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Abstract: In modern circuit design, the short-circuit problem is one of the key factors affecting
routability. With the continuous reduction in feature sizes, the short-circuit problem grows signifi-
cantly in detailed routing. Track assignment, as a crucial intermediary phase between global routing
and detailed routing, plays a vital role in preprocessing the short-circuit problem. However, existing
track assignment algorithms face the challenge of easily falling into local optimality. As a typical
swarm intelligence technique, particle swarm optimization (PSO) is a powerful tool with excellent
optimization ability to solve large-scale problems. To address the above issue, we propose an effective
track assignment algorithm based on social learning discrete particle swarm optimization (SLDPSO-
TA). First, an effective wire model that considers the local nets is proposed. By considering the pin
distribution of local nets, this model extracts and allocates more segments to fully leverage the role of
track assignment. Second, an integer encoding strategy is employed to ensure that particles within the
encoding space range correspond one-to-one with the assignment scheme, effectively expanding the
search space. Third, a social learning mode based on the example pool is introduced to PSO, which is
composed of other particles that are superior to the current particle. By learning from various objects
in the example pool, the diversity of the population is improved. Fourth, a negotiation-based refining
strategy is utilized to further reduce overlap. This strategy intelligently transfers and redistributes
wire segments in congested areas to reduce congestion across the entire routing panel. Experimental
results on multiple benchmarks demonstrate that the proposed SLDPSO-TA can achieve the best
overlap cost optimization among all the existing methods, effectively reducing congestion in critical
routing areas.

Keywords: conflict minimization; track assignment; example pool; particle swarm optimization;
rip-up and reroute

1. Introduction

Physical design currently represents a key area of research in the field of Very Large
Scale Integration (VLSI) computer-aided design [1]. Among the various phases of physical
design, routing plays a crucial role, directly impacting the ultimate performance of the
chip [2,3]. The traditional routing flow is typically divided into two phases: global routing
and detailed routing. Traditionally, detailed routing is guided by global routing results.
However, global routing provides a rough overview from a global perspective and may
not accurately capture local congestion, making it challenging to detect detailed routing
problems. To better guide the detailed routing, physical designs typically introduce an
intermediate phase, known as track assignment, between global routing and detailed
routing [4]. This phase needs to consider factors such as congestion to achieve high
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routability. However, the decreasing chip size and increasing integration complexity pose
challenges for traditional routing algorithms, making them less effective in addressing
these tasks and introducing a novel set of challenges for routing.

Track assignment serves as a crucial link between global routing and detailed rout-
ing. Most existing track assignment algorithms focus on generating conflict-free routing
solutions by maximizing the number of assigned wires. Nevertheless, there are unassigned
wires that are not considered, potentially leading to routing conflicts. This type of track as-
signment problem is referred to as the Conflict-free Track Assignment (CFTA) problem. On
the other hand, there are a few works that seek conflict-minimizing routing solutions by as-
signing all wires, thus solving another type of problem called the Conflict-minimizing Track
Assignment (CMTA) problem. Although these works consider more routing resources and
provide better guidance for detailed routing, they tend to fall into local optimality.

Swarm intelligence (SI) is an important category of optimization techniques and pro-
vides new ideas for solving various complex operation optimization problems [5–9]. This
field draws inspiration from the straightforward behaviors and self-organized interactions
observed among intelligent individuals in nature, including ant colony foraging, bird flock-
ing, flock effects, bacterial growth, and fish swarming [10–14]. Each SI technique has its
unique advantages. In particular, the particle swarm optimization (PSO) technique stands
out among SI techniques due to its minimal control parameters, simple implementation,
and excellent optimization capability. It has been widely used in various fields, including
combinatorial optimization [15–18], image matching and enhancement [19,20], and data
mining [21,22]. Furthermore, the PSO algorithm has been successfully applied to some
routing problems with positive results [23,24]. On the other hand, there has been some
recent work on improving the convergence rate or speed of PSO algorithms [25–27]. For
example, Ref. [25] improved the convergence speed as well as the global exploration
capabilities of PSO algorithms by targeted position-mutated elitism. Ref. [26] proposed a
random sampling strategy of control parameters and applied stochastic correction to each
dimension for the population optimum value, thereby improving the convergence rate
while maintaining a higher convergence accuracy of the algorithm. Ref. [27] combined the
Firefly Algorithm with PSO to further improve the effectiveness of the algorithm. Therefore,
the PSO technique stands out as one of the effective methods for overcoming the limitations
of traditional routing algorithms.

To effectively address the CMTA problem, we propose an effective track assignment
algorithm based on social learning discrete particle swarm optimization, called SLDPSO-
TA, which considers the congestion problem in the local net, while taking the conflict and
wirelength as the optimization objectives. The major contributions of this paper are listed
as follows:

• An efficient integer encoding method is designed to enhance the adaptability of the
proposed algorithm, the SLDPSO-TA.

• A novel greedy strategy-based initial assignment method is introduced to generate
high-quality initial particles. Additionally, a genetic operator is applied to both expand
the population diversity and filter out high-quality initial particles.

• A simple and efficient cost function is formulated for the optimization objectives,
encompassing routing conflicts (including conflicts among wires and conflicts be-
tween wires and blockages) and wirelength. Moreover, a preprocessing strategy is
employed to significantly reduce the number of cost calculations, thereby accelerating
the proposed algorithm.

• In the particle updating phase, a social learning mode based on the example pool is
implemented to enable particles to learn from better particles, which can maintain the
population diversity. Furthermore, multi-point mutation is introduced to enhance the
exploration capability of the algorithm.

• To further optimize conflicts between wires, a negotiation-based refining strategy is
executed through the rip-up and reroute operation on the solution.
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The rest of the paper is organized as follows. Section 2 analyzes related works.
Section 3 presents the problem formulation and evaluation metrics. Section 4 introduces
details of the SLDPSO-TA. Section 5 shows the performance of the proposed algorithm.
Conclusions are given in Section 6.

2. Related Work
2.1. PSO

Many scholars have noticed the excellent optimization, fast convergence, and simple
parameter setting of the PSO algorithm, and applied it to solve VLSI problems.

An interactive adaptive PSO algorithm is proposed in [28] to improve the search effi-
ciency and accuracy of the population to minimize the area of floor planning. Experiments
show that the search quality and speed of this method are the best. In particular, there
are many applications of PSO in routing problems. Ref. [29] uses the PSO algorithm to
calculate the optimal number and size of buffers. In [30], reinforcement learning is em-
ployed to optimize the search of PSO, and a routing scheme with higher quality and safety
is generated based on the improved PSO. In [31], the PSO algorithm with gradient descent
is adopted to construct the routing tree with the minimum number of vias and wirelength,
thereby reducing the chip manufacturing cost and power consumption. In [32], PSO is
combined with a meta-heuristic algorithm based on invasive weed optimization to enhance
the global optimization capability of the algorithm, thereby reducing the wirelength cost
of global routing. Ref. [33] utilizes a multi-objective particle optimization algorithm to
study the tradeoff between the power and delay of high-speed circuits, and generates the
non-dominated optimal solutions of dynamic power and delay. Ref. [34] proposes a particle
swarm optimization method that combines logistic regression and adaptive granularity
learning to optimize decoupling capacitance, thereby reducing the cumulative impedance
of the power delivery net.

