with a mean squared error loss LMSE. This results in a combined loss
formulation as a weighted sum of cross-entropy and mean squared error loss over all T
packets in the sequence such that

LCE = −∑
T

∑
D

∑
V

plog p̂ (11)

LMSE = ∑
T

∑
C
(x̂C − xC)

2 (12)

L = wCELCE + wMSELMSE (13)

Electronics 2024, 13, 4570 7 of 18

The optimal hyperparameters of the model are estimated by Bayesian optimization using
Gaussian processes with 100 trials. The total loss L is used as an objective function. We
choose early stopping as a regularization technique.

3. Cyber-Attack Detection and Explanation
3.1. Histogram-Based Threshold Computation

To differentiate between normal and abnormal network packets, we derive the threshold
value τ as the maximum allowed reconstruction error from the training results. In the case of
discrete values, the detection result ŷD is calculated from the categorical accuracy ηACC between
the estimated (p̂

)
and true (p) packet information probability vectors as follows:

ŷD =

{
Attack : ηACC

(
p̂, p

)
< τD

Normal : else
(14)

A threshold value τD is estimated as the upper bound for each of the D = 7 discrete
input features using a histogram analysis of the reconstruction error distribution (see
Appendix A). For continuous values, the detection result ŷC is calculated from the mean
squared error ηMSE between the estimated (x̂) and true (x) packet information such that

ŷC =

{
Attack : ηMSE(x̂, x) > τC

Normal : else
(15)

where a threshold value of τC is estimated as the lower bound for each of the C = 9
continuous inputs using the error histograms. The final detection result ŷ for a single
network packet follows an OR combination of the detection results over all discrete and
continuous information, such that

ŷ =
{

ŷD,1
∨

. . .
∨

ŷD,7
∨

ŷC,1
∨

. . .
∨

ŷC,9

}
(16)

3.2. Explanation via Perturbation of Attention Weights

Our explanation method builds upon the attention perturbation approach described
in [44]. Here, the attention weights are manipulated to assess their influence on the
model’s results by comparing the model’s loss before and after the perturbation within a
positional influence function. Our approach uses a manipulation signal a = 1 − fa with the
following features:

• A positive manipulation factor 1 > fa > 0 (suppression) to decrease the influence of a
specific attention weight;

• A negative manipulation factor fa < 0 (amplification) to increase the influence of a
specific attention weight.

We adapted this approach to account for the specific architecture of our T-NAE model
(see Section 2) and modified the calculation of the influence values by incorporating the
anomaly detection model from Section 3.1.

The explanation model is given in Figure 4. We manipulate the feature-attention
weights by multiplying the attention scores (see Equation (5) in Section 2.2) with a ma-
nipulation vector aFA ∈ RD+C. Thus, the manipulated feature-attention weights α∗ are
calculated by

α∗ = softmax(s ∗ aFA) (17)

The self-attention mechanism in the transformer block (Section 2.2) computes attention
scores, S ∈ RT×T, via scaled-dot products over the key q and value k representations
as follows:

S =
[
si,j

]
with si,j = qT

i
kj/

√
dand i, j ∈ [1 . . . T] (18)

Electronics 2024, 13, 4570 8 of 18

Electronics 2024, 13, x FOR PEER REVIEW 8 of 19

Our explanation method builds upon the attention perturbation approach described
in [44]. Here, the attention weights are manipulated to assess their influence on the
model’s results by comparing the model’s loss before and after the perturbation within a
positional influence function. Our approach uses a manipulation signal 𝑎 = 1 − f with
the following features:
• A positive manipulation factor 1 > f > 0 (suppression) to decrease the influence of

a specific attention weight;
• A negative manipulation factor f < 0 (amplification) to increase the influence of a

specific attention weight.
We adapted this approach to account for the specific architecture of our T-NAE

model (see Section 2) and modified the calculation of the influence values by incorporating
the anomaly detection model from Section 3.1.

The explanation model is given in Figure 4. We manipulate the feature-attention
weights by multiplying the attention scores (see Equation (5) in Section 2.2) with a manip-
ulation vector 𝑎ி ∈ ℝୈାେ. Thus, the manipulated feature-attention weights 𝛼∗ are calcu-
lated by 𝛼∗ = softmax൫𝑠 ∗ 𝑎ி൯ (17)

The self-attention mechanism in the transformer block (Section 2.2) computes attention
scores, 𝑺 ∈ ℝ×, via scaled-dot products over the key 𝑞 and value 𝑘 representations as
follows: 𝑺 = ൣ𝑠,൧ with 𝑠, = 𝑞் 𝑘𝒋 √𝑑⁄ and 𝑖, 𝑗 ∈ ሾ1 … Tሿ (18)

Figure 4. Explanation model architecture with attention perturbation.

Thus, we compute the manipulated self-attention weights 𝜶∗ by multiplying the at-
tention scores with a manipulation matrix 𝑨ௌ ∈ ℝ×: 𝜶∗ = softmaxሺ𝑺 ∗ 𝑨ௌ) (19)

It should be noted that a manipulation of the feature or self-attention scores leads to a
change in both model outputs (discrete and continuous reconstructions). This has to be
considered when calculating the influence values in the following section.

XD

XC

P̂*

X̂*
C

Attention
pertubation

Pos. influence
function

Z

η*
ACC

η*
MSE

Re
co

ns
tru

ct
io

n
er

ro
rs

I

En
co

de
r

D
ec

od
er

In
flu

en
ce

 lo
ss

LPIFfa

Transformer-based autoencoder

trainable not trainable

τACC

Tokenizer

ASA

τMSE

σ

(*)...perturbated

aFA

L*
PIF

Figure 4. Explanation model architecture with attention perturbation.

Thus, we compute the manipulated self-attention weights α∗ by multiplying the
attention scores with a manipulation matrix ASA ∈ RT×T:

α∗ = softmax(S ∗ ASA) (19)

It should be noted that a manipulation of the feature or self-attention scores leads to a
change in both model outputs (discrete and continuous reconstructions). This has to be
considered when calculating the influence values in the following section.

