
Citation: Chang, B.R.; Tsai, H.-F.;

Chang, W.-S. Accelerating Die Bond

Quality Detection Using Lightweight

Architecture DSGβSI-Yolov7-Tiny.

Electronics 2024, 13, 4573. https://

doi.org/10.3390/electronics13224573

Academic Editors: Hyeonjoon Moon

and Lien Minh Dang

Received: 22 October 2024

Revised: 11 November 2024

Accepted: 17 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Accelerating Die Bond Quality Detection Using Lightweight
Architecture DSGβSI-Yolov7-Tiny
Bao Rong Chang 1 , Hsiu-Fen Tsai 2,* and Wei-Shun Chang 1

1 Department of Computer Science and Information Engineering, National University of Kaohsiung,
Kaohsiung 81148, Taiwan; brchang@nuk.edu.tw (B.R.C.); m1125513@mail.nuk.edu.tw (W.-S.C.)

2 Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: sftsai@kmu.edu.tw

Abstract: The die bonding process is one of the most critical steps in the front-end semiconductor
packaging process, as it significantly affects the yield of the entire IC packaging process. This research
aims to find an efficient, intelligent vision detection model to identify whether each chip correctly
adheres to the IC substrate; by utilizing the detection model to classify the type of defects occurring
in the die bond images, the engineers can analyze the leading causes, enabling timely adjustments to
key machine parameters in real-time, improving the yield of the die bond process, and significantly
reducing manufacturing cost losses. This study proposes the lightweight Yolov7-tiny model using
Depthwise-Separable and Ghost Convolutions and Sigmoid Linear Unit with β parameter (DSGβSI-
Yolov7-tiny), which we can apply for real-time and efficient detection and prediction of die bond
quality. The model achieves a maximum FPS of 192.3, a precision of 99.1%, and an F1-score of 0.97.
Therefore, the performance of the proposed DSGβSI-Yolov7-tiny model outperforms other methods.

Keywords: Yolov7; ghost convolution; depthwise-separable convolution; object detection; image
recognition; ModifiedSiLU; AdaptiveSiLU

1. Introduction

Figure 1 illustrates the complete IC packaging and testing process. AFE stands for
Assembly Front End, ABE represents Assembly Back End, FT refers to Final Test, WT is
Wafer Test, and PA indicates Pre-assembly. Die bond is one of the steps in the IC packaging
and testing process. In this process, Fab/BL (foundry) initially provides the wafer, and
then the IC packaging and testing factory tests the wafer to know any defects. Next, in
the pre-assembly phase, the wafer is cut to prepare for the subsequent assembly steps.
Moving into AFE, the die bond step involves securely attaching the die (bare die) to the
IC substrate. The main focus of this paper is to acquire the images of die bonds from
the machine and use an intelligent vision detection model to detect whether each chip
correctly adheres to the IC substrate. In the wire bond phase, the die is connected to the IC
substrate via bonding wires, allowing the electrical signals of a die to transmit to external
circuits. Afterward, the process moves into ABE, where molding encapsulates the die with
epoxy resin to protect it. Marking involves imprinting identification marks on the package
exterior, and plating applies surface treatments such as gold or tin to enhance electrical
connectivity and trim/form cuts. It shapes the packaged components into their final form.
Finally, the product undergoes testing and packaging. The entire process, including wafer
fabrication, testing, packaging, and shipping, constitutes the typical flow of semiconductor
production, as shown in Figure 1.

Die bonding is the process of cutting a wafer into individual dies and attaching each
die to the IC substrate using conductive mediums such as glue or gold balls, with glue
being the most commonly used material. This process includes several steps: preparing
the substrate, applying adhesive to the package base, positioning the die, applying heat

Electronics 2024, 13, 4573. https://doi.org/10.3390/electronics13224573 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13224573
https://doi.org/10.3390/electronics13224573
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0952-3591
https://orcid.org/0000-0002-7444-753X
https://doi.org/10.3390/electronics13224573
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13224573?type=check_update&version=1

Electronics 2024, 13, 4573 2 of 26

and pressure, cooling and curing, and testing and packaging. Die bonding technology
is widely used in electronic packaging, module manufacturing, and optical component
manufacturing. It is one of the most critical processes in front-end semiconductor packaging,
as it directly affects the quality of the entire IC packaging process. Real-time detection
and prediction of die bond yield are essential for adjusting machine production settings,
significantly improving the die bond yield [1] and reducing manufacturing costs. This
study used images from a renowned semiconductor company in southern Taiwan for data
preprocessing to create the training and testing datasets. People manually inspected the
collected data and evaluated each of the four sides and four corners of any single image for
adhesion quality. Fab then categorized these images into bond_good (including side_good
and corner_good), representing properly adhered dies, and bond_bad (including side_bad
and corner_bad), representing incorrectly adhered dies. To further determine which side or
corner was not fully adhered to, a hexadecimal type system was used, with two bits per
group, to specify die bond type.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 26

Figure 1. IC packaging and testing process.

Die bonding is the process of cutting a wafer into individual dies and attaching each
die to the IC substrate using conductive mediums such as glue or gold balls, with glue
being the most commonly used material. This process includes several steps: preparing
the substrate, applying adhesive to the package base, positioning the die, applying heat
and pressure, cooling and curing, and testing and packaging. Die bonding technology is
widely used in electronic packaging, module manufacturing, and optical component man-
ufacturing. It is one of the most critical processes in front-end semiconductor packaging,
as it directly affects the quality of the entire IC packaging process. Real-time detection and
prediction of die bond yield are essential for adjusting machine production settings, sig-
nificantly improving the die bond yield [1] and reducing manufacturing costs. This study
used images from a renowned semiconductor company in southern Taiwan for data pre-
processing to create the training and testing datasets. People manually inspected the col-
lected data and evaluated each of the four sides and four corners of any single image for
adhesion quality. Fab then categorized these images into bond_good (including
side_good and corner_good), representing properly adhered dies, and bond_bad (includ-
ing side_bad and corner_bad), representing incorrectly adhered dies. To further deter-
mine which side or corner was not fully adhered to, a hexadecimal type system was used,
with two bits per group, to specify die bond type.

Therefore, this paper aims to accelerate the calculation of the visual detection and
prediction of die bonds to achieve lightweight models and to try new activation functions
to improve the accuracy of detection and prediction to ensure the effectiveness of the die
bond process. This study refers to the related algorithm improved by Yolov7-tiny [2]. We
also explore the improved method of Yolov4-tiny in convolution calculation [3] and the
lightweight architecture of Yolov5 for fast wafer contour detection [4]. This study further
understands the application case of Yolov7-VD for the intelligent visual detection of vehi-
cles [5] and the practical process of die bond automatic optical inspection (AOI) and iden-
tification methods [6]. Therefore, to detect and predict whether the die adherence is com-
plete, this study has proposed Yolov4-tiny, Yolov5n [7], Yolov7, Yolov7-tiny, DSG-Yolov7,
DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny models for a comparison
of execution performance. Finally, the model DSGβSI-Yolov7-tiny, with the best execution
performance, was selected, and the best-trained model was exported to TensorFlow Lite
and then integrated into the control system of the die bond machine. The most significant
contribution of this study is the use of the optimal detection system to determine which
type of bond_bad it is. After summarizing the reasons, the engineers can promptly adjust
the critical parameters of the machine online to reduce the occurrence of electrical faults
or increased resistance. This approach can improve the die bond process yield and signif-
icantly reduce manufacturing cost losses.

Figure 1. IC packaging and testing process.

Therefore, this paper aims to accelerate the calculation of the visual detection and
prediction of die bonds to achieve lightweight models and to try new activation functions
to improve the accuracy of detection and prediction to ensure the effectiveness of the
die bond process. This study refers to the related algorithm improved by Yolov7-tiny [2].
We also explore the improved method of Yolov4-tiny in convolution calculation [3] and
the lightweight architecture of Yolov5 for fast wafer contour detection [4]. This study
further understands the application case of Yolov7-VD for the intelligent visual detection
of vehicles [5] and the practical process of die bond automatic optical inspection (AOI)
and identification methods [6]. Therefore, to detect and predict whether the die adher-
ence is complete, this study has proposed Yolov4-tiny, Yolov5n [7], Yolov7, Yolov7-tiny,
DSG-Yolov7, DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny models for a
comparison of execution performance. Finally, the model DSGβSI-Yolov7-tiny, with the
best execution performance, was selected, and the best-trained model was exported to
TensorFlow Lite and then integrated into the control system of the die bond machine. The
most significant contribution of this study is the use of the optimal detection system to
determine which type of bond_bad it is. After summarizing the reasons, the engineers can
promptly adjust the critical parameters of the machine online to reduce the occurrence of
electrical faults or increased resistance. This approach can improve the die bond process
yield and significantly reduce manufacturing cost losses.