The above work demonstrates the significant potential of PSO for addressing VLSI
routing problems. In addition, to further improve the optimization ability of the algorithm,
we introduce the Social Learning Dynamic Particle Swarm Optimization (SLDPSO) algo-
rithm to tackle VLSI routing challenges. Specifically, the proposed algorithm leverages
the PSO technique and incorporates a social learning model based on the example pool.
As shown in Figure 1, the example pool for the current particle Xi consists of particles,
represented by dashed circles, with better fitness than Xi. Xi then randomly selects one
particle from this example pool as its learning target. Compared to the traditional approach
of learning from a single global optimum, gbest, the social learning model increases the
diversity of the population, thereby enhancing the exploration ability of the algorithm.
Therefore, SLDPSO can overcome the problem of premature convergence of PSO due to
loss of diversity, thus searching for the unknown optimal design solution.

Xi

gbest
Unknown 

optimal solution

example pool

Figure 1. The social learning model.
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2.2. Track Assignment

The track assignment phase is usually added between global routing and detailed
routing to speed up detailed routing while improving the accuracy of global routing results.
Existing track assignment algorithms are divided into two main categories: CFTA [35–43]
and CMTA [44–52].

For the CFTA problem, plenty of works have emerged. Ref. [35] proposes a heuristic
algorithm based on Weighted Bipartite Matching (WBM) to guide detailed routing. As the
scale of the problem expands, the runtime of WBM increases significantly. With the continu-
ous progress and development of the VLSI manufacturing process, factors such as crosstalk,
yield, and others become increasingly important for chip performance, and receive growing
attention. Refs. [36,37] consider the yield factor in track assignment. Considering both the
timing and yield, Ref. [36] proposes a heuristic algorithm to greatly optimize the minimum
timing slack, which transforms the mixed linear geometric programming problem of opti-
mizing wire width and spacing into a convex optimization problem. Ref. [37] proposes a
yield-driven track routing algorithm, which minimizes the critical region of the short circuit
by finding the smallest Hamiltonian path to sort wires. Then it uses the second-order cone
programming to optimize the wire width and spacing to achieve the minimum failure rate.
Refs. [38–41] solve the crosstalk problem generated by the wires assigned to adjacent nets.
Ref. [38] proposes a track assignment algorithm based on Integer Linear Programming
(ILP) to optimize the crosstalk problem with a high runtime. Ref. [42] proposes a track
assignment method to avoid native conflicts. Ref. [43] designs a track assignment strategy
in the proposed initial routing algorithm to minimize initial routing width while avoiding
conflicts in assigning PTL segments.

The above CFTA works have a large number of unassigned iroutes, which will cause
serious short-circuit problems in detailed routing, and, thus, many CMTA works are pro-
posed. Due to the limited routing resources, congestion has become an essential indicator
of the quality evaluation of the track assignment solution. In order to perform rapid
routability evaluation, Ref. [44] proposes a Negotiation-based Track Assignment (NTA)
algorithm, which uses a greedy method to obtain an initial assignment under the premise
of allowing conflicts. As a result, iterative negotiation is used to produce a routing solu-
tion with the least conflict. Ref. [45] proposes a Track Assignment Algorithm Based on
Discrete Particle Swarm Optimization (DPSO-TA), which combines genetic operation and a
negotiation-based refining strategy. Refs. [46,47] consider local nets, via location, and pin
access in track assignment. Ref. [48] proposes the first track router with yield-driven wire
planning to optimize yield loss induced by random defects. Ref. [49] uses the output of
track assignment with local corrections combined with global shortest path search as the
input of detailed routing to obtain efficient routing results. Ref. [50] first assigns all wires
to tracks, then proposes an ILP model to minimize the overlap between iroutes. Ref. [51]
creates tracks for each internal node, bump pad, and IO pad based on the flow passing
through it, and then builds non-crossing routing paths by connecting tracks into track
pairs. In addition, there are some works performed in their specific backgrounds. Ref. [53]
proposes a new supervised learning approach to train a policy model to solve the track
assignment-based detailed routing problems, but only for two-pin nets. Ref. [54] proposes
a maze routing method, which does not apply to signal wire assignment in VLSI.

In general, most existing work tends to fall into local optima because of greedy
strategies, or to be inefficient in large-scale problems. Therefore, considering the efficiency
and quality of the solution, this paper utilizes the PSO algorithm with a social learning
strategy to solve the CMTA problem and to find a better track assignment solution to
improve the accuracy of the routability evaluation. The research gap between the SLDPSO-
TA and previous research is shown in Table 1.
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Table 1. Research gap.

Category References Characteristics

CFTA [29–39] There may be unassigned iroutes, which may lead to
routing conflicts.

CMTA

[40–47] The algorithms easily fall into local optima because of
greedy strategies, or are inefficient in large-scale problems.

[48,49] The algorithms only work in specific backgrounds.

the proposed
SLDPSO-TA

PSO based on social learning can avoid premature
convergence while maintaining high efficiency.

3. Problem Formulation and Evaluation Metrics
3.1. Problem Formulation

Figure 2a presents a multi-layer global routing model, where each dot is called a
Global Routing Cell (GRC). In Figure 2b, the routing area consists of several sub-regions,
each of which is a GRC.

layer3

layer2

layer1

GRC

(a)

GRC

layer3

layer2

layer1

paneltrack

(b)

Figure 2. Multi-layer track assignment model. (a) Multi-layer global routing model. (b) Correspond-
ing multi-layer track assignment model.

Definition 1 (Panel). In multi-layer routing problems, the routing direction is uniform on each
layer, i.e., either horizontally or vertically. The routing directions of adjacent layers are intersected.
A horizontal (vertical) panel consists of a set of GRCs in the horizontal (vertical) direction (the
panels of layer 1 and 3 shown in Figure 2b are vertical, while the panels of layer 2 are horizontal).

Definition 2 (Iroute). An iroute is defined as the straight-line path between the centers of two
GRCs within a set covered by the routing area of a net.

Definition 3 (Track). A track is the designated location for placing iroutes. In a horizontal
(vertical) panel, a set of hypothetical horizontal (vertical) trajectory lines is referred to as tracks (as
shown in Figure 2b).

The track assignment problem is described as follows. Let L denote the number of
layers, and n denote the number of panels on layer l. All information about each net,
including the set of pins and iroutes, is provided. For each panel, given the set of tracks
and iroutes, the objective is to assign all iroutes to tracks with the minimum cost. The cost
of the track assignment comprises conflict cost and wirelength cost.

3.2. Evaluation Metrics

In this section, the specific calculation process of two primary metrics for evaluating
the quality of track assignment solutions, i.e., conflict cost (including overlap cost and
blockage cost) and wirelength cost, is presented.

3.2.1. Conflict Cost

Definition 4 (Conflict cost). Conflicts are composed of both overlap and blockage conflicts. An
overlap conflict occurs when iroutes share the same track, while a blockage conflict arises when
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iroutes overlap with blockages. The conflict cost comprises the overlap cost due to overlap conflicts
and the blockage cost resulting from blockage conflicts.