We compute the loss for the positional influence function as the distance between the
reconstruction error, averaged over the timesteps of the sample, and the threshold value
with LPIF,D = ηACC − τD and LPIF,C = ηMSE − τC. The influence values I are calculated
from the difference in the losses attained with perturbation L∗

PIF and without perturbation
LPIF. For consistency, we declare that positive influence values I > 0 contribute to the
detection of normal samples and that negative influence values I < 0 contribute to the
detection of attack samples. This gives the following calculations of the influence values
for discrete and continuous reconstructions:

ID = f
(

L∗
PIF,D

)
− f (LPIF,D) (20)

IC = f (LPIF,C)− f
(

L∗
PIF,C

)
(21)

To improve the interpretation of the explanation results, we bound the influence values
into the range of [−1; 1] by converting the loss values with a Sigmoid function as follows:

fSig(LPIF) = 1/
(

1 + exp
(
− LPIF

σ

))
(22)

The bandwidth parameter σ gives additional control over the explanation results by assign-
ing high influence values to loss values that are close to the threshold regime. This will
focus the explanation results on the input signals that contribute most to the decisions of
the detection model. An exemplary illustration is given in Figure 5. To accommodate and
aggregate the influence values related to the feature-attention and self-attention scores, we
follow the sequential procedure shown in Figure 6. The corresponding steps I to IV of the
procedure are explained in the following material.

Electronics 2024, 13, 4570 9 of 18

Electronics 2024, 13, x FOR PEER REVIEW 9 of 19

We compute the loss for the positional influence function as the distance between the
reconstruction error, averaged over the timesteps of the sample, and the threshold value
with 𝐿୍,ୈ = 𝜂େେ − 𝜏ୈ and 𝐿୍,େ = 𝜂ୗ − 𝜏େ . The influence values 𝐼 are calculated
from the difference in the losses attained with perturbation 𝐿୍∗ and without perturbation 𝐿୍. For consistency, we declare that positive influence values 𝐼 > 0 contribute to the de-
tection of normal samples and that negative influence values 𝐼 < 0 contribute to the de-
tection of attack samples. This gives the following calculations of the influence values for
discrete and continuous reconstructions: 𝐼 = 𝑓൫𝐿୍,ୈ∗ ൯ − 𝑓൫𝐿୍,ୈ൯ (20)𝐼 = 𝑓൫𝐿୍,େ൯ − 𝑓൫𝐿୍,େ∗ ൯ (21)

To improve the interpretation of the explanation results, we bound the influence values
into the range of ሾ−1; 1ሿ by converting the loss values with a Sigmoid function as follows: 𝑓ୗ୧ሺ𝐿୍) = 1 ቆ1 + exp ൬− 𝐿୍𝜎 ൰ቇൗ (22)

The bandwidth parameter 𝜎 gives additional control over the explanation results by as-
signing high influence values to loss values that are close to the threshold regime. This
will focus the explanation results on the input signals that contribute most to the decisions
of the detection model. An exemplary illustration is given in Figure 5. To accommodate
and aggregate the influence values related to the feature-attention and self-attention
scores, we follow the sequential procedure shown in Figure 6. The corresponding steps I
to IV of the procedure are explained in the following material.

Figure 5. Influence values for exemplary positional losses 𝐿ூி,∗ using a Sigmoid function with dif-
ferent bandwidth parameters (𝐿ூி, = 0.5).

Figure 6. Explanation procedure with perturbation of attention weights.

Perturbate feature
attention scores aFA

Compute influence
values ID/C

Select top j input
features

Select top k
timesteps

Output explanations

Perturbate self
attention scores ASA

Compute influence
values ID/C

I.a

II.a

III.a

I.b

II.b

III.b

IV

Figure 5. Influence values for exemplary positional losses L∗
PIF,D using a Sigmoid function with

different bandwidth parameters (LPIF,D = 0.5).

Electronics 2024, 13, x FOR PEER REVIEW 9 of 19

We compute the loss for the positional influence function as the distance between the
reconstruction error, averaged over the timesteps of the sample, and the threshold value
with 𝐿୍,ୈ = 𝜂େେ − 𝜏ୈ and 𝐿୍,େ = 𝜂ୗ − 𝜏େ . The influence values 𝐼 are calculated
from the difference in the losses attained with perturbation 𝐿୍∗ and without perturbation 𝐿୍. For consistency, we declare that positive influence values 𝐼 > 0 contribute to the de-
tection of normal samples and that negative influence values 𝐼 < 0 contribute to the de-
tection of attack samples. This gives the following calculations of the influence values for
discrete and continuous reconstructions: 𝐼 = 𝑓൫𝐿୍,ୈ∗ ൯ − 𝑓൫𝐿୍,ୈ൯ (20)𝐼 = 𝑓൫𝐿୍,େ൯ − 𝑓൫𝐿୍,େ∗ ൯ (21)

To improve the interpretation of the explanation results, we bound the influence values
into the range of ሾ−1; 1ሿ by converting the loss values with a Sigmoid function as follows: 𝑓ୗ୧ሺ𝐿୍) = 1 ቆ1 + exp ൬− 𝐿୍𝜎 ൰ቇൗ (22)

The bandwidth parameter 𝜎 gives additional control over the explanation results by as-
signing high influence values to loss values that are close to the threshold regime. This
will focus the explanation results on the input signals that contribute most to the decisions
of the detection model. An exemplary illustration is given in Figure 5. To accommodate
and aggregate the influence values related to the feature-attention and self-attention
scores, we follow the sequential procedure shown in Figure 6. The corresponding steps I
to IV of the procedure are explained in the following material.

Figure 5. Influence values for exemplary positional losses 𝐿ூி,∗ using a Sigmoid function with dif-
ferent bandwidth parameters (𝐿ூி, = 0.5).