2. Related Work
2.1. Literature Review

Applications of convolutional neural networks (CNNs) for object detection and image
recognition, developed on powerful computing platforms, often face challenges when

Electronics 2024, 13, 4573 3 of 26

deployed on embedded platforms for portable devices. These platforms typically have
limited hardware resources, preventing the applications from performing as expected to
complete tasks. A key challenge is lightening models while maintaining a certain level of
precision to accelerate execution speed, making them practical and efficient when deployed
on embedded platforms.

Sandler et al. [8] discussed MobileNet, a lightweight deep neural network (DNN)
model with fewer parameters and reduced computational complexity. Additionally,
Howard et al. [9] studied how MobileNets utilize depthwise separable convolutions (DSCs),
which consist of 1 × 1 pointwise convolutions (PWCs) and depthwise convolutions (DWCs),
to reduce model complexity. This decomposition significantly reduces the amount of com-
putation and the number of parameters, improving computational efficiency several times
compared to standard convolutions. Furthermore, Hsu et al. [10] explored how depthwise
separable convolutions enhance computational efficiency and model performance in dense
prediction tasks. Depthwise separable convolutions can improve the computational speed
of the model and achieve better prediction results while maintaining a small model size.

Additionally, Zhang et al. [11] combined Yolov5 and GhostNet to detect and identify
seven types of orchard pests in real-time, using feature maps, heatmaps, and loss curves
to explain the advantages of their method. Smaller neural networks are better suited
for deployment on FPGA and other memory-limited embedded devices. This research
provides a method for deploying algorithms on embedded devices. Sun et al. [12] explored
the integration of the Ghost module into the Yolov7 architecture, creating a lightweight and
efficient object detection model called Ghost-YoLov7-SIoU. Ghost-YoLov7-SIoU integrates
Ghost modules into the backbone and neck to replace some traditional layers. Experimental
results demonstrated the effectiveness of this method in improving detection efficiency
while ensuring detection precision.

Lang et al. [13] studied the Yolov7-tiny architecture, which achieves a lightweight
design by streamlining the original Yolov7 backbone, neck, and head, making it more
suitable for running on resource-constrained devices. The integration of GhostNet further
improved the computational efficiency of the model, significantly reducing the compu-
tational and storage requirements while maintaining high performance. Addressing the
issues of inaccurate human and vehicle detection and slow detection speeds in nighttime
scenarios, where Yolov7-tiny fails to meet the demands, Yang et al. [14] proposed adding the
Ghostnet V2 module to the Yolov7-tiny backbone to reduce parameters. They also replaced
the LeakyReLU activation function in the convolutional layers with the FReLU function.
The model introduced the omni-dimensional dynamic convolution (ODConv) module, the
C3 module, and the parameter-free attention module SimAM. Experimental results showed
an inference speed of 47 fps, a 0.64% decrease in mAP, and a 59% reduction in floating-point
operations, demonstrating significant performance improvements. Regarding the other
detection methods, Shafiee Sarvestani et al. [15] proposed incorporating the generated crack
maps into classic quality assessment (QA) models, enabling many advances in applying
3D textured meshes. Song et al. [16] explored end-to-end pedestrian detection and focused
on training a pedestrian detection model by discarding non-maximum suppression (NMS)
post-processing.

2.2. The Yolov4-Tiny Model

The Yolov4-tiny [3] model is a streamlined version of Yolov4, designed to be a more
lightweight model specifically for devices requiring fast inference and limited resources,
such as mobile devices and embedded systems. Compared to Yolov4, the Yolov4-tiny
model simplifies its structure by reducing convolutional layers and feature pyramids to
lower computational costs. Its backbone is CSPDarknet53-tiny, incorporating the CSPNet
(Cross-Stage Partial Network) design into the Darknet network to enhance inference speed
while maintaining a certain level of precision. This design allows the model to retain
the high-efficiency feature extraction capabilities of Yolov4 while reducing the number
of parameters.

Electronics 2024, 13, 4573 4 of 26

Yolov4-tiny, with its lower complexity, can achieve real-time object detection. Its
prominent architecture includes two feature extraction layers. After extracting features
through CSPDarknet53-tiny, they are input into two different-sized convolutional kernels,
producing two sets of feature maps. These feature maps, through anchor boxes at different
scales, are used to predict bounding boxes for detecting objects of varying sizes. Although
Yolov4-tiny sacrifices some precision compared to the full Yolov4 model, it offers significant
advantages in real-time performance and efficiency, making it well-suited for fast detection
scenarios such as vehicle tracking, surveillance systems, or other resource-constrained
applications, as shown in Figure 2. In Figure 2, the input is a single source image, including
three red, green, and blue images, and the output is the object detection and classification.
This paper has defined the input/output of yolo-related models in the same way in all the
following sections.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 26

model simplifies its structure by reducing convolutional layers and feature pyramids to
lower computational costs. Its backbone is CSPDarknet53-tiny, incorporating the CSPNet
(Cross-Stage Partial Network) design into the Darknet network to enhance inference
speed while maintaining a certain level of precision. This design allows the model to retain
the high-efficiency feature extraction capabilities of Yolov4 while reducing the number of
parameters.

Yolov4-tiny, with its lower complexity, can achieve real-time object detection. Its
prominent architecture includes two feature extraction layers. After extracting features
through CSPDarknet53-tiny, they are input into two different-sized convolutional kernels,
producing two sets of feature maps. These feature maps, through anchor boxes at different
scales, are used to predict bounding boxes for detecting objects of varying sizes. Although
Yolov4-tiny sacrifices some precision compared to the full Yolov4 model, it offers signifi-
cant advantages in real-time performance and efficiency, making it well-suited for fast
detection scenarios such as vehicle tracking, surveillance systems, or other resource-con-
strained applications, as shown in Figure 2. In Figure 2, the input is a single source image,
including three red, green, and blue images, and the output is the object detection and
classification. This paper has defined the input/output of yolo-related models in the same
way in all the following sections.

Figure 2. Yolov4-tiny architecture.

2.3. The Yolov5n Model
Yolov5n [7] is the “nano” version of the Yolov5 series, designed to be even more light-

weight than Yolov5m and Yolov5s. Its goal is to optimize inference speed further and re-
duce the model size to suit extremely resource-limited application scenarios. It is the
smallest, fastest, and most parameter-efficient model in the Yolov5 family. It is ideal for
deployment on edge devices, Internet of Things (IoT) devices, and low-power embedded
systems.

Yolov5n inherits the core architecture of Yolov5, incorporating CSPNet as its back-
bone to enhance feature extraction efficiency. It also utilizes a Focus layer to transform
spatial information from input images into more useful low-level features. Compared to

Figure 2. Yolov4-tiny architecture.

2.3. The Yolov5n Model

Yolov5n [7] is the “nano” version of the Yolov5 series, designed to be even more
lightweight than Yolov5m and Yolov5s. Its goal is to optimize inference speed further
and reduce the model size to suit extremely resource-limited application scenarios. It
is the smallest, fastest, and most parameter-efficient model in the Yolov5 family. It is
ideal for deployment on edge devices, Internet of Things (IoT) devices, and low-power
embedded systems.

Yolov5n inherits the core architecture of Yolov5, incorporating CSPNet as its backbone
to enhance feature extraction efficiency. It also utilizes a Focus layer to transform spatial
information from input images into more useful low-level features. Compared to other
Yolov5 versions, Yolov5n significantly reduces the number of parameters and model size,
enabling ultra-fast inference while maintaining essential detection precision. The model
employs multi-scale feature fusion techniques, such as Feature Pyramid Networks (FPN)
and Path Aggregation Networks (PANet), to enhance detection capabilities for objects of
various sizes.

Yolov5n also supports automatic anchor adjustment, mixed-precision training, and
data augmentation techniques, such as mosaic data augmentation, to improve the model’s

Electronics 2024, 13, 4573 5 of 26

training effectiveness and inference efficiency. While Yolov5n is the lightest model in
the Yolov5 series, its precision performance decreases slightly compared to other Yolov5
models. However, due to its lightweight architecture, it offers the fastest speed among
them. Its lightweight characteristics allow it to operate in limited hardware environments
and achieve real-time object detection, which is crucial for highly resource-constrained
scenarios, as shown in Figure 3.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 26

other Yolov5 versions, Yolov5n significantly reduces the number of parameters and model
size, enabling ultra-fast inference while maintaining essential detection precision. The
model employs multi-scale feature fusion techniques, such as Feature Pyramid Networks
(FPN) and Path Aggregation Networks (PANet), to enhance detection capabilities for ob-
jects of various sizes.