Overlap cost calculation: For a track assigned with m iroutes, it is represented by an
interval that consists of a set of unit intervals, as shown in Figure 3. The value of each unit
interval is defined as the number of iroutes in the interval, denoting a common subinterval
of k (2 ≤ k ≤ m) iroutes. For each common interval generated by k iroutes, the overlap
cost is the product of the length l of this common interval and (k − 1). Specially, when
k = 0 or k = 1, its overlap cost is 0. The overlap cost of a track is the sum of the overlap
costs for all intervals comprising the track (the overlap cost of the track shown in Figure 3
is l1(k1 − 1) + l2(k2 − 1) + l3(k3 − 1) = 6). The overlap cost of a panel is the sum of the
overlap costs of all tracks in that panel. The total overlap cost of a track assignment solution
is the sum of the overlap costs of all panels.

unit interval

track

intervals

l1=2 l2=1 l3=2

k1=2

k2=3

k3=2

l4=1

Figure 3. The conflict cost calculation for one track.

Blockage cost calculation: For an assigned iroute, its blockage cost is the sum of the
overlap lengths between all blockages that overlap (partially or entirely) with it. The
blockage cost of each track is the sum of the blockage costs of all iroutes on that track
(e.g., the blockage cost of the track shown in Figure 3 is 1). In a panel, the blockage cost
is the sum of blockage costs for all tracks. The blockage cost of the final track assignment
result is the sum of the blockage costs of all panels.

3.2.2. Wirelength Cost

Definition 5 (Wirelength cost). The wirelength cost of a net is defined as the total length resulting
from connecting all components, including pins and iroutes, within the net.

A diagram illustrating the calculation of the wirelength cost for a net, which includes
three iroutes and two pins, is shown in Figure 4. In Figure 4a, the top view of the net
is depicted, where v1 and ir1 are located in the upper layer, v2 and ir3 are located in the
lower layer, and ir2 is located in the middle layer with vertical panels. Figure 4b shows a
weighted complete graph with these five components as nodes, and the weight of each edge
represents to the shortest Manhattan distance between the two corresponding components.
A minimum spanning tree is then constructed to connect all components within the net,
and its length represents the wirelength cost of the net.

v1

ir1

ir2

ir3 v2

(a)

v1

ir1 ir2

ir3 v2

2

9

1

5

5

14

14

1
15

1

(b)

Figure 4. The wirelength cost calculation of a net. (a) The top view of the net. (b) The weighted
completed graph corresponding to the net.
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4. Details of SLDPSO-TA

We propose the SLDPSO-TA for addressing the CMTA problem, considering wire-
length and conflict in local nets as optimization objectives. The proposed algorithm initially
employs a hybrid approach, combining a greedy strategy with a genetic operator to gen-
erate high-quality “leader particles” for the population. Then, mutation and crossover
operators are introduced to implement the particle updating phase. Moverover, a multi-
point mutation strategy and a social learning mode based on an example pool are used to
enhance the diversity of the population during the particle updating phase, thus strength-
ening the global search capability of the algorithm. Finally, a negotiation-based rip-up and
reroute strategy is applied to further optimize the overlap cost of the track assignment.

4.1. Overall Design Flow

The overall design flow of the SLDPSO-TA is shown in Figure 5, which mainly consists
of three stages, including the initialization stage, the particle update stage, and the refining
stage. In the initialization stage, the global routing results are first loaded and tracks are
created for each panel. Then, the iroutes are extracted from the global and local nets,
and the initial population is generated using the initial assignment method based on the
greedy strategy. In the particle update stage, velocity and position update operations are
performed on the particles, and the fitness of the particles is calculated. Afterwards, the
pbest of each particle, the example pool, and the kbest of the particles are updated based on
the fitness of the particles, where hte kbest is the historical optimal solution for a particle in
the sample pool that is better than the current particle. Next, the optimal solution, denoted
as gbest, is updated. Specifically, the current gbest is compared with the pbests of all
particles. If a pbest is better than the current gbest, then the current gbest is updated to that
pbest. Once the termination condition (maximum number of iterations) is satisfied in the
particle update stage, it proceeds to the next stage. Otherwise, velocity and position update
operations are performed on particles. In the refining stage, the overlapping conflicts of the
optimal solution gbest are optimized using the rip-up and reroute refining strategy. Finally,
a high-quality track assignment solution can be generated.

Initialization Stage

 Particle Update Stage

Refining  Stage 

Rip-up and reroute the gbest solution

Output gbest solution

Yes

Extract iroutes

Generate initial population based on 

greedy strategy

Create tracks

Load results of global routing

Update speed and position of particles

Calculate fitness of particles

Update pbest of particles

Update the example pool of particles 

and determine kbest

Whether the termination 

condition is reached?

No

Update the optimal solution gbest

Figure 5. The flow chart of the SLDPSO-TA.
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4.2. Wire Model Considering Local Nets

Definition 6 (Global net). A net is called a global net if it contains more than one GRC (e.g., n1
in Figure 6a is a global net).

n1
n2

(a)

w1

(b)

w3
w4

w2

(c)

Figure 6. Wire model of SLDPSO-TA. (a) Global routing results of two nets. (b) Iroutes extracted by
CFTA works. (c) Iroutes extracted by SLDPSO-TA.

Definition 7 (Local net). If all pins are located in the same GRC, such a net is called a local net
(e.g., n2 in Figure 6a is a local net).

Extracting iroutes is a crucial phase in track assignment. The majority of existing track
assignment algorithms overlook the routing information of local nets, and only focus on
extracting iroutes from global nets, leading to significant information loss. Therefore, the
proposed algorithm considers the pin distribution of local nets to enhance the extraction
and assignment of iroutes.

For global nets, all straight lines connecting the centers of one GRC to another GRC are
extracted as iroutes, effectively utilizing the routing information at the corners, as shown
in Figure 6. For local nets, two rectilinear Steiner trees need to be constructed, namely
the Steiner tree with a single horizontal or vertical trunk (as shown in Figure 7). The
single vertical (horizontal) Steiner tree is constructed by initially constructing the vertical
(horizontal) trunk. Then, all pins in the local net are connected to the trunk by horizontal
(vertical) lines. The x-coordinate (y-coordinate) value of the vertical (horizontal) trunk
is determined by the median of the x-coordinate (y-coordinate) values of all pins. The
upper and lower y-coordinate values (left and right x-coordinate values) of the vertical
(horizontal) trunk are set as the maximum and minimum values of the y-coordinate (x-
coordinate) values of all the pins, respectively. Once Steiner trees in two different directions
are constructed, the iroute extracted from this local net is determined by selecting the trunk
of the shorter tree based on a comparison of their lengths.

(a) (b)

Figure 7. Wire model of the local net. (a) Steiner tree with a single vertical trunk. (b) Steiner tree with
a single horizontal trunk.

4.3. Particle Encoding

To enhance the resolution of CMTA problems using PSO, an integer encoding method
is proposed. In this particle encoding method, each particle corresponds to a track assign-
ment solution for one panel. The length of the particle encoding is equal to the number of
iroutes on that panel, and each bit in the encoding represents the track where the iroute is
located. Both iroutes and tracks are encoded with integers.
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As shown in Figure 8a, the panel has three tracks, nine iroutes, and one blockage,
where the blockage is located on track 2. Figure 8b illustrates the specific conflict area of
the panel (marked by the red dashed line). Noted that a blockage might be located on more
than one track or span multiple adjacent tracks, depending on the size of the blockage.
According to the aforementioned encoding method, the particle encoding corresponding to
the track assignment solution in Figure 8a is “2 1 1 3 1 3 2 2 1”. The value of the first bit of
the encoding is 2, indicating that iroute ir1 is assigned to track 2.