Figure 6. Explanation procedure with perturbation of attention weights.

Perturbate feature
attention scores aFA

Compute influence
values ID/C

Select top j input
features

Select top k
timesteps

Output explanations

Perturbate self
attention scores ASA

Compute influence
values ID/C

I.a

II.a

III.a

I.b

II.b

III.b

IV

Figure 6. Explanation procedure with perturbation of attention weights.

Within each perturbation step (I.a and I.b), we perform multiple manipulation runs.
In each run, we calculate influence values by applying a manipulation signal to only one
specific attention score, whereas the rest of the attention scores remain unchanged with
a = 0. First, we perturb the self-attention scores and identify the top k influential network
packets (time steps) within the given sequence (I.a to III.a). This is performed by summing
up the influence values over all K manipulation runs with

argmax
k

i=K

∑
i=1

Ii
D/C (23)

We perform this separately for all positive influence values (ID/C > 0) and negative
influence values (ID/C < 0), resulting in 2k most influential network packets or time steps
being identified (III.a). In parallel, we perturb the feature-attention scores and compute the
corresponding influence values for all network packets and their input features (I.b and
II.b). Finally, we select the top j most influential input features using the procedure from
above for the top k most influential network packets (III.b). This results in a 2k × 2j matrix
of influence values for the discrete ID and continuous IC reconstructions (IV).

4. Results and Discussion
4.1. CIC-IDS-2017 Dataset and Explanation Evaluation

For our evaluation, we use a network traffic excerpt from the CIC-IDS-2017 dataset.
The training set contains only benign network traces, whereas the test set contains benign
and malicious network traces from FTP and SSH brute-force attacks. Here, we assume that

Electronics 2024, 13, 4570 10 of 18

the benign network behavior does not change significantly between the training and test
dataset. An overview of the two datasets is given in Table 3.

Table 3. Overview training and test datasets.

Dataset Characteristics

Training
Normal packets: 750,000

Attack packets: 0
Attack ratio: 0%

Test
Normal packets: 752,600
Attack packets: 97,400

Attack ratio: 13%

We evaluate the detection performance of our T-NAE model (see Section 3.1) by
calculating the F1 score, the binary accuracy (BA), and the false positive rate (FPR) using
the test dataset.

We compare our explanation results with those obtained when the integrated gradient
(IG) method [49] is applied to our T-NAE model (see Section 2). The comparison of the
explanation results is performed for selected samples from the test dataset, including

• Ten normal samples indicating web browsing and FTP file transfer activities;
• Eighteen attack samples indicating FTP and SSH brute-force attacks.

For these test samples, we estimate true explanations, using expert knowledge to better
assess the explanation results. For this, we estimate the true influence values according to
the following criteria:

• For normal samples, we assign influence values of I = 1 for packets containing TCP,
HTTP, or FTP protocol layers and specific MAC addresses;

• For attack samples, we assign influence values of I = −1 for packets containing TCP,
SSH, or FTP protocol layers as well as the attacker’s MAC address.

The expert-based explanations are limited to the protocol type and MAC address
information only. Since we do not know the relevance of the remaining packet information,
we assign it influence values of zero with I = 0. To compare the estimated and true
influence values, we compute the Fβ score between the predicted and true explanation
values, which allows for additional control of the influence of the precision and the recall.
For our evaluation, we choose a low β value (β = 0.15) to account for the high number of
zero entries in the true explanations.

4.2. Reconstruction Accuracies and Detection Results

Figure 7 shows the performance of a T-NAE model over roughly 600 training epochs.
The left chart shows the training and validation loss and the right chart shows the re-
construction results for discrete (accuracy) and continuous (mean squared error) model
outputs. Good model convergence can be seen, with small differences between the training
and validation loss curves. During the training, the accuracy values for the discrete recon-
structions increase, whereas the squared error values for the continuous reconstructions
decrease. Figure 8 shows the average reconstruction results over the different discrete and
continuous model outputs for the normal and attack samples of the test dataset. In the case
of the discrete features (left panel), the accuracy results of the attack samples are below
the accuracy results of the normal samples. In particular, this holds for the MAC source
and destination addresses, indicating a good separability between the normal and attack
network packets. This is not the case for the continuous features (right panel). Here, only
the features with high MSE values show good separability between normal and attack
samples, whereas the other features show very low and similar reconstruction results. In
the experiments, we observe the best detection results using the reconstruction errors of
the discrete model outputs. This is considered in the evaluation of the explanation results
in Section 4.3.

Electronics 2024, 13, 4570 11 of 18

Electronics 2024, 13, x FOR PEER REVIEW 11 of 19

we assign it influence values of zero with 𝐼 = 0. To compare the estimated and true influ-
ence values, we compute the Fβ score between the predicted and true explanation values,
which allows for additional control of the influence of the precision and the recall. For our
evaluation, we choose a low 𝛽 value (𝛽 = 0.15) to account for the high number of zero
entries in the true explanations.

4.2. Reconstruction Accuracies and Detection Results
Figure 7 shows the performance of a T-NAE model over roughly 600 training epochs.

The left chart shows the training and validation loss and the right chart shows the recon-
struction results for discrete (accuracy) and continuous (mean squared error) model out-
puts. Good model convergence can be seen, with small differences between the training
and validation loss curves. During the training, the accuracy values for the discrete recon-
structions increase, whereas the squared error values for the continuous reconstructions
decrease. Figure 8 shows the average reconstruction results over the different discrete and
continuous model outputs for the normal and attack samples of the test dataset. In the
case of the discrete features (left panel), the accuracy results of the attack samples are be-
low the accuracy results of the normal samples. In particular, this holds for the MAC
source and destination addresses, indicating a good separability between the normal and
attack network packets. This is not the case for the continuous features (right panel). Here,
only the features with high MSE values show good separability between normal and at-
tack samples, whereas the other features show very low and similar reconstruction results.
In the experiments, we observe the best detection results using the reconstruction errors
of the discrete model outputs. This is considered in the evaluation of the explanation re-
sults in Section 4.3.