Yolov5n also supports automatic anchor adjustment, mixed-precision training, and
data augmentation techniques, such as mosaic data augmentation, to improve the model’s
training effectiveness and inference efficiency. While Yolov5n is the lightest model in the
Yolov5 series, its precision performance decreases slightly compared to other Yolov5 mod-
els. However, due to its lightweight architecture, it offers the fastest speed among them.
Its lightweight characteristics allow it to operate in limited hardware environments and
achieve real-time object detection, which is crucial for highly resource-constrained scenar-
ios, as shown in Figure 3.

Figure 3. Yolov5n architecture.

2.4. The Yolov7 Model
Yolov7 [5] is one of the most powerful versions in the Yolo series, featuring significant

optimizations in speed and precision compared to previous Yolo versions. Yolov7 em-
ploys multiple innovative technologies, including the Extended Efficient Layer Aggrega-
tion Networks (E-ELAN) architecture, designed to improve feature fusion efficiency and
model expressiveness. This design enhances the depth and width of the network struc-
ture, allowing for better extraction of multi-scale features and improved detection perfor-
mance for complex scenes and small targets.

Additionally, Yolov7 introduces a model reparameterization technique (RepConv),
which enables the model to use complex convolutional structures during optimization
training while converting to simplified structures during inference. This fact reduces com-
putational overhead and increases inference speed, greatly enhancing efficiency while
maintaining high precision. Yolov7 also incorporates a label assignment strategy, which
adaptively assigns positive and negative sample labels, improving detection performance

Figure 3. Yolov5n architecture.

2.4. The Yolov7 Model

Yolov7 [5] is one of the most powerful versions in the Yolo series, featuring significant
optimizations in speed and precision compared to previous Yolo versions. Yolov7 employs
multiple innovative technologies, including the Extended Efficient Layer Aggregation
Networks (E-ELAN) architecture, designed to improve feature fusion efficiency and model
expressiveness. This design enhances the depth and width of the network structure,
allowing for better extraction of multi-scale features and improved detection performance
for complex scenes and small targets.

Additionally, Yolov7 introduces a model reparameterization technique (RepConv),
which enables the model to use complex convolutional structures during optimization
training while converting to simplified structures during inference. This fact reduces
computational overhead and increases inference speed, greatly enhancing efficiency while
maintaining high precision. Yolov7 also incorporates a label assignment strategy, which
adaptively assigns positive and negative sample labels, improving detection performance
for targets of varying scales. It also supports dynamic label assignment (Dynamic Head),
enhancing the flexibility of the detection heads.

Yolov7 demonstrates superior performance on multiple public datasets (e.g., the
COCO dataset), achieving high inference speeds while maintaining excellent precision,
making it suitable for deployment on resource-constrained edge devices. Compared
to previous Yolov4 and Yolov5 versions, Yolov7 has significantly improved efficiency,
making it ideal for real-time object detection applications. In summary, Yolov7’s advanced
architecture design, reparameterization techniques, and efficient label assignment strategies

Electronics 2024, 13, 4573 6 of 26

enable it to achieve dual enhancements in speed and precision, making it one of the most
efficient object detection models currently available, as shown in Figure 4.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 26

for targets of varying scales. It also supports dynamic label assignment (Dynamic Head),
enhancing the flexibility of the detection heads.

Yolov7 demonstrates superior performance on multiple public datasets (e.g., the
COCO dataset), achieving high inference speeds while maintaining excellent precision,
making it suitable for deployment on resource-constrained edge devices. Compared to
previous Yolov4 and Yolov5 versions, Yolov7 has significantly improved efficiency, mak-
ing it ideal for real-time object detection applications. In summary, Yolov7’s advanced ar-
chitecture design, reparameterization techniques, and efficient label assignment strategies
enable it to achieve dual enhancements in speed and precision, making it one of the most
efficient object detection models currently available, as shown in Figure 4.

Figure 4. Yolov7 architecture.

2.5. The Yolov7-Tiny Model
Yolov7-tiny [2] is a lightweight object detection model in the Yolo series, designed

specifically for mobile devices or resource-constrained environments. Compared to the
full-size version of Yolov7, Yolov7-tiny incorporates several design simplifications to re-
duce computational resource requirements and enhance running speed. Yolov7-tiny fea-
tures fewer layers and parameters, typically including simplified convolutional and pool-
ing layers, making it lighter than the standard Yolov7 model. This simplification alters the
depth and detail of feature extraction, thereby reducing the computational burden.

Moreover, Yolov7-tiny employs fewer convolutional layers and introduces lighter
convolution operations in certain areas, such as depthwise separable or Ghost convolu-
tions, to further decrease computational demands. These modifications enable the model
to achieve faster inference speeds while maintaining a relatively low level of precision.
Overall, Yolov7-tiny significantly reduces computational complexity and model size while
retaining a certain level of detection capability, making it perform better in real-time ap-
plications, as shown in Figure 5.

Figure 4. Yolov7 architecture.

2.5. The Yolov7-Tiny Model

Yolov7-tiny [2] is a lightweight object detection model in the Yolo series, designed
specifically for mobile devices or resource-constrained environments. Compared to the
full-size version of Yolov7, Yolov7-tiny incorporates several design simplifications to reduce
computational resource requirements and enhance running speed. Yolov7-tiny features
fewer layers and parameters, typically including simplified convolutional and pooling
layers, making it lighter than the standard Yolov7 model. This simplification alters the
depth and detail of feature extraction, thereby reducing the computational burden.

Moreover, Yolov7-tiny employs fewer convolutional layers and introduces lighter
convolution operations in certain areas, such as depthwise separable or Ghost convolutions,
to further decrease computational demands. These modifications enable the model to
achieve faster inference speeds while maintaining a relatively low level of precision. Overall,
Yolov7-tiny significantly reduces computational complexity and model size while retaining
a certain level of detection capability, making it perform better in real-time applications, as
shown in Figure 5.

2.6. The DSG-Yolov7 Model

Figure 6 illustrates that the core of Ghost convolution (G Conv) [17] lies in introducing
the Ghost module, which reduces computational load by generating many virtual feature
maps. These virtual feature maps are created through linear combinations of a few actual
convolution results, significantly decreasing computational and storage demands while
retaining the main features. Additionally, Ghost convolution dramatically reduces the
number of parameters that need to be trained compared to traditional convolution layers.
This modification makes the model more lightweight and suitable for resource-constrained
environments. Ghost convolution can provide a higher feature representation capability

Electronics 2024, 13, 4573 7 of 26

at the exact computational cost. The model can perform well when dealing with complex
scenarios by generating more feature maps without excessive computational overhead.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 26

Figure 5. Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

2.6. The DSG-Yolov7 Model
Figure 6 illustrates that the core of Ghost convolution (G Conv) [17] lies in introduc-

ing the Ghost module, which reduces computational load by generating many virtual fea-
ture maps. These virtual feature maps are created through linear combinations of a few
actual convolution results, significantly decreasing computational and storage demands
while retaining the main features. Additionally, Ghost convolution dramatically reduces
the number of parameters that need to be trained compared to traditional convolution
layers. This modification makes the model more lightweight and suitable for resource-
constrained environments. Ghost convolution can provide a higher feature representation
capability at the exact computational cost. The model can perform well when dealing with
complex scenarios by generating more feature maps without excessive computational
overhead.

Figure 7 shows that depthwise separable convolution (DS Conv) [18] is a simple and
efficient convolution operation primarily used to reduce convolutional neural networks’
computational complexity and parameter count. The main benefits of applying depthwise
separable convolution include significantly reducing computation and parameter count.
Unlike standard convolution, which performs a single convolution operation, depthwise
separable convolution breaks it down into depthwise convolution and then pointwise
convolution, thus significantly reducing computational complexity. For example, in

Figure 5. Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

Figure 7 shows that depthwise separable convolution (DS Conv) [18] is a simple and
efficient convolution operation primarily used to reduce convolutional neural networks’
computational complexity and parameter count. The main benefits of applying depthwise
separable convolution include significantly reducing computation and parameter count.
Unlike standard convolution, which performs a single convolution operation, depthwise
separable convolution breaks it down into depthwise convolution and then pointwise con-
volution, thus significantly reducing computational complexity. For example, in standard
convolution, computational complexity increases linearly with the number of input chan-
nels, output channels, and kernel size, whereas, in depthwise separable convolution, this
manner reduces complexity to the combination of depthwise and pointwise convolutions,
which is especially advantageous for resource-limited environments such as mobile devices.
Furthermore, this method reduces the number of parameters in the network, helping to
lower the risk of model overfitting and improving inference speed.