2        1        1        3       1        3        2       2       1 panel p 

track 1

track 3

track 2
��1

��2

��3

��4

��5

��6
��7

��8

��9

(a)

track 1

track 3

track 2

�11 �12 �13

�21
���

�31

(b)

Figure 8. The track assignment solution of a panel (including 3 tracks, 9 iroutes, and a blockage).
(a) Particle encoding. (b) The specifics of conflicts.

The integer encoding method introduced is able to satisfy the integrity, soundness, and
non-redundancy criteria simultaneously [55]. The length of the particle is set to guarantee
that each iroute within the panel can be assigned, and the range of the i-th encoding value
of the particle includes all possible tracks to which iroute i can be assigned. Therefore, this
particle encoding method can cover the entire solution space. For each solution, a unique
particle can be found to correspond to it, so that the particles in the range of the encoding
space align one-to-one with the track assignment solutions on the panel. This encoding
method provides an intuitive representation of the assignment within each panel, offering
simplicity in implementation. It can effectively expand the search space compared with the
greedy method of NTA, thus improving the performance of the algorithm.

4.4. A Greedy Strategy-Based Initial Assignment Method

The time-consuming cost calculation limits the number of iterations of the particle
swarm to a certain extent, which affects the convergence speed of the algorithm. Therefore,
a greedy strategy-based initial assignment method is designed to generate initial particles
with higher quality in the following steps:

(1) Track assignment is performed with different assignment orders based on the greedy
criterion, resulting in four types of initial solutions.

(2) The mutation operator is introduced to generate the initial population incorporating
the four types of initial solutions.

(3) The selection operator based on the fitness value evaluation is introduced to screen
out high-quality particles for the population as the initial solution.

Table 2 compares the effects of different assignment orders on the track assignment re-
sults [44], where WL represents wirelength cost, and OC represents overlap cost. “Order 1”,
“order 2”, “order 3”, and “order 4” indicate that the initial track assignment is conducted in
the order of iroute length from long to short, iroute length from short to long, the number
of components from large to small, and the number of components from small to large,
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respectively. As shown in Table 2, assigning in “order 1” yields the solution with the least
overlap cost, while sacrificing a small amount of wirelength.

Table 2. Track assignment with four assignment orders.

Assignment Orders
Order 1 Order 2 Order 3 Order 4

WL OC WL OC WL OC WL OC

Ratio 1 1 0.98 2.01 0.99 2.01 0.95 2.02

To explore more potential solutions, the SLDPSO-TA generates four distinct pop-
ulations based on the above four assignment orders. Each population is generated by
introducing mutations to particles corresponding to a specific order. The specific mutation
phase is described in Section 4.6. Then, a selection operator is introduced to identify more
promising particles for the population. The proposed algorithm enhances the exploration
of potential solutions by assigning twice the number of particles to “order 1” compared
to the other three orders. The pseudocode of the initial solution generation is provided in
Algorithm 1, where Line 1 to Line 5 involve sorting iroutes using four different assignment
orders. Lines 6 to 15 determine the particle counts for each order. Line 16 represents the
mutation operation, and Line 18 involves sorting particles based on fitness values. Finally,
Line 19 initializes the initial swarm, and set the initial population size is M × ratio.

Algorithm 1 Initialization
Require: Routing panel panel, The scale of population M, Screening ratio ratio
Ensure: Initial particle swarm swarm[M]

1: Begin
2: initAns_1 = AssignByLltos(panel → irouteList);
3: initAns_2 = AssignByLstol(panel → irouteList);
4: initAns_3 = AssignByNltos(panel → irouteList);
5: initAns_4 = AssignByNstol(panel → irouteList);
6: for each particle pi in the swarm do
7: if i ≥ 0 && i < M × 2

5 then
8: Initialize pi by initAns_1;
9: else if i < M × 3

5 then
10: Initialize pi by initAns_2;
11: else if i < M × 4

5 then
12: Initialize pi by initAns_3;
13: else
14: Initialize pi by initAns_4;
15: end if
16: Mutation(pi);
17: end for
18: SortParticlesByFit(swarm);
19: SetInitSwarm(swarm, ratio);
20: End

4.5. Fitness Calculation

Since the greedy strategy-based initial assignment method can produce a routing
solution with a minimal wirelength cost, and the solution undergoes minimal changes
during the particle swarm iterations, the proposed algorithm focuses on the conflict cost
during the design of the fitness function, which is formulated as follows:

fitFunc(p) = overlapCostp + β × blkCostp (1)

where overlapCostp and blkCostp are the overlap cost and blockage cost of panel p, respec-
tively, and β is a weighting factor. Since the overlap of the iroute with the blockage has a
significant impact on routability, β is set to be 100,000 to strictly control the blockage cost.
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The overlap cost overlapCostp in Equation (1) is computed as the sum of the overlap
lengths of two iroutes on each track. In contrast to the calculation in Section 3.2, the
calculation in this section distinctly emphasizes the overlap within the congested area. The
overlap and blockage costs of each track, as well as the fitness values of the panel p in
Figure 8b, are calculated as follows:

track 1: overlap cost: l11 + 2l12 + l13, blockage cost: 0
track 2: overlap cost: l21, blockage cost: l22
track 3: overlap cost: l31, blockage cost: 0
panel p: fitness value: l11 + 2l12 + l13 + l21 + l31 + β × l22

The proposed fitness calculation aims to mitigate severe conflicts by adjusting the
weight of the overlap cost and blockage cost in congested areas.

Property 1. The preprocessing strategy of the SLDPSO-TA can effectively reduce the number of
blockage cost calculations, a claim that can be empirically substantiated in Section 5.2.

The computation of blockage cost blkCostp at each iteration involves traversing all
blockages in a single computation, proving time-consuming for large-scale problems. To
address this challenge, a preprocessing strategy is introduced in this section to reduce
the number of blockage cost calculations. After the initialization of the particle swarm, a
look-up table of size |Ip × Tp| is promptly generated for each panel to store the overlap
information between iroutes and blockages. Table 3 illustrates the blockage cost associated
with placing iroute i on track t. By generating a look-up table of size 6 × 3 for the panel to
pre-store the potential blockage cost of each iroute, the particle requires only O(1) time to
obtain the blockage cost of the iroute during the iterative process.

Table 3. A look-up table for conflict information of a panel.

Blockage Cost ir1 ir2 ir3 ir4 ir5 ir6

tr1 b1,1 b2,1 b3,1 b4,1 b5,1 b6,1

tr2 b1,2 b2,2 b3,2 b4,2 b5,2 b6,2

tr3 b1,3 b2,3 b3,3 b4,3 b5,3 b6,3

4.6. Particle Updating Formulation

In the proposed algorithm, we mainly incorporate crossover and mutation operators
from a GA into the DPSO framework. These operators introduce genetic diversity into
the particle population, thus enhancing the exploration capabilities of the algorithm. The
crossover operator combines information from multiple particles, leading to better mixing
of superior solutions and improving the ability of the algorithm to effectively explore the
search space. On the other hand, the mutation operator helps to maintain the diversity of
the particle population, thus preventing premature convergence to a local optimum and
ensuring continued exploration for new regions of the solution space. Furthermore, since
the SLPSO algorithm fails to apply directly to discrete track assignment problems due to its
continuity, the crossover and mutation operators from the GA are applied to the particle
updates of SLPSO. In this way, we can discretize the SLPSO algorithm and make it more
suitable for solving the CMTA problem in this paper.