Figure 7. Training results of a T-NAE model (left: loss values; right: reconstruction values). Figure 7. Training results of a T-NAE model (left: loss values; right: reconstruction values).

Electronics 2024, 13, x FOR PEER REVIEW 12 of 19

Figure 8. Reconstruction results of using a T-NAE model on the test dataset.

The detection performance is given in Table 4 for T-NAE models with different pool
sizes of the encoder (see Section 2.2). For all models, the hyperparameters are tuned as
described in Section 2.3. The best T-NAE model gives an F1 score of about 95% with a false
positive rate of about 4.5%. This model is used for the subsequent explanation experi-
ments in Section 4.3. The corresponding parameters of the T-NAE model and the detection
model are given in Appendix B.

Table 4. Detection results of applying different T-NAE models to the test dataset (values in %).

Pool Size F1 BA FPR
25 95.36 95.47 4.53
50 91.59 92.17 7.83
100 74.02 79.42 20.58

4.3. Explanation of Benign and Malicious Network Packet Sequences
Figures 9 and 10 show the explanation results for two exemplary samples. Each sam-

ple consists of a sequence of 𝑇 = 100 network packets. The figures show the influence
values at the feature level (top left and right panels) and at the sequence level (bottom
panel). As already mentioned in Section 4.2, the influence values shown result from the
discrete reconstructions, such that 𝐼 = 𝐼. In Figure 9, most of the influence values are
positive, indicating a benign network behavior. The influence values are quite small with |𝐼| < 0.06. The TCP flag and MAC address features contribute the most to the model’s
predictions, whereas the continuous features show no importance or relevance. Negative
influence values can only be seen for some network packets, but the positive influence
values predominate along the entire sequence. In Figure 10, the number and size of the
negative influence values are significantly larger, indicating malicious network behavior.
In particular, the MAC and IP address features exhibit a strong impact on the detection
results.

Figure 8. Reconstruction results of using a T-NAE model on the test dataset.

The detection performance is given in Table 4 for T-NAE models with different pool
sizes of the encoder (see Section 2.2). For all models, the hyperparameters are tuned as
described in Section 2.3. The best T-NAE model gives an F1 score of about 95% with a false
positive rate of about 4.5%. This model is used for the subsequent explanation experiments
in Section 4.3. The corresponding parameters of the T-NAE model and the detection model
are given in Appendix B.

Table 4. Detection results of applying different T-NAE models to the test dataset (values in %).

Pool Size F1 BA FPR

25 95.36 95.47 4.53
50 91.59 92.17 7.83

100 74.02 79.42 20.58

4.3. Explanation of Benign and Malicious Network Packet Sequences

Figures 9 and 10 show the explanation results for two exemplary samples. Each
sample consists of a sequence of T = 100 network packets. The figures show the influence
values at the feature level (top left and right panels) and at the sequence level (bottom
panel). As already mentioned in Section 4.2, the influence values shown result from the

Electronics 2024, 13, 4570 12 of 18

discrete reconstructions, such that I = ID. In Figure 9, most of the influence values are
positive, indicating a benign network behavior. The influence values are quite small with
|ID| < 0.06. The TCP flag and MAC address features contribute the most to the model’s
predictions, whereas the continuous features show no importance or relevance. Negative
influence values can only be seen for some network packets, but the positive influence
values predominate along the entire sequence. In Figure 10, the number and size of the
negative influence values are significantly larger, indicating malicious network behavior. In
particular, the MAC and IP address features exhibit a strong impact on the detection results.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 19

Figure 9. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary benign network packet sequence.

Figure 10. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary malicious network packet sequence.

As in the previous case, the continuous features show very low influence values or
influence values of zero. Negative influence values can be clearly observed for the network
packets at specific time steps in the sequence. In particular, between 𝑇 = 70 and 𝑇 = 90,
there are relatively high positive and high negative influence values for the same network
packets, with a slight predominance of the negative influence values. As in the previous
case, the influence values are quite small, with |𝐼| < 0.1.

As introduced in Section 4.1, we compare the influence values for the expert-labeled
normal and attack samples with the IG method’s results using the Fβ score. Within the
experiments, we vary the parameters of the explanation model (see Section 3.2), including
the manipulation factor f, the maximum number of most influential network packets 𝑘,
the maximum number of most influential input features 𝑗 , and the bandwidth of the

Figure 9. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary benign network packet sequence.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 19

Figure 9. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary benign network packet sequence.

Figure 10. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary malicious network packet sequence.

As in the previous case, the continuous features show very low influence values or
influence values of zero. Negative influence values can be clearly observed for the network
packets at specific time steps in the sequence. In particular, between 𝑇 = 70 and 𝑇 = 90,
there are relatively high positive and high negative influence values for the same network
packets, with a slight predominance of the negative influence values. As in the previous
case, the influence values are quite small, with |𝐼| < 0.1.

As introduced in Section 4.1, we compare the influence values for the expert-labeled
normal and attack samples with the IG method’s results using the Fβ score. Within the
experiments, we vary the parameters of the explanation model (see Section 3.2), including
the manipulation factor f, the maximum number of most influential network packets 𝑘,
the maximum number of most influential input features 𝑗 , and the bandwidth of the

Figure 10. Influence values (top left: discrete inputs; top right: continuous inputs; bottom: packet
sequence) for an exemplary malicious network packet sequence.

As in the previous case, the continuous features show very low influence values or
influence values of zero. Negative influence values can be clearly observed for the network

Electronics 2024, 13, 4570 13 of 18

packets at specific time steps in the sequence. In particular, between T = 70 and T = 90,
there are relatively high positive and high negative influence values for the same network
packets, with a slight predominance of the negative influence values. As in the previous
case, the influence values are quite small, with |ID| < 0.1.