Electronics 2024, 13, 4573 8 of 26

Electronics 2024, 13, x FOR PEER REVIEW 8 of 26

standard convolution, computational complexity increases linearly with the number of
input channels, output channels, and kernel size, whereas, in depthwise separable convo-
lution, this manner reduces complexity to the combination of depthwise and pointwise
convolutions, which is especially advantageous for resource-limited environments such
as mobile devices. Furthermore, this method reduces the number of parameters in the
network, helping to lower the risk of model overfitting and improving inference speed.

Figure 6. Ghost convolution.

Figure 7. Depthwise separable convolution.

Simplifying convolution calculations enables the model to be lightweight; therefore,
the convolution operation that combines depthwise separable convolution with Ghost

Figure 6. Ghost convolution.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 26

standard convolution, computational complexity increases linearly with the number of
input channels, output channels, and kernel size, whereas, in depthwise separable convo-
lution, this manner reduces complexity to the combination of depthwise and pointwise
convolutions, which is especially advantageous for resource-limited environments such
as mobile devices. Furthermore, this method reduces the number of parameters in the
network, helping to lower the risk of model overfitting and improving inference speed.

Figure 6. Ghost convolution.

Figure 7. Depthwise separable convolution.

Simplifying convolution calculations enables the model to be lightweight; therefore,
the convolution operation that combines depthwise separable convolution with Ghost

Figure 7. Depthwise separable convolution.

Simplifying convolution calculations enables the model to be lightweight; therefore,
the convolution operation that combines depthwise separable convolution with Ghost con-
volution [3] is abbreviated as DSG Conv to implement simplified convolution calculations,
as shown in Figure 8. Inspired by model design [10,13], replacing some convolution layers
in Yolov7 with DSGConv layers can achieve a lightweight model and effectively enhance
the inference speed, as illustrated in Figure 9.

Electronics 2024, 13, 4573 9 of 26

Electronics 2024, 13, x FOR PEER REVIEW 9 of 26

convolution [3] is abbreviated as DSG Conv to implement simplified convolution calcula-
tions, as shown in Figure 8. Inspired by model design [10,13], replacing some convolution
layers in Yolov7 with DSGConv layers can achieve a lightweight model and effectively
enhance the inference speed, as illustrated in Figure 9.

Figure 8. Depthwise separable and Ghost convolutions.

Figure 9. DSG-Yolov7 architecture. Note: k represents kernel size, and s stands for stride.

Figure 8. Depthwise separable and Ghost convolutions.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 26

convolution [3] is abbreviated as DSG Conv to implement simplified convolution calcula-
tions, as shown in Figure 8. Inspired by model design [10,13], replacing some convolution
layers in Yolov7 with DSGConv layers can achieve a lightweight model and effectively
enhance the inference speed, as illustrated in Figure 9.

Figure 8. Depthwise separable and Ghost convolutions.

Figure 9. DSG-Yolov7 architecture. Note: k represents kernel size, and s stands for stride. Figure 9. DSG-Yolov7 architecture. Note: k represents kernel size, and s stands for stride.

3. Methods

This chapter’s methodology involves preparing the data, conducting preprocessing,
selecting the model, setting parameters, and then training. Next, we can examine the
results of these trained models, such as the confusion matrix, PR curve, and loss graph,

Electronics 2024, 13, 4573 10 of 26

to determine whether they met the training objectives. After that, we will test the die
bond image recognition by classifying the die bond adhesion quality into bond_good and
bond_bad categories. Finally, we will evaluate and compare the performance of each model
based on their performance metric.

3.1. Data Collection and Preprocessing

The image data from a well-known semiconductor manufacturer in southern Taiwan
were collected from a top-down view of the machines, as shown in Figure 10. After
annotation, we can generate corresponding XML label files and categorize them into
side_good, side_bad, corner_good, and corner_bad. Then, the procedure converts the XML
label files into the VOC label format to serve as the input data format for the YOLO-related
models. For cross-dataset evaluation, a total of 3145 images were collected, divided into
training data (2204 images), validation data (467 images) from machine #1, and testing data
(474 images) from machine #2, with a distribution ratio of approximately 70%, 15%, and
15%, respectively.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 26

3. Methods
This chapter’s methodology involves preparing the data, conducting preprocessing,

selecting the model, setting parameters, and then training. Next, we can examine the re-
sults of these trained models, such as the confusion matrix, PR curve, and loss graph, to
determine whether they met the training objectives. After that, we will test the die bond
image recognition by classifying the die bond adhesion quality into bond_good and
bond_bad categories. Finally, we will evaluate and compare the performance of each
model based on their performance metric.

3.1. Data Collection and Preprocessing
The image data from a well-known semiconductor manufacturer in southern Taiwan

were collected from a top-down view of the machines, as shown in Figure 10. After anno-
tation, we can generate corresponding XML label files and categorize them into
side_good, side_bad, corner_good, and corner_bad. Then, the procedure converts the
XML label files into the VOC label format to serve as the input data format for the YOLO-
related models. For cross-dataset evaluation, a total of 3145 images were collected, divided
into training data (2204 images), validation data (467 images) from machine #1, and testing
data (474 images) from machine #2, with a distribution ratio of approximately 70%, 15%,
and 15%, respectively.

This study first trained the models for Yolov4-tiny, Yolov5n, Yolov7, and Yolov7-tiny
versions. Before training, the procedure must set hyperparameters. This study set the pa-
rameter epoch to 120, batch size to 16, and input image size to 1024 × 1024. The epoch
indicates the number of complete iterations over the dataset for training. The batch size
refers to the number of samples used to update the model weights after each training it-
eration. The specification of input image size accelerates object detection and image recog-
nition speed for the die bond. Similarly, this study applies the training process to the DSG-
Yolov7, DSG-Yolov7-tiny, and DSGSI-Yolov7-tiny lightweight models.

(a) (b)

(c) (d)

Electronics 2024, 13, x FOR PEER REVIEW 11 of 26

(e) (f)

Figure 10. Sample images of die bond categories. (a,c,e) bond_good; (b,d,f) bond_bad.

3.2. Recognition Data
During the testing phase, this study input the test set of 474 images into the trained

models for recognition, yielding identification results for each image in the test set. Each
image’s recognition results include a category and a confidence level. The categories in-
clude side_good, side_bad, corner_good, and corner_bad. The confidence level indicates
the model’s certainty in its prediction. Experimental results show that the confidence lev-
els for each part of all images are at least 95% or higher. If the die bond meets the condi-
tions for complete adhesion on all four die sides, the recognition result will indicate
side_good; otherwise, it will indicate side_bad. Similarly, if the die bond meets the condi-
tions for complete adhesion at all four die corners, it will display corner_good; otherwise,
it will show corner_bad, as illustrated in Figure 11.

(a) (b)

(c) (d)

Figure 10. Sample images of die bond categories. (a,c,e) bond_good; (b,d,f) bond_bad.

This study first trained the models for Yolov4-tiny, Yolov5n, Yolov7, and Yolov7-tiny
versions. Before training, the procedure must set hyperparameters. This study set the
parameter epoch to 120, batch size to 16, and input image size to 1024 × 1024. The epoch
indicates the number of complete iterations over the dataset for training. The batch size

Electronics 2024, 13, 4573 11 of 26

refers to the number of samples used to update the model weights after each training
iteration. The specification of input image size accelerates object detection and image
recognition speed for the die bond. Similarly, this study applies the training process to the
DSG-Yolov7, DSG-Yolov7-tiny, and DSGSI-Yolov7-tiny lightweight models.

3.2. Recognition Data

During the testing phase, this study input the test set of 474 images into the trained
models for recognition, yielding identification results for each image in the test set. Each
image’s recognition results include a category and a confidence level. The categories
include side_good, side_bad, corner_good, and corner_bad. The confidence level indicates
the model’s certainty in its prediction. Experimental results show that the confidence levels
for each part of all images are at least 95% or higher. If the die bond meets the conditions
for complete adhesion on all four die sides, the recognition result will indicate side_good;
otherwise, it will indicate side_bad. Similarly, if the die bond meets the conditions for
complete adhesion at all four die corners, it will display corner_good; otherwise, it will
show corner_bad, as illustrated in Figure 11.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 26

(e) (f)

Figure 10. Sample images of die bond categories. (a,c,e) bond_good; (b,d,f) bond_bad.