The particle update process of the SLDPSO-TA follows the following equation:

Xt
i = TF3(TF2(TF1(Xt−1

i , ω), c1), c2) (2)

where ω is the inertial weight, c1 and c2 are the acceleration factors. TF1 is the inertial
component, while TF2 and TF3 are the individual cognitive component and the social
cognitive component, respectively. Similarly, the inertial component of the SLDPSO-TA is
realized by the mutation operator, while the individual cognitive component and the social
cognitive component are enacted by the crossover operator. Additionally, we propose a
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novel encoding method and incorporate a social learning mode based on the example pool
to address the CMTA problem.

Based on Equation (2), we propose the particle updating model as follows:

(1) Inertial component

TF1 represents the inertial component of the particle and is achieved through the
mutation operator as follows:

Wt
i = TF1(Xt−1

i , ω)=

{
MT(Xt−1

i ), r1 < ω

Xt−1
i , otherwise

(3)

where ω is the inertial weighting factor, MT(·) is a multi-point mutation operation used for
track assignment, and r1 is a randomly generated number distributed on the interval [0, 1).

The implementation process of the multi-point mutation operation, denoted as MT(·)
in Equation (3), is detailed below. The algorithm randomly selects num positions and
updates the encoded values at these positions to integers within the interval

[
1, T(pi,j)

]
,

where T(pi,j) represents the total number of tracks in a panel, which is computed based
on the wire width at each layer and the minimum spacing requirement between the wires.
These details can be obtained from the global routing results of the test circuit.

Note that the variable num decreases linearly with the progression of iterations, leading
to a more pronounced mutation effect on particles during the early stages of iteration. This
effect gradually diminishes as the iteration progresses, thereby speeding up the convergence
of the algorithm. Figure 9 demonstrates the mutation operation of the SLDPSO-TA. It shows
the specific encoding conditions before and after the particle mutation when num = 2. It
can be seen that the mutation operation leads to the iroute ir4 and iroute ir7, originally
located on tracks 3 and 2, being reassigned to tracks 2 and 1 after mutation. Algorithm 2
shows the pseudocode of the multi-point mutation operation. Lines 1 to 6 set the number of
mutation points, where ir_size is the number of iroutes. Lines 7 to 20 describe the mutation
operation, where tr_size is the number of tracks.

Algorithm 2 Multi-point_Mutation_TA

Require: Particle p to be mutated
Ensure: The mutated particle p

1: Begin
2: num_init = 0.2 × ir_size;
3: num = DecFunc(num_init, 0, t);
4: if num < 1 then
5: num = 1;
6: end if
7: while num > 0 do
8: ir = Random(1, ir_size);
9: while true do

10: tr = Random(1, tr_size);
11: if tr ̸= p[ir] then
12: Update(p[ir], tr);
13: break;
14: else
15: continue;
16: end if
17: end while
18: num = num − 1;
19: end while
20: End



Electronics 2024, 13, 4571 13 of 23

mutation point

2       1       1       3       1       3       2      2      1 
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Xi’ 

mutation point

Figure 9. The multi-point mutation operation of the SLDPSO-TA.

(2) Individual cognitive component

TF2 represents the individual cognitive component of the particle and is implemented
by the crossover operator as follows:

St
i = TF2(Wt

i , c1) =

{
CT(Wt

i , XP
i ), r2 < c1

Wt
i , otherwise

(4)

where c1 determines the probability that the particle crosses with its historical optimal
solution XP

i , CT(·) is a crossover operator with XP
i as its crossover object, and r2 is a

randomly generated number distributed on the interval [0, 1).

(3) Social cognitive component

TF3 represents the social cognitive component of the particle and is implemented by
the crossover operator as follows:

Xt
i = TF3(St

i , c2) =

{
CT(St

i , XP
k ), r3 < c2

St
i , otherwise

(5)

where c2 determines the probability of the particle crossing with the historical optimal
solution (XP

k , where 1 ≤ k ≤ i − 1) of any particle in the learning example pool, CT(·) is a
crossover operator with XP

k as its crossover object, and r3 is a randomly generated number
in the interval [0, 1).

Figure 10 shows the crossover operation of the SLDPSO-TA. The first line represents the
learning object of the particle, which can be either the pbest XP

i of particle i or the pbest XP
k

of any outstanding particle k in the example pool. The second and third lines represent the
specific encodings before and after the crossover, respectively. The particle undergoes social
learning by updating values in the crossover interval of length clen(1 ≤ clen ≤ |I(pi,j)|) to
match the values in the corresponding interval of the learning object, bringing it closer to
either XP

k or XP
i . Based on the example pool, the social learning objects of all particles are

intentionally diversified in the same iteration. This mechanism provides particles with the
opportunity to explore a broader range of solutions. Algorithm 3 shows the pseudocode of
the crossover operation, where Lines 1 to 6 define the crossover interval, and Lines 7 to 10
perform the crossover operation.

3       2       1       1       2       3       2      2      1 

2       1       1       3       1       3       2      2      1 

2       2       1       1       2       3       2      2      1 

Xi

Xi’

/P P
i kX X

2 1 3 2/r c r c< <

Figure 10. The crossover operation of the SLDPSO-TA.
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Algorithm 3 Crossover_TA
Require: Particle p to be crossed, Learning object q
Ensure: Particle after crossover

1: Begin
2: ir1 = Random(1, ir_size);
3: ir2 = Random(1, ir_size);
4: if ir1 > ir2 then
5: Swap(ir1, ir2);
6: end if
7: for ir : ir1 to ir2 do
8: Update(p[ir], q[ir]);
9: end for

10: End

4.7. Refining Strategy

Overlap conflict is a critical metric in track assignment. To further improve the quality
of the track assignment solution, the SLDPSO-TA employs a negotiation-based rip-up and
reroute strategy to refine the solution. This refining strategy can reasonably rip up and
reassign iroutes in congested areas to reduce the congestion across the entire panel.

Definition 8 (History cost). The history cost is defined as the number of overlaps between iroutes
or between iroutes and blockages, resulting from the reassignment operation. Specifically, for an
iroute on a track, the history cost is the sum of the history costs associated with all unit intervals
covered by that iroute. Each of these unit intervals has a history cost whose value is the number of
overlaps caused by the reassignment operation on that interval.

The history cost is a crucial metric to accurately reflect the congestion. Therefore, the
history cost is considered a vital component in the cost calculation of the refining strategy.
At the beginning of the refining strategy, the history cost of each unit interval on each track
is initialized to 0. When an iroute is reassigned and conflicts occur, the value of each unit
interval corresponding to the overlapping part is increased by 1. The schematic of the
history cost calculation is shown in Figure 11. It can be seen from Figure 11 that the coded
values of the unit intervals between the dashed lines are all increased by 1.

unit interval overlap interval

track

0      0      0       1       1      1      0      0      0       0      0       0      0

0       0      0      1      2       2      1       1      1      0      0       0      0

before 

iroute to be reassigned

after

Figure 11. The history cost calculation.

The refining strategy of the SLDPSO-TA is organized into the following two phases:

(1) Select an iroute for reassignment. An iroute with the maximum cost is selected by
using the following cost function:

removeCost(ir, tr) = overlapCostir,tr + historyCostir,tr (6)

where overlapCostir,tr and historyCostir,tr are the overlap cost reduced when the iroute
ir is removed from the track tr and the history cost of ir, respectively.