As introduced in Section 4.1, we compare the influence values for the expert-labeled
normal and attack samples with the IG method’s results using the Fβ score. Within the
experiments, we vary the parameters of the explanation model (see Section 3.2), including
the manipulation factor fa, the maximum number of most influential network packets k, the
maximum number of most influential input features j, and the bandwidth of the positional
influence function σ. As also stated in [44], we suppress the attention scores by applying
positive manipulation factors throughout the perturbation experiments, which gives us
better explanation results compared to those obtains from amplification.

For a better evaluation of the explanation results, we additionally group the normal
and attack samples according to their average detection accuracy results. Tables 5 and 6
show the explanation results for the best hyperparameters of the explanation model. The
results for other configurations of the explanation model, including negative manipulation
factors, are given in Appendix C. In the case of normal samples, the perturbation-based
explanations yield Fβ scores between 22% and 24% and significantly exceed the Fβ scores
of the IG-based explanations (which are between 6% and 7%). Nonetheless, the Fβ scores of
the normal samples are quite low for both methods. Unlike the case of the attack samples,
we have no side information for the normal network traffic behavior. This makes the
derivation of expert-based explanations for normal samples quite hard and may lead to
incomplete or erroneous ground truths of the influence values. In the case of the attack
samples, the Fβ scores of both methods are greatly increased. Again, the perturbation-
based explanation results (Fβ scores between 54% and 69%) clearly surpass the IG-based
explanation results (Fβ scores between 18% and 19%). On average, the explanation results
for the samples with low detection accuracy are slightly better than those for the samples
with high detection accuracy.

Table 5. Best explanation results for samples with high detection accuracy (with β = 0.15).

Samples fa k j σ Fβ (Ours) [%] Fβ (IG) [%]

Normal 0.10 18 1 0.4 22.3 7.4
Attack 0.99 22 1 0.3 54.6 18.6

Table 6. Best explanation results for samples with low detection accuracy (with β = 0.15).

Samples fa k j σ Fβ (Ours) [%] Fβ (IG) [%]

Normal 0.8 28 1 0.4 24.3 6.0
Attack 0.2 26 1 0.4 69.5 19.4

Regarding the hyperparameters of our explanation model, we observe that, in general,
high values of k and low values of j lead to the highest Fβ scores. Low values of j allow
us to filter the most relevant input features for the explanations, which corresponds to
the ground truth explanations. For attack samples with high detection accuracies, high
manipulation factors up to fa ≈ 0.995 improve the Fβ scores on average. For normal
samples or samples with low detection accuracies, no clear influence of the fa values on the
Fβ scores can be observed. In contrast to that, the bandwidth parameter σ exhibits a low
influence on the explanation results and shows the best results in the range of 0.3 to 0.4.
This is consistent with previous findings showing that the perturbation of the attention
weights only slightly changes the model outputs, leading to small changes within the
positional influence function and to low explanation values (|ID| < 0.1).

Electronics 2024, 13, 4570 14 of 18

5. Summary and Outlook

In this study, we present a sequential attention weight perturbation method to ex-
plain benign and malicious packets from network traffic traces. For this purpose, we
introduce a transformer-based autoencoder to learn the basic network traffic behavior and
employ a histogram-based detection model using reconstruction error thresholds. The
two-stage encoder–decoder architecture of the autoencoder incorporates different attention
mechanisms at the packet and sequence levels. Our explanation approach manipulates
the attention scores in a sequential manner to compute the input information making
the largest contribution in order to explain normal or attack behavior in network packet
sequences. In extensive experiments, performed using an excerpt from the CIC-IDS-2017
benchmark dataset, our explanation method shows superior results when applied to benign
and malicious network traces (including FTP and SSH brute-force attacks) compared to
the integrated gradients of benchmark methods. For the evaluation, we derived expert-
based explanations for the network traces, considering the MAC address and protocol
type information, and compared them with the predicted explanations (influence values)
by calculating Fβ scores. With an average binary detection accuracy of about 95% when
applied to the test dataset, our explanation method achieves an Fβ score of about 70% on
attack samples, compared to the value of approximately 20% achieved by the IG method.

Still, these results are highly dependent on the chosen hyperparameters of the expla-
nation model, and a method is required to automatically determine the hyperparameters
and conduct further systematic investigations. There is also a need for other transparent
cyber-attack detection benchmark models, for use on large datasets, with more reliable true
explanations. In particular, this accounts for the labeling of benign network traces, where it
is hard to derive the relevant explanatory factors. Here, representative datasets with already
labeled explanations for normal and malicious network traces are necessary in order to
systematically evaluate transparent cyber-attack detection methods at scale. Nevertheless,
future experiments will be conducted to evaluate our method on a greater number of
attack examples with manually derived explanations. Furthermore, the computational
complexity of the explanation method should be reduced by minimizing the number of
necessary perturbations. This could be achieved by grouping input features with similar
influence behaviors (as already suggested in [44]) or by simultaneously perturbation at
the feature and sequence levels. Alternatively, the computational time could be reduced
by parallelizing the perturbation operations or by quantizing the weights of the T-NAE
model. This would simplify the implementation in real-world scenarios, where a high
throughput of large network traces would result in large autoencoder models. The detec-
tion model (see Section 3.1) is kept quite simple and this might lead to misclassifications in
dynamic and high-noise environments. A more adaptive method should be considered in
further research.

Author Contributions: Conceptualization, A.K. and M.E.; methodology, A.K., E.A. and M.E.; software,
A.K. and E.A.; validation, A.K., E.A. and M.E.; formal analysis, A.K. and M.E.; investigation, E.A.; resources,
D.R.; data curation, A.K.; writing—original draft preparation, A.K. and E.A.; writing—review and editing,
M.E. and D.R.; visualization, A.K. and E.A.; supervision, A.K. and M.E.; project administration, A.K. and
D.R.; funding acquisition, D.R. All authors have read and agreed to the published version of the manuscript.