3.2. Recognition Data
During the testing phase, this study input the test set of 474 images into the trained

models for recognition, yielding identification results for each image in the test set. Each
image’s recognition results include a category and a confidence level. The categories in-
clude side_good, side_bad, corner_good, and corner_bad. The confidence level indicates
the model’s certainty in its prediction. Experimental results show that the confidence lev-
els for each part of all images are at least 95% or higher. If the die bond meets the condi-
tions for complete adhesion on all four die sides, the recognition result will indicate
side_good; otherwise, it will indicate side_bad. Similarly, if the die bond meets the condi-
tions for complete adhesion at all four die corners, it will display corner_good; otherwise,
it will show corner_bad, as illustrated in Figure 11.

(a) (b)

(c) (d)

Figure 11. Cont.

Electronics 2024, 13, 4573 12 of 26Electronics 2024, 13, x FOR PEER REVIEW 12 of 26

(e) (f)

Figure 11. Die bond recognition. (a,c,e) bond_good; (b,d,f) bond_bad.

3.3. Judgment of Detection Results and Types of Die Bonding
Figure 12 illustrates the die bond detection results from classification into four output

classes: side_good, side_bad, corner_good, and corner_bad. The fab defines judgment cri-
teria. The check considered a die bond as bond_good if the bonding wholly adhered to all
four die sides, all four die corners, any three die sides, or any three die corners; otherwise,
it is classified as bond_bad, as shown in Figure 12.

Figure 12. Judgment of categories with bond_good or bond_bad.

The die bond image is the input signal for the die bond detection model. In contrast,
the output signal consists of binary outputs indicating the bonding results for the chip’s
sides and corners, either good or bad [19], as shown in Figure 13. In Figure 13, if the
model’s output signal indicates the condition of side_good or corner_good, a “1” can be
assigned to the corresponding bit. Conversely, if the condition is side_bad or corner_bad,
a “0” can be assigned to the corresponding bit. The model output signal for the four sides
of the chip has a length of four bits, which designates the side bond code of the chip’s
sides. Similarly, the model output signal for the four corners of the chip also has a length

Figure 11. Die bond recognition. (a,c,e) bond_good; (b,d,f) bond_bad.

3.3. Judgment of Detection Results and Types of Die Bonding

Figure 12 illustrates the die bond detection results from classification into four output
classes: side_good, side_bad, corner_good, and corner_bad. The fab defines judgment
criteria. The check considered a die bond as bond_good if the bonding wholly adhered
to all four die sides, all four die corners, any three die sides, or any three die corners;
otherwise, it is classified as bond_bad, as shown in Figure 12.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 26

(e) (f)

Figure 11. Die bond recognition. (a,c,e) bond_good; (b,d,f) bond_bad.

3.3. Judgment of Detection Results and Types of Die Bonding
Figure 12 illustrates the die bond detection results from classification into four output

classes: side_good, side_bad, corner_good, and corner_bad. The fab defines judgment cri-
teria. The check considered a die bond as bond_good if the bonding wholly adhered to all
four die sides, all four die corners, any three die sides, or any three die corners; otherwise,
it is classified as bond_bad, as shown in Figure 12.

Figure 12. Judgment of categories with bond_good or bond_bad.

The die bond image is the input signal for the die bond detection model. In contrast,
the output signal consists of binary outputs indicating the bonding results for the chip’s
sides and corners, either good or bad [19], as shown in Figure 13. In Figure 13, if the
model’s output signal indicates the condition of side_good or corner_good, a “1” can be
assigned to the corresponding bit. Conversely, if the condition is side_bad or corner_bad,
a “0” can be assigned to the corresponding bit. The model output signal for the four sides
of the chip has a length of four bits, which designates the side bond code of the chip’s
sides. Similarly, the model output signal for the four corners of the chip also has a length

Figure 12. Judgment of categories with bond_good or bond_bad.

The die bond image is the input signal for the die bond detection model. In contrast,
the output signal consists of binary outputs indicating the bonding results for the chip’s
sides and corners, either good or bad [19], as shown in Figure 13. In Figure 13, if the
model’s output signal indicates the condition of side_good or corner_good, a “1” can be
assigned to the corresponding bit. Conversely, if the condition is side_bad or corner_bad, a
“0” can be assigned to the corresponding bit. The model output signal for the four sides of
the chip has a length of four bits, which designates the side bond code of the chip’s sides.
Similarly, the model output signal for the four corners of the chip also has a length of four

Electronics 2024, 13, 4573 13 of 26

bits, which designates the corner bond code of the chip’s corners. In other words, Figure 13
shows the arbitrary combination of the side and corner bond codes, representing the type
of die bond—the combinations of the two hexadecimal values, ranging from 00x to FFx.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 26

of four bits, which designates the corner bond code of the chip’s corners. In other words,
Figure 13 shows the arbitrary combination of the side and corner bond codes, representing
the type of die bond—the combinations of the two hexadecimal values, ranging from 00x
to FFx.

Figure 13. Any combination of the bond detection of the chip’s sides and corners.

Table 1 displays the various die bond types, where the index “s” represents the bond
code for the chip’s sides, the index “c” stands for the bond code for the chip’s corners, the
symbol “b” indicates the condition of bond_bad, and the symbol “g” denotes the condi-
tion of bond_good. Each index interprets a hexadecimal value ranging from 0x to Fx for
any code of the chip’s sides or corners. In Table 1, we can encode the arbitrary combina-
tions of the code of the chip’s sides and corners in hexadecimal from 00x to FFx. Combin-
ing two hexadecimal codes from 00x to FFx represents the type of die bond. Statistics on
the die bond type can identify the locations where bond defects predominantly occur on
the chip’s sides or corners. Consequently, the fab can adjust critical parameters of the ma-
chine promptly to improve the occurrence of such defects, thereby increasing the yield of
the die bond process and significantly reducing manufacturing cost losses.

Table 1. The type of die bond.

 s
 0 1 2 3 4 5 6 7 8 9 A B C D E F
c

0 b b b b b b b g b b b g b g g g
1 b b b b b b b g b b b g b g g g
2 b b b b b b b g b b b g b g g g
3 b b b b b b b g b b b g b g g g
4 b b b b b b b g b b b g b g g g
5 b b b b b b b g b b b g b g g g
6 b b b b b b b g b b b g b g g g
7 g g g g g g g g g g g g g g g g
8 b b b b b b b g b b b g b g g g
9 b b b b b b b g b b b g b g g g
A b b b b b b b g b b b g b g g g
B g g g g g g g g g g g g g g g g
C b b b b b b b g b b b g b g g g
D g g g g g g g g g g g g g g g g
E g g g g g g g g g g g g g g g g
F g g g g g g g g g g g g g g g g

Figure 13. Any combination of the bond detection of the chip’s sides and corners.

Table 1 displays the various die bond types, where the index “s” represents the bond
code for the chip’s sides, the index “c” stands for the bond code for the chip’s corners, the
symbol “b” indicates the condition of bond_bad, and the symbol “g” denotes the condition
of bond_good. Each index interprets a hexadecimal value ranging from 0x to Fx for any
code of the chip’s sides or corners. In Table 1, we can encode the arbitrary combinations
of the code of the chip’s sides and corners in hexadecimal from 00x to FFx. Combining
two hexadecimal codes from 00x to FFx represents the type of die bond. Statistics on the
die bond type can identify the locations where bond defects predominantly occur on the
chip’s sides or corners. Consequently, the fab can adjust critical parameters of the machine
promptly to improve the occurrence of such defects, thereby increasing the yield of the die
bond process and significantly reducing manufacturing cost losses.

Table 1. The type of die bond.

0 1 2 3 4 5 6 7 8 9 A B C D E F
c

s

0 b b b b b b b g b b b g b g g g

1 b b b b b b b g b b b g b g g g

2 b b b b b b b g b b b g b g g g

3 b b b b b b b g b b b g b g g g

4 b b b b b b b g b b b g b g g g

5 b b b b b b b g b b b g b g g g

6 b b b b b b b g b b b g b g g g

7 g g g g g g g g g g g g g g g g

8 b b b b b b b g b b b g b g g g

9 b b b b b b b g b b b g b g g g

A b b b b b b b g b b b g b g g g

B g g g g g g g g g g g g g g g g

C b b b b b b b g b b b g b g g g

D g g g g g g g g g g g g g g g g

E g g g g g g g g g g g g g g g g

F g g g g g g g g g g g g g g g g

Electronics 2024, 13, 4573 14 of 26

Figure 14 shows the storage of the predicted classification results from the tests in a
separate folder. Subsequently, this study will compile the actual classifications and the
expected results to create a confusion matrix for calculating precision. Additionally, we can
quickly assess the integrity of each chip’s bonding and continuously monitor the machine’s
operational status. If any issues arise, the engineer can adjust the machine’s parameters to
prevent excessive poor chip bonding.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 26

Figure 14 shows the storage of the predicted classification results from the tests in a
separate folder. Subsequently, this study will compile the actual classifications and the
expected results to create a confusion matrix for calculating precision. Additionally, we
can quickly assess the integrity of each chip’s bonding and continuously monitor the ma-
chine’s operational status. If any issues arise, the engineer can adjust the machine’s pa-
rameters to prevent excessive poor chip bonding.