(2) Determine the target track. The track to which the iroute is reassigned is determined
using the following cost function:
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addCost(ir, tr) = 0.1 × wlCostir,tr + α × overlapCostir,tr
+ β × blkCostir,tr + historyCostir,tr

(7)

where wlCostir,tr represents the wirelength cost when iroute ir is on track tr. Addition-
ally, overlapCostir,tr and blkCostir,tr denote the increased overlap cost and blockage
cost, respectively, resulting from assigning ir to track tr. The coefficients α and β are
utilized to adjust the weights of the overlap cost and blockage cost.

Note that the value of α increases with the number of iterations. This ensures the
optimization of iroutes in the early phases of iterations, gradually shifting the focus towards
the optimization of overlap conflicts. Meanwhile, β is still set to 100,000 to prevent an
increase in blockage conflicts.

4.8. Time Complexity Analysis

Lemma 1. Given a panel with I iroutes, N pins, and B blockages, let the population size be M, the
number of iterations of the particles be T, and the number of iterations of the refining strategy be
r. Then, the approximate time complexity of the SLDPSO-TA is O(MT × (I2+Mlog2M) + r ×
(I2+N+B)).

Proof. We analyze the time complexity of the SLDPSO-TA in three parts: the greedy
strategy-based initial assignment, the iteration of particles, and the refining strategy.

(1) In Step 2, the initial population solution of the SLDPSO-TA is generated, and the
iroutes are first sorted with the time complexity of O(Ilog2 I). Then, the greedy strategy-
based assignment method is performed in four different orders. This assignment process
involves calculating the cost associated with the assignment to determine the assigned track.

We analyze time complexity from two parts, i.e., the calculation of the wirelength cost
and conflict cost, respectively. First, we consider the wirelength cost incurred by iroutes
when they are placed on the individual tracks. Since the wirelength cost of local nets
takes only linear time, the time complexity of this part is mainly influenced by iroutes in
global nets. Specifically, the calculation involves determining the distance between the
iroute placed on each track and all components of its net, resulting in a time complexity
of O(I + N). Second, we consider the conflict cost caused by an iroute being placed on a
track. This part requires traversing all blockages and assigned iroutes on the track where
the iroute is located, resulting in a time complexity of O(I + B). Consequently, the time
complexity of the greedy assignment phase to assign all iroutes is O(I × (I + N + B)).
The mutation and selection operators are used to screen the initial population, where the
complexity of the mutation operation is constant time and the complexity of the selection
operation depends on the sorting algorithm as O(Mlog2M). In summary, the approximate
time complexity of this phase is O(I × (I + N + B) + Mlog2M).

(2) In Steps 3–6, the iterative part of the particles includes the mutation operation, the
crossover operation, and the fitness calculation. The time complexity of both mutation and
crossover operations is constant time. The fitness calculation includes the calculation of the
blockage cost and the overlap cost. Since the blockage cost is calculated using a look-up
table-based preprocessing strategy, which takes only constant time, the time complexity of
blockage cost calculation for the whole track assignment solution is O(I). For overlap cost
calculation, all iroutes on each track are traversed twice, leading to a complexity of O(I2).
Updating the example pool for each particle is mainly dependent on the sorting algorithm,
resulting in a complexity of O(Mlog2M). Considering the population size M and the
number of iterations T, the overall time complexity is thus O(MT × (I2+Mlog2M)).

(3) In Step 8, as the history cost of the relevant iroutes on the original track needs
to be updated at the end of each rip-up and reroute operation, its time complexity is
approximately O(I). In each iterative operation, iroutes to be reassigned are first selected
according to Equation (6). The time of this part is mainly determined by the overlap cost
calculation time for ripping up iroutes, with the time complexity of O(I2). Next, a track
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is selected for the ripped-up iroute using Equation (7). It is required here to calculate the
wirelength cost after reassignment, the increased overlap cost, the blockage cost, and the
sum of the history cost, with a time complexity of O(I+N+B). Thus, the time complexity
of the refining strategy for r iterations is approximated O(r × (I2+N+B)).

The sum of the time complexity of the above three parts is O(I × (I + N + B) +
Mlog2M + MT × (I2+Mlog2M) + r × (I2+N+B)). Compared with the other two parts,
the time complexity of the first part is negligible due to its small order of magnitude.
Therefore, the overall time complexity of the SLDPSO-TA is O(MT × (I2+Mlog2M) + r ×
(I2+N+B)).

5. Experimental Results

The proposed algorithm, the SLDPSO-TA, was implemented in the C/C++ language
and tested on a PC with a 2.6GHz CPU and 64GB of memory. To obtain global routing
results as benchmarks for the SLDPSO-TA, we adopted the global router NCTUgr [56] to
route the placement results generated by NTUplace4 [57] for the test circuit DAC2021 [58].
The benchmarks sb2 to sb19 are representative of modern industrial ASIC designs, with
numerous placement and routing blockages, more metal layers, varying width and spacing
across layers, etc. By experimenting with these benchmarks, this paper demonstrates that
the SLDPSO-TA can provide an excellent solution to real-world circuit problems and further
advance research in routability track assignment.

Due to the large scale of the problem, we configured the parameters as follows: M = 20
and iter = 400. The inertia weight factor linearly decreases from 0.95 to 0.4, the learning
factor c1 linearly decreases from 0.9 to 0.15, and the learning factor c2 linearly increases from
0.4 to 0.9. The parameter settings for the refining strategy align with those specified in [44].

5.1. Validation of Wire Model Considering Local Nets

To validate the importance of the local net, the extraction of iroutes is detailed in
Table 4. This table presents the following metrics for each benchmark: the total number of
nets (TN), the number of local nets (LN), the ratio of LN to TN (LN/TN), the number of
extracted total iroutes (TI), the number of iroutes extracted from local nets (LI), the ratio
of LI to TI (LI/TI), and the ratio of the number of assigned iroutes (TI/(TI-LI)). The last
column in the table displays the ratio of the number of assigned iroutes, indicating the ratio
of the iroutes extracted and assigned by the SLDPSO-TA to those in the previous work
(without considering local nets).

Table 4. The nets and extracted iroutes of each benchmark.

Bench TN LN LN/TN (%) TI LI LI/TI (%) TI/(TI-LI)

sb2 990,899 304,025 30.68 2,134,703 304,025 14.24 1.17
sb3 898,001 339,078 37.76 2,017,313 339,078 16.81 1.20
sb6 1,006,629 350,741 34.84 2,037,526 350,741 17.21 1.21
sb7 1,340,418 440,442 32.86 2,883,168 440,442 15.28 1.18
sb9 833,808 317,925 38.13 1,671,043 317,925 19.03 1.23

sb11 935,731 275,351 29.43 1,811,827 275,351 15.20 1.18
sb12 1,293,436 361,900 27.98 2,719,712 361,900 13.31 1.15
sb14 619,815 178,114 28.74 1,261,573 178,114 14.12 1.16
sb16 697,458 227,932 32.68 1,371,803 227,932 16.62 1.20
sb19 511,685 187,695 36.68 995,611 187,695 18.85 1.23

Avg 32.98 16.07 1.19

It can be seen from Table 4 that local nets constitute a significant proportion of the
total nets, with an average of 32.98% of the total nets. Moreover, iroutes extracted from
local nets account for 16.07% of the total iroutes on average. The SLDPSO-TA makes full
use of information from local nets to significantly increase the number of assigned iroutes.
Compared with the works that do not consider local nets, it can extract an additional 19%
more iroutes on average, thereby enhancing the accuracy of the track assignment solution.
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5.2. Validation of Preprocessing Strategy

The SLDPSO-TA employs a look-up table-based preprocessing strategy to reduce
the number of blockage cost calculations during particle iteration. Table 5 shows the
number of blockage cost calculations before and after implementing the preprocessing
strategy. The second and third columns of Table 5 depict the total number of extracted
iroutes (TI) and the total number of blockages (TB) for each test circuit, respectively. The
last column depicts the ratio of the number of blockage cost calculations before and after
implementing the preprocessing strategy. The experimental results demonstrate that the
number of blockage cost calculations is 297 times higher without the preprocessing strategy,
indicating the effectiveness of the look-up table-based preprocessing strategy in reducing
redundant computations.