Funding: This publication is a result of the project PROTECT (03EI6054A) funded by the German
Federal Ministry for Economic Affairs and Climate Action (BMWK).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

As introduced in Section 3.1, the detection model uses a histogram-based error anal-
ysis to derive threshold values for discrete and continuous reconstructions. The analysis

Electronics 2024, 13, 4570 15 of 18

procedure is illustrated in Figure A1 under the assumption of Gaussian distributed recon-
struction errors. From the absolute frequency value h, we compute the relative cumulative
sum S over all frequency bins. The threshold value is set at a specific value for S, where
α = 1 − S is a user-defined parameter (maximum cumulative sum). Thus, a value of
α = 0.95 means that 95% of the reconstruction errors are below the threshold and 5% are
above the threshold. Thus, the α parameter allows us to control the acceptable fraction of
outliers within the reconstruction errors.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 19

Figure A1. Histogram-based threshold calculation for exemplary Gaussian errors.

Appendix B

Table A1. Hyperparameters of the detection model.

Parameter Value
Number of bins 𝑁 100

Maximum cumulative sum 𝛼 0.9

Table A2. Hyperparameters of the T-NAE model.

Parameter Value
Number of embedding dimensions 50
Hidden unit linear layer (encoder) [900, 300]

Hidden unit linear layer (decoder, discrete outputs) [900, 200]
Hidden unit linear layer (decoder, continuous outputs) [1000, 500]

Number of transformer blocks 1
Number of attention heads 3

Size of attention head 10
Hidden unit linear layer (transformer block) 400

Number of latent dimensions 160
Optimizer Adam

Learning rate 0.0005
Batch size 100

Loss weight (discrete outputs) 1.0
Loss weight (continuous outputs) 1.4

Appendix C

Table A3. Explanation results for normal samples with high detection accuracy (with 𝛽 = 0.15).

No. 𝐟𝒂 𝒌 𝒋 𝝈 𝜼𝐅ି𝛃 [%]
Suppression experiments

1 0.1 … 0.99 18 1 0.4 16.9 … 22.3
2 0.99 18 … 42 1 0.4 12.5 … 16.2
3 0.99 18 1 … 4 0.4 11.7 … 16.1
4 0.99 18 1 0.1 … 0.6 16.9 … 17.0

Figure A1. Histogram-based threshold calculation for exemplary Gaussian errors.

Appendix B

Table A1. Hyperparameters of the detection model.

Parameter Value

Number of bins N 100
Maximum cumulative sum α 0.9

Table A2. Hyperparameters of the T-NAE model.

Parameter Value

Number of embedding dimensions 50
Hidden unit linear layer (encoder) [900, 300]

Hidden unit linear layer (decoder, discrete outputs) [900, 200]
Hidden unit linear layer (decoder, continuous outputs) [1000, 500]

Number of transformer blocks 1
Number of attention heads 3

Size of attention head 10
Hidden unit linear layer (transformer block) 400

Number of latent dimensions 160
Optimizer Adam

Learning rate 0.0005
Batch size 100

Loss weight (discrete outputs) 1.0
Loss weight (continuous outputs) 1.4

Electronics 2024, 13, 4570 16 of 18

Appendix C

Table A3. Explanation results for normal samples with high detection accuracy (with β = 0.15).

No. fa k j σ ηF−β[%]

Suppression experiments
1 0.1 . . . 0.99 18 1 0.4 16.9 . . . 22.3
2 0.99 18 . . . 42 1 0.4 12.5 . . . 16.2
3 0.99 18 1 . . . 4 0.4 11.7 . . . 16.1
4 0.99 18 1 0.1 . . . 0.6 16.9 . . . 17.0

Amplification experiments
5 −4.0 . . . −0.2 18 1 0.2 12.2 . . . 21.6
6 −1.0 18 . . . 40 1 0.4 15.5 . . . 18.2
7 −1.0 20 1 . . . 4 0.4 12.2 . . . 18.1
8 −1.0 18 1 0.1 . . . 0.6 18.7 . . . 19.2

Table A4. Explanation results for normal samples with low detection accuracy (with β = 0.15).

No. fa k j σ ηF−β[%]

Suppression experiments
1 0.05 . . . 0.995 28 1 0.4 0.0 . . . 11.7
2 0.99 18 . . . 40 1 0.4 8.4 . . . 13.3
3 0.99 20 1 . . . 4 0.4 7.6 . . . 10.9
4 0.99 28 1 0.1 . . . 0.6 11.1 . . . 12.5

Amplification experiments
5 −4.0 . . . −0.2 18 2 0.3 0.0 . . . 8.8
6 −1.0 18 . . . 40 2 0.4 7.6 . . . 7.9
7 −1.0 20 1. . .4 0.4 5.8 . . . 7.6
8 −1.0 18 2 0.1 . . . 0.6 7.7 . . . 7.9

Table A5. Explanation results for attack samples with high detection accuracy (with β = 0.15).

No. fa k j σ ηF−β[%]

Suppression experiments
1 0.05 . . . 0.995 22 1 0.3 40.7 . . . 52.6
2 0.99 18 . . . 42 1 0.4 51.0 . . . 54.6
3 0.99 20 1 . . . 4 0.4 28.0 . . . 51.0
4 0.99 22 1 0.1 . . . 0.6 49.4 . . . 54.6

Amplification experiments
5 −4.0 . . . −0.2 26 1 0.2 35.1 . . . 53.8
6 −1.0 18 . . . 40 1 0.4 46.1 . . . 46.7
7 −1.0 20 1 . . . 4 0.4 27.2 . . . 46.1
8 −1.0 26 1 0.1 . . . 0.6 44.7

Table A6. Explanation results for attack samples with low detection accuracy (with β = 0.15).