Figure 14. Prediction classification with type of die bond.

3.4. Model Improvement
Following the DSG-Yolov7 model, this study also focuses on improving the Yolov7-

tiny model by ablation study using the trial and error of employing DSGConv to the dif-
ferent modules in the backbone, neck, and head to realize lightweight model enhance-
ment, and this model is referred to as DSG-Yolov7-tiny, as shown in Figure 15. Figure 15
illustrates the approach of using depthwise separable convolution combined with Ghost
Convolution to replace traditional convolution, achieving the goal of a lightweight model.
Some designs replace specific traditional convolution layers with GhostNet, which can
effectively reduce the model’s parameter count and enhance overall execution perfor-
mance [20]. Although GhostConv can significantly decrease computational load, using
traditional convolution in specific critical locations of the model is crucial for maintaining
inference precision. Therefore, in the critical nodes of the backbone and prediction sec-
tions, employing traditional convolution helps to preserve the stability of the network
structure and the object precision of the inference, as shown in Figure 15.

Figure 14. Prediction classification with type of die bond.

3.4. Model Improvement

Following the DSG-Yolov7 model, this study also focuses on improving the Yolov7-tiny
model by ablation study using the trial and error of employing DSGConv to the different
modules in the backbone, neck, and head to realize lightweight model enhancement, and
this model is referred to as DSG-Yolov7-tiny, as shown in Figure 15. Figure 15 illustrates
the approach of using depthwise separable convolution combined with Ghost Convolution
to replace traditional convolution, achieving the goal of a lightweight model. Some designs
replace specific traditional convolution layers with GhostNet, which can effectively reduce
the model’s parameter count and enhance overall execution performance [20]. Although
GhostConv can significantly decrease computational load, using traditional convolution in
specific critical locations of the model is crucial for maintaining inference precision. There-
fore, in the critical nodes of the backbone and prediction sections, employing traditional
convolution helps to preserve the stability of the network structure and the object precision
of the inference, as shown in Figure 15.

Electronics 2024, 13, 4573 15 of 26
Electronics 2024, 13, x FOR PEER REVIEW 15 of 26

Figure 15. DSG-Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

However, the DSGConv architecture for lightweight models decreases the complex-
ity of inference calculations, which may lead to a slight reduction in precision. Equation
(1) computes the Rectified Linear Unit (ReLU) activation function, where 𝑥 represents the
input and 𝑟𝑒𝑙𝑢ሺ𝑥ሻ stands for the output. In the DSG-Yolov7-tiny architecture, the activa-
tion function used is the LeakyRectified Linear Unit (LeakyReLU), an improvement of the
ReLU activation function. Equation (2) calculates LeakyReLU, where 𝑥 represents the in-
put, 𝐿𝑟𝑒𝑙𝑢ሺ𝑥ሻ stands for the output, and 𝛼 denotes the slope of the function’s output
when the input is negative; it is a small positive number, usually around 0.01. The ReLU
function outputs zero for negative input values, causing the neuron to lose its learning
ability. LeakyReLU addresses this issue by introducing a slight slope while retaining
ReLU’s computational simplicity and sparse activation characteristics. 𝑟𝑒𝑙𝑢ሺ𝑥ሻ ൌ ൜𝑥 𝑖𝑓 𝑥 ൒ 00 𝑖𝑓 𝑥 ൏ 0 (1)

𝐿𝑟𝑒𝑙𝑢ሺ𝑥ሻ ൌ ൜𝑥 𝑖𝑓 𝑥 ൒ 0𝛼𝑥 𝑖𝑓 𝑥 ൏ 0 (2)

3.5. Model Enhancement
As mentioned in the previous section, the LeakyReLU activation function outputs

with a fixed slope, so it may not optimally adapt to different data distributions or network
layers. On the other hand, the introduction of negative outputs by LeakyReLU can, in
some instances, affect the overall learning effectiveness of the network, leading to a de-
cline in model performance. Improving the activation function within the architecture can
enhance inference precision [21,22]. Therefore, this study modifies the activation function
in the DSG-Yolov7-tiny architecture, specifically replacing LeakyReLU with the Sigmoid

Figure 15. DSG-Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

However, the DSGConv architecture for lightweight models decreases the complexity
of inference calculations, which may lead to a slight reduction in precision. Equation (1)
computes the Rectified Linear Unit (ReLU) activation function, where x represents the
input and relu(x) stands for the output. In the DSG-Yolov7-tiny architecture, the activation
function used is the LeakyRectified Linear Unit (LeakyReLU), an improvement of the
ReLU activation function. Equation (2) calculates LeakyReLU, where x represents the
input, Lrelu(x) stands for the output, and α denotes the slope of the function’s output
when the input is negative; it is a small positive number, usually around 0.01. The ReLU
function outputs zero for negative input values, causing the neuron to lose its learning
ability. LeakyReLU addresses this issue by introducing a slight slope while retaining
ReLU’s computational simplicity and sparse activation characteristics.

relu(x) =
{

x i f x ≥ 0
0 i f x < 0

(1)

Lrelu(x) =
{

x i f x ≥ 0
αx i f x < 0

(2)

3.5. Model Enhancement

As mentioned in the previous section, the LeakyReLU activation function outputs
with a fixed slope, so it may not optimally adapt to different data distributions or network
layers. On the other hand, the introduction of negative outputs by LeakyReLU can, in some
instances, affect the overall learning effectiveness of the network, leading to a decline in
model performance. Improving the activation function within the architecture can enhance
inference precision [21,22]. Therefore, this study modifies the activation function in the
DSG-Yolov7-tiny architecture, specifically replacing LeakyReLU with the Sigmoid Linear

Electronics 2024, 13, 4573 16 of 26

Unit (SiLU). SiLU is a smooth activation function that helps reduce jitter during training
and fosters more stable gradient updates. Following the DSG-Yolov7 model, this study
also stresses the enhancing of the Yolov7-tiny model by ablation study using the trial and
error of employing SiLU, ModifiedSiLU, and AdaptiveSiLU to the different modules in the
backbone, neck, and head to improve the prediction precision of the proposed model, as
shown in Figure 15.

The characteristic of this activation function, which lies between linear and nonlinear,
allows SiLU to be more flexible in capturing subtle changes in input data compared to
other activation functions such as ReLU and LeakyReLU. Additionally, incorporating SiLU
improves the overall stability of gradients, and experimental results later confirmed a slight
increase in precision and precision.

SiLU, like LeakyReLU, also produces negative outputs for negative inputs. Equation (3)
evaluates the Sigmoid function, where x represents the input and σ(x) denotes the output.
When x is very large, e−x approaches zero, making σ(x) approach 1. When x is very small
(negative), e−x becomes very large, and σ(x) approaches 0. The Sigmoid function maps any
real input x to the interval [0, 1]. Equation (4) estimates the SiLU activation function, where
x represents the input, σ(x) stands for the Sigmoid function, and silu(x) is the output.
Similar to LeakyReLU, SiLU produces negative outputs for negative inputs.

σ(x) = 1/
(
1 + e−x) (3)

silu(x) = x·σ(x) (4)

In some cases, using SiLU only resulted in slight improvements in precision, leading
to the development of two variations related to SiLU: ModifiedSiLU and AdaptiveSiLU.
The purpose of adopting these revised versions of SiLU is to enhance inference speed while
maintaining high precision. Equation (5) calculates ModifiedSiLU, where β represents
a learnable parameter and Mosilu(x) stands for the output. ModifiedSiLU introduces
an adjustable β parameter to control the steepness of the curve. When x is large, σ(βx)
approaches 1, and when x is small, σ(βx) approaches 0. The initial β value is 1.0, which
limits the flexibility of function adjustment, resulting in a fixed curve slope. Therefore, β is
adjusted to optimize the activation effect in different layers, first increasing the value to 1.5
to achieve more robust nonlinear feature extraction. Then, β is gradually reduced to 1.25
for a flatter activation curve, resulting in better gradient flow.

Mosilu(x) = x·σ(βx) (5)

βa(x) is a neural network, and Equation (6) computes βa(x), where x represents the
input. The initial value of the first layer’s bias b1 is set to 0, and the initial value of the
output layer’s bias b2 is also set to 0. The initial values of the weight matrix W1 for the first
layer and W2 for the output layer are randomly generated. βa(x) behaves similarly to a
fixed β learning mechanism, providing greater flexibility and adaptability, enabling it to
handle input-related scaling. Equation (7) calculates AdaptiveSiLU, where x represents the
input, and the initial value of the bias b is −1. When b = −1, the function behaves more
like ReLU near x = 0, causing σ(βa(x)·x + b) ≈ 0.