Table 5. The number of blockage cost calculations with and without the preprocessing strategy.

Bench TI TB

The Calculation Times
of Blockage Cost (108) Ratio

(Without Preprocessing Strategy/
with Preprocessing Strategy)Without Preprocessing

Strategy
With Preprocessing

Strategy

sb2 2,134,703 30,975 60,898. 40 202.76 300
sb3 2,017,313 16,323 20,929.20 69.96 299
sb6 2,037,526 16,588 25,897.59 86.25 300
sb7 2,883,168 11,095 37,793.37 125.71 301
sb9 1,671,043 9261 17,311.78 57.61 300
sb11 1,811,827 12,660 25,162.48 83.81 300
sb12 2,719,712 3660 12,430.54 43.76 284
sb14 1,261,573 10,337 6622.52 22.25 298
sb16 1,371,803 8891 1503.28 5.20 289
sb19 995,611 9666 11,110.70 37.18 299

Avg 297

5.3. Validation of Refining Strategy

The negotiation-based refining strategy employs rip-up and reroute techniques to
alleviate congestion by relocating iroutes from congested areas to unoccupied tracks,
which significantly affects the further optimization of overlap conflicts. Table 6 shows the
comparison results of the proposed algorithms with and without the refining strategy. It
shows that the refining strategy achieves an average optimization of 26.61% in overlap cost,
with only a 6.95% increase in wirelength cost, while ensuring that the blockage conflicts
are not degraded. Note that the most optimized overlap conflict is sb12, where the overlap
cost can be reduced by 43.88%. Even in the least optimized benchmark, namely sb1, there
is still a 16.34% reduction in overlap cost.

Table 6. Comparison of optimization performance of SLDPSO-TA with and without refining strategy.

Bench
Without Refining Strategy With Refining Strategy Optimization Rate (%)

WL (106) OC (106) BC (106) WL (106) OC (106) BC (106) WL OC BC

sb2 25.3153 3.2743 0.337 26.8770 2.7393 0.337 −6.17 16.34 0.00
sb3 24.0629 2.4034 0.3251 25.3798 1.9507 0.3251 −5.47 18.84 0.00
sb6 24.9646 2.1221 0.2305 26.7851 1.6457 0.2305 −7.29 22.45 0.00
sb7 37.7512 2.1602 0.2114 40.3764 1.5342 0.2114 −6.95 28.98 0.00
sb9 20.8546 1.3781 0.1459 22.6642 0.9656 0.1459 −8.68 29.93 0.00
sb11 22.2498 1.1579 0.2235 23.7883 0.7856 0.2235 −6.91 32.15 0.00
sb12 36.1468 1.4251 0.0351 39.1348 0.7997 0.0351 −8.27 43.88 0.00
sb14 15.4885 1.0563 0.2596 16.2734 0.8168 0.2596 −5.07 22.67 0.00
sb16 16.6469 1.5372 0.1422 17.6732 1.2453 0.1422 −6.17 18.99 0.00
sb19 12.2924 0.7302 0.0863 13.3398 0.4972 0.0863 −8.52 31.91 0.00

Avg −6.95 26.61 0.00
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Since the overlap conflict is a critical issue in routing, we prioritize the optimization
of the overlap cost as the primary objective for routability. The experimental results
demonstrate that while the refining strategy involves a tradeoff in wirelength, it leads to a
substantial reduction in overlapping conflicts.

5.4. Validation of Social Learning Mode

To enhance the exploration capability of the algorithm, the social learning model
based on the example pool is applied to the discrete PSO for the CMTA problem, thereby
improving the quality of the solution. To verify the effectiveness of the social learning
model, Table 7 shows the comparison results of the DPSO-TA [45] without the social
learning model and the SLDPSO-TA with this model in terms of wirelength cost (WL),
overlap cost (OC), and blockage cost (BC). Note that the DPSO-TA realizes the social
cognition of particles by cross-learning with gbest during the particle swarm iteration. It
can be seen that the proposed algorithm is able to reduce the overlap cost by 0.36% on
average while keeping the wirelength cost and blockage cost almost unchanged. The
experimental results demonstrate that the proposed algorithm is capable of searching for
track assignment solutions with high quality by using the social learning model based on
the example pool.

Table 7. Comparison of SLDPSO-TA and DPSO-TA.

Benchmark
DPSO-TA SLDPSO-TA Optimization Rate (%)

WL (106) OC (106) BC (106) WL (106) OC (106) BC (106) WL OC BC

sb2 25.3148 3.2958 0.337 25.3153 3.2743 0.337 0.00 0.65 0.00
sb3 24.0618 2.4123 0.3251 24.0629 2.4034 0.3251 0.00 0.37 0.00
sb6 24.9597 2.1298 0.2305 24.9646 2.1221 0.2305 −0.02 0.36 0.00
sb7 37.7483 2.1693 0.2114 37.7512 2.1602 0.2114 −0.01 0.42 0.00
sb9 20.8509 1.3846 0.1459 20.8546 1.3781 0.1459 −0.02 0.47 0.00

sb11 22.2445 1.1653 0.2235 22.2498 1.1579 0.2235 −0.02 0.64 0.00
sb12 36.1442 1.4307 0.0351 36.1468 1.4251 0.0351 −0.01 0.39 0.00
sb14 15.4887 1.0591 0.2596 15.4885 1.0563 0.2596 0.00 0.26 0.00
sb16 16.6473 1.5401 0.1423 16.6469 1.5372 0.1422 0.00 0.19 0.07
sb19 12.2924 0.7291 0.0863 12.2924 0.7302 0.0863 0.00 −0.15 0.00

Average −0.01 0.36 0.01

5.5. Comparison with Existing Track Assignment Algorithms

The proposed algorithm employs the SLDPSO method based on the example pool to
find a track assignment solution with higher quality, and then adopts a negotiation-based
refining strategy to further reduce overlap conflicts. To validate the effectiveness of the
proposed algorithm, in this section, we compare the SLDPSO-TA with two existing track
assignment algorithms, namely WBM-TA [35] and NTA [44]. The comparison results are
shown in Table 8 and Table 9, respectively.

Table 8 shows the comparison results between the proposed algorithm and WBM-TA
in terms of WL, OC, and BC. It can be seen that the performance of the proposed algorithm
outperforms WBM-TA, with an average optimization of 8.94% and 76.09% for wirelength
cost and overlap cost, respectively. In particular, benchmark sb12 has the best overlap cost
optimization, which can reach up to 87.72%, while benchmark sb3 has the best wirelength
optimization, which can reduce the wirelength cost by 12.52%.