No. fa k j σ ηF−β

Suppression experiments
1 0.05 . . . 0.995 26 1 0.4 35.7 . . . 69.5
2 0.99 18 . . . 40 1 0.4 52.0 . . . 54.1
3 0.99 20 1 . . . 4 0.4 31.2 . . . 52.2
4 0.99 26 1 0.1 . . . 0.6 54.0 . . . 54.8

Amplification experiments
5 −4.0 . . . −0.2 18 1 0.3 32.8 . . . 76.6
6 −1.0 18 . . . 40 1 0.4 51.2 . . . 54.1
7 −1.0 20 1 . . . 4 0.4 28.3 . . . 53.7
8 −1.0 18 1 0.1 . . . 0.6 53.3 . . . 54.1

Electronics 2024, 13, 4570 17 of 18

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.

2017. Available online: http://arxiv.org/pdf/1706.03762v5 (accessed on 23 March 2023).
2. Lim, B.; Arik, S.O.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.

Int. J. Forecast. 2021, 37, 1748–1764. [CrossRef]
3. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.
4. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
5. Kummerow, A.; Schäfer, K.; Gupta, P.; Nicolai, S.; Bretschneider, P. Combined Network Intrusion and Phasor Data Anomaly

Detection for Secure Dynamic Control Centers. Energies 2022, 15, 3455. [CrossRef]
6. RÖsch, D.; Kummerow, A.; Ruhe, S.; Schäfer, K.; Monsalve, C.; Nicolai, S. IT-Sicherheit in digitalen Stationen: Cyber-physische

Systemmodellierung, -bewertung und -analyse. Automatisierungstechnik 2020, 68, 720–737. [CrossRef]
7. Aleesa, A.M.; Zaidan, B.B.; Zaidan, A.A.; Sahar, N.M. Review of intrusion detection systems based on deep learning techniques:

Coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directions. Neural Comput. Appl.
2019, 32, 9827–9858. [CrossRef]

8. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

9. Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey,
taxonomy, and open issues. Knowl.-Based Syst. 2020, 189, 105124. [CrossRef]

10. Lansky, J.; Ali, S.; Mohammadi, M.; Majeed, M.K.; Karim, S.H.T.; Rashidi, S.; Hosseinzadeh, M.; Rahmani, A.M. Deep Learning-
Based Intrusion Detection Systems: A Systematic Review. IEEE Access 2021, 9, 101574–101599. [CrossRef]

11. Wu, Z.; Zhang, H.; Wang, P.; Sun, Z. RTIDS: A Robust Transformer-Based Approach for Intrusion Detection System. IEEE Access
2022, 10, 64375–64387. [CrossRef]

12. Lin, S.Z.; Shi, Y.; Xue, Z. Character-Level Intrusion Detection Based On Convolutional Neural Networks. In Proceedings of the
2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

13. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features
Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]

14. Segurola-Gil, L.; Moreno-Moreno, M.; Irigoien, I.; Florez-Tapia, A.M. Unsupervised Anomaly Detection Approach for Cyberattack
Identification. Int. J. Mach. Learn. Cybern. 2024, 15, 5291–5302. [CrossRef]

15. The Bot-IoT Dataset|UNSW Research. Available online: https://research.unsw.edu.au/projects/bot-iot-dataset (accessed on
7 November 2024).

16. The UNSW-NB15 Dataset|UNSW Research. Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset
(accessed on 7 November 2024).

17. Kaliyaperumal, P.; Periyasamy, S.; Thirumalaisamy, M.; Balusamy, B.; Benedetto, F. A Novel Hybrid Unsupervised Learning
Approach for Enhanced Cybersecurity in the IoT. Future Internet 2024, 16, 253. [CrossRef]

18. IDS 2018|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/
ids-2018.html (accessed on 7 November 2024).

19. Eren, M.E.; Moore, J.S.; Skau, E.; Moore, E.; Bhattarai, M.; Chennupati, G.; Alexandrov, B.S. General-purpose Unsupervised Cyber
Anomaly Detection via Non-negative Tensor Factorization. Digit. Threats 2023, 4, 1–28. [CrossRef]

20. Ahmed, M.S.; Shah, S.M. Unsupervised Ensemble Based Deep Learning Approach for Attack Detection in IoT Network. 2022.
Available online: http://arxiv.org/pdf/2207.07903 (accessed on 7 November 2024).

21. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE
Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

22. The TON_IoT Datasets|UNSW Research. Available online: https://research.unsw.edu.au/projects/toniot-datasets (accessed on
7 November 2024).

23. Meira, J.; Andrade, R.; Praça, I.; Carneiro, J.; Bolón-Canedo, V.; Alonso-Betanzos, A.; Marreiros, G. Performance evaluation of
unsupervised techniques in cyber-attack anomaly detection. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4477–4489. [CrossRef]

24. IDS 2012|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/
ids.html (accessed on 25 January 2022).

25. Aygun, R.C.; Yavuz, A.G. Network Anomaly Detection with Stochastically Improved Autoencoder Based Models. In Proceedings
of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA,
26–28 June 2017; pp. 193–198.

26. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT—Network-Based Detection of
IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

27. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection.
In Proceedings of the 2018 Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018.

http://arxiv.org/pdf/1706.03762v5
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.3390/en15093455
https://doi.org/10.1515/auto-2020-0077
https://doi.org/10.1007/s00521-019-04557-3
https://doi.org/10.3390/app9204396
https://doi.org/10.1016/j.knosys.2019.105124
https://doi.org/10.1109/ACCESS.2021.3097247
https://doi.org/10.1109/ACCESS.2022.3182333
https://doi.org/10.1109/ACCESS.2017.2780250
https://doi.org/10.1007/s13042-024-02237-w
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://doi.org/10.3390/fi16070253
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1145/3519602
http://arxiv.org/pdf/2207.07903
https://research.unsw.edu.au/projects/toniot-datasets
https://doi.org/10.1007/s12652-019-01417-9
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://doi.org/10.1109/MPRV.2018.03367731

Electronics 2024, 13, 4570 18 of 18

28. Shahid, M.R.; Blanc, G.; Zhang, Z.; Debar, H. Anomalous Communications Detection in IoT Networks Using Sparse Autoencoders.
In Proceedings of the 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 26–28 September 2019; pp. 1–5.