βa(x) = W2·relu(W1x + b1) + b2 (6)

Apsilu(x) = x·σ(βa(x)·x + b) (7)

According to Xavier [23,24], Equation (8) evaluates the initial values of W1 and W2
as uniformly distributed random numbers, where W represents the initialized weight
matrix, and U(a, b) stands for the uniform distribution ranging from a to b. ni indicates
the input dimension of the layer, which will be the size of the input data 480 × 480, and
nout represents the output dimension of the layer, corresponding to the number of classes
nout = 4. The term

√
6 is the coefficient used in Xavier initialization to ensure the weights

Electronics 2024, 13, 4573 17 of 26

maintain a stable variance during forward propagation. After initializing the weight
matrixes W1 and W2, weight updates using backpropagation can change their values. First,
the network makes predictions and computes the error (loss). Then, backpropagation
calculates the loss gradient to the weights. Finally, the optimizer (such as gradient descent)
updates W1 and W2 by adjusting them in a direction that reduces the error. The training
repeated this process to gradually enhance the performance of the network. Therefore, the
input dimension of W1 is the output dimension of the previous layer (ni), and the output
dimension is the number of neurons in the hidden layer (nout). The input dimension of W2
is the output dimension of the hidden layer, and the output is one because it represents the
scaling factor βa(x).

W ∼ U

(
−

√
6√

(ni + nout)
,

√
6√

(ni + nout)

)
(8)

In Figure 16, the DSGβSI-Yolov7-tiny architecture is modified primarily in the back-
bone section. The network avoids setting all β values to 1.0, which would fix the slope of
the curve and reduce the flexibility of function adjustment; it uses ModifiedSiLU in the
early layers (0, 1, 5, and 10), with β starting at 1.5 and decreasing to 1.25 after two layers.
This approach allows the model to achieve better gradient flow. The later layers maintain
the original SiLU to ensure gradient stability, helping the model quickly extract prominent
features while balancing feature extraction and information transfer.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 26

maintain a stable variance during forward propagation. After initializing the weight ma-
trixes 𝑊ଵ and 𝑊ଶ, weight updates using backpropagation can change their values. First,
the network makes predictions and computes the error (loss). Then, backpropagation cal-
culates the loss gradient to the weights. Finally, the optimizer (such as gradient descent)
updates 𝑊ଵ and 𝑊ଶ by adjusting them in a direction that reduces the error. The training
repeated this process to gradually enhance the performance of the network. Therefore, the
input dimension of 𝑊ଵ is the output dimension of the previous layer (𝑛௜), and the output
dimension is the number of neurons in the hidden layer (𝑛௢௨௧). The input dimension of 𝑊ଶ is the output dimension of the hidden layer, and the output is one because it repre-
sents the scaling factor 𝛽௔(𝑥). 𝑊 ∼ 𝑈(െ √6ඥ(𝑛௜ + 𝑛௢௨௧) , √6ඥ(𝑛௜ + 𝑛௢௨௧)) (8)

In Figure 16, the DSGβSI-Yolov7-tiny architecture is modified primarily in the back-
bone section. The network avoids setting all β values to 1.0, which would fix the slope of
the curve and reduce the flexibility of function adjustment; it uses ModifiedSiLU in the
early layers (0, 1, 5, and 10), with β starting at 1.5 and decreasing to 1.25 after two layers.
This approach allows the model to achieve better gradient flow. The later layers maintain
the original SiLU to ensure gradient stability, helping the model quickly extract prominent
features while balancing feature extraction and information transfer.

Figure 16. DSGβSI-Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

In the neck section, the network employs AdaptiveSiLU to enable the model to han-
dle complex feature combinations in the middle part of the network. Finally, the network
utilizes AdaptiveSiLU again in the head (prediction) section, allowing the model to au-
tonomously determine the optimal activation function.

Figure 16. DSGβSI-Yolov7-tiny architecture. Note: k represents kernel size, and s stands for stride.

In the neck section, the network employs AdaptiveSiLU to enable the model to handle
complex feature combinations in the middle part of the network. Finally, the network
utilizes AdaptiveSiLU again in the head (prediction) section, allowing the model to au-
tonomously determine the optimal activation function.

Electronics 2024, 13, 4573 18 of 26

3.6. Build a Model

This study trained eight models, Yolov4-tiny, Yolov5n, Yolov7, Yolov7-tiny, DSG-Yolov7,
DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny, for predictions. Each model
randomly initialized the parameters, and during the training phase, the parameters were
gradually adjusted through trial and error, as shown in Table 2. Table 2 presents the optimized
parameter settings for each model in this experimental case. Figure 13 illustrates how the
models take images as input signals, using detection and prediction to determine the bonding
conditions of each die. The output signals indicate the die bond quality and the die bond type,
which can display the bonding status of the four die’s sides and four die’s corners.

Table 2. Hyperparameter settings.

Model Hyperparameters

Yolov4-tiny ep = 120, bs = 16, is = 1024 × 1024, op = SGD, act = Leaky ReLU, Sigmoid, tc = loss ≤ 10−3

Yolov5n ep = 120, bs = 16, is = 1024 × 1024, op = Adam, act = SiLU, Sigmoid, tc = loss ≤ 10−3

Yolov7 ep = 120, bs = 16, is = 1024 × 1024, op = AdamW, act = Leaky ReLU, Sigmoid, tc = loss ≤ 10−3

Yolov7-tiny ep = 120, bs= 16, is = 1024 × 1024, op = AdamW, act = Leaky ReLU, Sigmoid, tc = loss ≤ 10−3

DSG-Yolov7 ep = 120, bs= 16, is = 1024 × 1024, op = AdamW, act = Leaky ReLU, Sigmoid, tc = loss ≤ 10−3

DSG-Yolov7-tiny ep = 120, bs= 16, is = 1024 × 1024, op = AdamW, act = Leaky ReLU, Sigmoid, tc = loss ≤ 10−3

DSGSI-Yolov7-tiny ep = 120, bs= 16, is = 1024 × 1024, op = AdamW, act = SiLU, Sigmoid, tc = loss ≤ 10−3

DSGβSI-Yolov7-tiny ep = 120, bs= 16, is = 1024 × 1024, op = AdamW, act = ModifiedSiLU, AdaptiveSiLU, SiLU,
Sigmoid, tc = loss ≤ 10−3

Note: ep represents epoch, bs stands for batch size, is indicates image size, op means optimizer, ap denotes
activation function, and tc is termination condition.

3.7. The Workflow of the System

First, the system performs data preprocessing on the collected 3145 images provided
by the semiconductor manufacturer. Data preprocessing involved organizing the data,
using LabelImg to label each image, and converting the XML files into the VOC file format,
which YOLO accepts. Next, the dataset was divided into training, validation, and testing
sets, with approximate proportions of 70%, 15%, and 15%, respectively. During the training
phase, modeling sets the parameter epoch to 120, batch size to 16, and input image size to
1024 × 1024. The models selected for training include Yolov4-tiny, Yolov5n, Yolov7, and
Yolov7-tiny, along with the modified models DSG-Yolov7, DSG-Yolov7-tiny, DSGSI-Yolov7-
tiny, and DSGβSI-Yolov7-tiny. After the training, the testing phase involves inference and
recognition using the test set. Finally, we examine each model’s training and testing results
to evaluate their performance, as shown in Figure 17.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 26

Figure 17. The workflow of the system.

4. Experimental Results and Discussion
4.1. Experimental Environment

Table 3 displays the hardware configuration used in this experiment. Table 4 outlines
the software packages utilized in the experiment. Data preprocessing involved the use of
LabelImg to label each image. The next step was to use Jupyter Notebook to convert the
XML files into text files and divide the dataset. Then, the experiment used Anaconda
Prompt, Python, and PyTorch to execute training and recognition. The experiment uti-
lized TensorFlow to monitor the training progress. Finally, based on the recognition re-
sults for each image, this study categorized chips with complete bonding as bond_good
and those with incomplete bonding as bond_bad using Jupyter Notebook. Furthermore,
this study evaluated the performance of multiple models and used the Anaconda Prompt
to export the best model in TensorFlow Lite format for use in production line machinery.

Table 3. Hardware specifications.

Resource Workstation
GPU NVIDIA GeForce RTX 4070 Ti
CPU Intel(R) Xeon(R) W-2223 CPU @ 3.60 GHz

Memory 32 GB
Storage 1 TB × 1 (HDD)

Jetson Nano NVIDIA Maxwell™ architecture with 128 NVIDIA CUDA® cores

Table 4. List of packages.