Moreover, Table 9 likewise shows the comparison results of the proposed algorithm
with NTA in terms of WL, OC, and BC. It can be seen from Table 9 that the SLDPSO-TA
still produces better results across all the benchmarks, with an average optimization of
1.85% in overlap cost, while maintaining the wirelength cost and blockage cost almost
unchanged. The results above demonstrate the effectiveness of the SLDPSO-TA and the
excellent optimization performance in terms of overlap cost.
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Table 8. Comparison of SLDPSO-TA and WBM-TA.

Benchmark
WBM-TA SLDPSO-TA Optimization Rate (%)

WL (106) OC (106) BC (106) WL (106) OC (106) BC (106) WL OC BC

sb2 29.1351 12.2716 0.337 26.8770 2.7393 0.337 7.75 77.68 0.00
sb3 29.0131 5.7738 0.3251 25.3798 1.9507 0.3251 12.52 66.21 0.00
sb6 29.7168 5.7673 0.2305 26.7851 1.6457 0.2305 9.87 71.46 0.00
sb7 43.9719 6.78 0.2114 40.3764 1.5342 0.2114 8.18 77.37 0.00
sb9 24.6343 3.967 0.1459 22.6642 0.9656 0.1459 8.00 75.66 0.00

sb11 26.0517 4.0935 0.2235 23.7883 0.7856 0.2235 8.69 80.81 0.00
sb12 41.0377 6.5105 0.0351 39.1348 0.7997 0.0351 4.64 87.72 0.00
sb14 18.3229 3.3449 0.2596 16.2734 0.8168 0.2596 11.19 75.58 0.00
sb16 19.5534 4.2229 0.1422 17.6732 1.2453 0.1422 9.62 70.51 0.00
sb19 14.6558 2.2504 0.0863 13.3398 0.4972 0.0863 8.98 77.91 0.00

Average 8.94 76.09 0.00

Table 9. Comparison of SLDPSO-TA and NTA.

Benchmark
NTA SLDPSO-TA Optimization Rate (%)

WL (106) OC (106) BC (106) WL (106) OC (106) BC (106) WL OC BC

sb2 26.8796 2.7856 0.337 26.8770 2.7393 0.337 0.01 1.66 0.00
sb3 25.3666 1.9713 0.3251 25.3798 1.9507 0.3251 −0.05 1.04 0.00
sb6 26.7965 1.6645 0.2305 26.7851 1.6457 0.2305 0.04 1.13 0.00
sb7 40.3769 1.5572 0.2114 40.3764 1.5342 0.2114 0.00 1.48 0.00
sb9 22.6652 0.9801 0.1459 22.6642 0.9656 0.1459 0.00 1.48 0.00
sb11 23.7821 0.8133 0.2235 23.7883 0.7856 0.2235 −0.03 3.41 0.00
sb12 39.1232 0.8177 0.0351 39.1348 0.7997 0.0351 −0.03 2.20 0.00
sb14 16.2738 0.8398 0.2596 16.2734 0.8168 0.2596 0.00 2.74 0.00
sb16 17.6729 1.265 0.1422 17.6732 1.2453 0.1422 0.00 1.56 0.00
sb19 13.3439 0.5065 0.0863 13.3398 0.4972 0.0863 0.03 1.84 0.00

Average 0.00 1.85 0.00

5.6. Routability Evaluation

Track assignment serves as a crucial intermediate stage, connecting global routing and
detailed routing, leveraging information from global routing to guide the detailed routing.
Moreover, compared with global routing, the routability evaluation can be performed more
efficiently through track assignment considering local nets, leading to accurate prediction
of congested routing areas.

To verify the effectiveness of the proposed algorithm for the routability evaluation
of different placers, we test circuits placed by the placers NTUplace4 [57], SimPLR [59],
and Ripple [60], respectively. As shown in Table 10, the last row shows the ratio of the
average wirelength cost, overlap cost, and blockage cost derived from the SLDPSO-TA for
the evaluation of the three placement results. It shows that routing on the results derived
from SimPLR has the highest wirelength and conflicts, while the placement result using
NTUplace4 has the highest routability. Therefore, routing based on NTUplace4 results is
the preferred choice among the above three placers. The above results also demonstrate
that the proposed algorithm, the SLDPSO-TA, can be useful in selecting placers with higher
routability, thereby providing enhanced guidance for subsequent routing tasks.
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Table 10. Comparison of track assignment results on NTUplace4, SimPLR and Ripple.

Benchmark
NTUplace4 SimPLR Ripple

WL (106) OC (106) BC (106) WL (106) OC (106) BC (106) WL (106) OC (106) BC (106)

sb2 26.8770 2.7393 0.337 31.0425 3.5038 0.3794 28.472 3.3361 0.3871
sb3 25.3798 1.9507 0.3251 27.6148 2.6558 0.3537 26.5608 2.8655 0.3134
sb6 26.7851 1.6457 0.2305 27.9432 1.9509 0.2549 27.2141 2.1161 0.2359
sb7 40.3764 1.5342 0.2114 46.6648 4.6852 0.5237 42.6287 2.7672 0.2696
sb9 22.6642 0.9656 0.1459 23.789 1.3044 0.1611 23.9412 1.5628 0.1407
sb11 23.7883 0.7856 0.2235 24.7795 1.2663 0.2752 24.7921 1.1349 0.2309
sb12 39.1348 0.7997 0.0351 41.1449 0.9209 0.0821 40.8504 1.2754 0.0517
sb14 16.2734 0.8168 0.2596 17.3188 1.1231 0.2797 16.8203 1.0911 0.251
sb16 17.6732 1.2453 0.1422 18.7137 1.6751 0.2209 17.5417 1.3284 0.1803
sb19 13.3398 0.4972 0.0863 14.1174 0.6448 0.1258 14.198 0.7331 0.1032

Ratio 1 1 1 1.0766 1.5011 1.4560 1.0411 1.4311 1.1312

6. Conclusions

We have studied the CMTA problem considering the routing resources in both the
global and local nets, and proposed a track assignment algorithm based on social learning
discrete particle swarm optimization to solve it. By designing a simple and effective integer
coding method, the search space is expanded to improve the performance of the algorithm.
Moreover, an effective fitness function is designed to optimize both the conflict cost and the
wirelength cost. Then, a higher-quality initial population is provided for the SLDPSO-TA
based on four different routing assignment orders and a combination of mutation and
selection operators. Furthermore, the social learning model based on the example pool is
introduced to enhance population diversity during the particle updating process. Finally, a
refining strategy is utilized to further optimize the track assignment solution. The perfor-
mance of the SLDPSO-TA is validated on industrial test cases. The experimental results
show that compared with existing algorithms, our algorithm has the best overlap-conflict
optimization ability for industrial track assignment problems, which is of great reference
significance for solving the actual chip routing problems. Moreover, the SLDPSO-TA can
provide placers with more reliable routability evaluation and provide good guidance for
chip design and implementation. Future research can be carried out in two directions. The
first direction involves improving the performance of SLDPSO by integrating various do-
main topologies and mutation and crossover operators, and employing diverse cooperation
and competition mechanisms. The second direction considers more routing factors, such as
crosstalk and timing convergence, to provide more effective guidance for the execution of
detailed routing.
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