29. Song, Y.; Hyun, S.; Cheong, Y.-G. Analysis of Autoencoders for Network Intrusion Detection. Sensors 2021, 21, 4294. [CrossRef]
[PubMed]

30. Kang, H.; Ahn, D.H.; Lee, G.M.; Yoo, J.D.; Park, K.H.; Kim, H.K. IoT Network Intrusion Dataset. 2019. Available online:
https://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset (accessed on 17 September 2024).

31. Marino, D.L.; Wickramasinghe, C.S.; Rieger, C.; Manic, M. Self-Supervised and Interpretable Anomaly Detection Using Network
Transformers. 2022. Available online: http://arxiv.org/pdf/2202.12997v1 (accessed on 15 September 2022).

32. Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55,
3503–3568. [CrossRef]

33. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874.
34. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods.

Entropy 2020, 23, 18. [CrossRef]
35. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Pedreschi, D.; Giannotti, F. A Survey Of Methods For Explaining Black Box

Models. ACM Comput. Surv. 2018, 51, 1–42. [CrossRef]
36. Nguyen, Q.P.; Lim, K.W.; Divakaran, D.M.; Low, K.H.; Chan, M.C. GEE: A Gradient-based Explainable Variational Autoencoder

for Network Anomaly Detection. In Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS),
Washington, DC, USA, 10–12 June 2019.

37. Zhang, X.; Marwah, M.; Lee, I.-T.; Arlitt, M.; Goldwasser, D. ACE—An Anomaly Contribution Explainer for Cyber-Security
Applications. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA,
9–12 December 2019.

38. Yepmo, V.; Smits, G.; Pivert, O. Anomaly explanation: A review. Data Knowl. Eng. 2022, 137, 101946. [CrossRef]
39. Amarasinghe, K.; Kenney, K.; Manic, M. Toward Explainable Deep Neural Network Based Anomaly Detection. In Proceedings of

the 2018 11th International Conference on Human System Interaction (HSI), Gdańsk, Poland, 4–6 July 2018; pp. 311–317.
40. Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining Anomalies Detected by Autoencoders Using SHAP. arXiv 2019,

arXiv:1903.02407.
41. Chen, X.; Deng, L.; Huang, F.; Zhang, C.; Zhang, Z.; Zhao, Y.; Zheng, K. DAEMON: Unsupervised Anomaly Detection and

Interpretation for Multivariate Time Series. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering
(ICDE), Chania, Greece, 19–22 April 2021; pp. 2225–2230.

42. Haldar, S.; John, P.G.; Saha, D. Reliable Counterfactual Explanations for Autoencoder based Anomalies. In Proceedings of the 3rd
ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD),
Bangalore, India, 2–4 January 2021; pp. 83–91.

43. Xu, H.; Wang, Y.; Jian, S.; Huang, Z.; Wang, Y.; Liu, N.; Li, F. Beyond Outlier Detection: Outlier Interpretation by Attention-Guided
Triplet Deviation Network. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 1328–1339.

44. Deiseroth, B.; Deb, M.; Weinbach, S.; Brack, M.; Schramowski, P.; Kersting, K. AtMan: Understanding Transformer Predictions
Through Memory Efficient Attention Manipulation. Adv. Neural Inf. Process. Syst. 2023, 36, 63437–63460.

45. IDS 2017|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/
ids-2017.html (accessed on 25 January 2022).

46. Kummerow, A.; Henneke, M.; Bachmann, P.; Krackruegge, S.; Laessig, J.; Nicolai, S. Cyber-security platform for the transparent
cyber-attack detection in energy supply infrastructures. In Proceedings of the ETG Congress 2023, Kassel, Germany, 25–26 May
2023; pp. 1–7.

47. Kummerow, A.; Esrom, A.; Nicolai, S.; Bretschneider, P. Transparent autoencoding of network packets with self-attention-based
transformers. In Proceedings of the 2023 IEEE 48th Conference on Local Computer Networks (LCN), Daytona Beach, FL, USA,
1–5 October 2023; pp. 1–4.

48. Kummerow, A.; Monsalve, C.; Bretschneider, P. Siamese recurrent neural networks for the robust classification of grid disturbances
in transmission power systems considering unknown events. IET Smart Grid 2021, 5, 51–61. [CrossRef]

49. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference
on Machine Learning, Sydney, Australia, 17 July 2017; Volume 70, pp. 3319–3328.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s21134294
https://www.ncbi.nlm.nih.gov/pubmed/34201798
https://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset
http://arxiv.org/pdf/2202.12997v1
https://doi.org/10.1007/s10462-021-10088-y
https://doi.org/10.3390/e23010018
https://doi.org/10.1145/3236009
https://doi.org/10.1016/j.datak.2021.101946
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.1049/stg2.12051

	Introduction
	Motivation
	Related Work
	Paper’s Contribution and Organization

	T-NAE: Transformer-Based Network Traffic Autoencoder
	Preprocessing of Discrete and Continuous Network Packet Information
	Two-Stage Encoder and Decoder Structure
	Model Training and Hyperparameter Optimization

	Cyber-Attack Detection and Explanation
	Histogram-Based Threshold Computation
	Explanation via Perturbation of Attention Weights

	Results and Discussion
	CIC-IDS-2017 Dataset and Explanation Evaluation
	Reconstruction Accuracies and Detection Results
	Explanation of Benign and Malicious Network Packet Sequences

	Summary and Outlook
	Appendix A
	Appendix B
	Appendix C
	References