Software Version
LabelImg 1.8

Anaconda® Individual Edition 4.9.2
Jupyter Notebook 6.1.4

TensorFlow v2.14.0
PyTorch 1.6
Python 3.6.9

4.2. Data Collection and Model Evaluation
We primarily used Anaconda 3 to train the Yolov5 series, Yolov4-tiny, Yolov7, and

Yolov7-tiny on a PC and then deployed them on a Jetson Nano embedded system to com-
pare the results of each model. Next, we also deployed the improved models on the Jetson
Nano for a comprehensive performance evaluation of all models. The data source com-
prised 3145 images from a well-known semiconductor manufacturer in southern Taiwan,

Figure 17. The workflow of the system.

Electronics 2024, 13, 4573 19 of 26

4. Experimental Results and Discussion
4.1. Experimental Environment

Table 3 displays the hardware configuration used in this experiment. Table 4 outlines
the software packages utilized in the experiment. Data preprocessing involved the use
of LabelImg to label each image. The next step was to use Jupyter Notebook to convert
the XML files into text files and divide the dataset. Then, the experiment used Anaconda
Prompt, Python, and PyTorch to execute training and recognition. The experiment utilized
TensorFlow to monitor the training progress. Finally, based on the recognition results for
each image, this study categorized chips with complete bonding as bond_good and those
with incomplete bonding as bond_bad using Jupyter Notebook. Furthermore, this study
evaluated the performance of multiple models and used the Anaconda Prompt to export
the best model in TensorFlow Lite format for use in production line machinery.

Table 3. Hardware specifications.

Resource Workstation

GPU NVIDIA GeForce RTX 4070 Ti
CPU Intel(R) Xeon(R) W-2223 CPU @ 3.60 GHz

Memory 32 GB
Storage 1 TB × 1 (HDD)

Jetson Nano NVIDIA Maxwell™ architecture with 128 NVIDIA CUDA® cores

Table 4. List of packages.

Software Version

LabelImg 1.8
Anaconda® Individual Edition 4.9.2

Jupyter Notebook 6.1.4
TensorFlow v2.14.0

PyTorch 1.6
Python 3.6.9

4.2. Data Collection and Model Evaluation

We primarily used Anaconda 3 to train the Yolov5 series, Yolov4-tiny, Yolov7, and
Yolov7-tiny on a PC and then deployed them on a Jetson Nano embedded system to
compare the results of each model. Next, we also deployed the improved models on the
Jetson Nano for a comprehensive performance evaluation of all models. The data source
comprised 3145 images from a well-known semiconductor manufacturer in southern
Taiwan, where the first dataset collected 2491 training images from machine #1, and the
second dataset 474 test images from machine #2. This experiment uses the data arrangement
to train and test the model to achieve the effect of cross-dataset evaluation. This study
annotated each image using the LabelImg software, followed by data preprocessing. The
data preprocess divided the training dataset into 2204 images (approximately 70%) for
training and 467 images (approximately 15%) for validation. The experiment tested various
object detection models on a workstation platform. During the training and validation
process, this study adopted k-fold cross-validation [25], selecting k = 5 to evaluate the Yolo-
related modeling comprehensively. Modeling recorded the training time for the same set of
training data on the workstation, and using Equation (9), we calculated the total inference
time ITi required for various object detection models on 474 test images (approximately
15%). In Equation (9), i represents the i-th object detection model used for image inference,
I stands for the total number of object detection models, x denotes the x-th test image,
X indicates the total number of test images, and EITi is the time taken to complete the
inference for each test image.

ITi = ∑X
x=1 EITi, where i = 1, 2, . . . , I, x = 1, 2, . . . , X (9)

Electronics 2024, 13, 4573 20 of 26

The experimental setup defined the test image size as 1024 × 1024, with a batch
size set to 16 and the number of iterations set to 120. In Table 5, the first row shows the
time required for training different object detection models based on the same parameter
settings. The second row calculates the time to infer 474 images within the same test
set. The experimental results indicate that the proposed DSGβSI-Yolov7-tiny model has a
shorter inference time than the other models.

Table 5. Training and inference times.

Phase Yolov4-Tiny Yolov5n Yolov7 Yolov7-Tiny DSG-Yolov7 DSG-
Yolov7-Tiny

DSGSI-
Yolov7-Tiny

DSGβSI-
Yolov7-Tiny

Training
(h) 30.1 14.9 58.8 46.9 56.4 3.6 3.6 4.1

Inference
(ms) 25.1 18.6 19.3 18.2 16.3 5.4 5.7 5.2

Table 6 lists each object detection model’s parameters and FLOPs (Gflops). In Table 6,
before applying DSGConv for making the models lightweight, the Yolov4-tiny model had
the highest number of parameters, while the Yolov5n model had the fewest. After the DSG
modifications, the models DSG-Yolov7, DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-
Yolov7-tiny all showed a significant reduction in the number of parameters, achieving the
goal of being lightweight.

Table 6. Parameters and flop.

Feature Yolov4-Tiny Yolov5n Yolov7 Yolov7-Tiny DSG-Yolov7 DSG-
Yolov7-Tiny

DSGSI-
Yolov7-Tiny

DSGβSI-
Yolov7-Tiny

Parameter
(#) 6,056,610 1,764,577 60,231,067 36,497,954 22,363,042 605,242 745,378 743,829

Flop
(Gflops) 14.0 4.1 13.2 103.2 61.3 1.6 1.9 1.8

4.3. Experimental Results

In Figure 18, the PR curve plots recall on the X-axis and precision on the Y-axis, with
each point representing different threshold values leading to varying recall and precision
results for the mean Average Precision (mAP) calculation. The mAP result is obtained
by summing the AP values calculated from recall and precision across all classes and
dividing by the total number of classes. Before applying DSGConv for lightweight Yolo-
related models, the Yolov7-tiny achieved the best precision, while Yolov4-tiny had the
lowest precision. After the DSG modifications, both DSG-Yolov7 and DSG-Yolov7-tiny
showed improved speed, but the omission of some complex calculations led to a slight
decrease in precision. However, with further refinement in the DSGSI-Yolov7-tiny model,
there was a slight improvement in model precision, and an additional enhancement in the
DSGβSI-Yolov7-tiny model resulted in even higher precision.

After the model training is complete, we can use visualization tools to present the
results of the loss plot. Under a batch size setting of 16, the loss plot for the DSGβSI-
Yolov7-tiny model after 120 training epochs is shown in Figure 19. During the 120 training
epochs, this study produced six plots to display the loss curves of the training precision. In
Figure 19, the first, second, and third rows represent the localization loss, confidence loss,
and matching loss between predictions and ground truth. The first and second columns
also represent the training loss and validation loss. In the second column, the abbreviation
“val” indicates validation.

Electronics 2024, 13, 4573 21 of 26

Electronics 2024, 13, x FOR PEER REVIEW 21 of 26

dividing by the total number of classes. Before applying DSGConv for lightweight Yolo-
related models, the Yolov7-tiny achieved the best precision, while Yolov4-tiny had the
lowest precision. After the DSG modifications, both DSG-Yolov7 and DSG-Yolov7-tiny
showed improved speed, but the omission of some complex calculations led to a slight
decrease in precision. However, with further refinement in the DSGSI-Yolov7-tiny model,
there was a slight improvement in model precision, and an additional enhancement in the
DSGβSI-Yolov7-tiny model resulted in even higher precision.

(a) (b)

(c) (d)

(e) (f)

Electronics 2024, 13, x FOR PEER REVIEW 22 of 26

(g) (h)

Figure 18. The precision–recall curve for the object detection model. (a) Yolov4-tiny; (b) Yolov5n; (c)
Yolov7; (d) Yolov7-tiny; (e) DSG-Yolov7; (f) DSG-Yolov7-tiny; (g) DSGSI-Yolov7-tiny; (h) DSGβSI-
Yolov7-tiny.

After the model training is complete, we can use visualization tools to present the
results of the loss plot. Under a batch size setting of 16, the loss plot for the DSGβSI-
Yolov7-tiny model after 120 training epochs is shown in Figure 19. During the 120 training
epochs, this study produced six plots to display the loss curves of the training precision.
In Figure 19, the first, second, and third rows represent the localization loss, confidence
loss, and matching loss between predictions and ground truth. The first and second col-
umns also represent the training loss and validation loss. In the second column, the ab-
breviation “val” indicates validation.

(a) (b) (c)

Figure 18. The precision–recall curve for the object detection model. (a) Yolov4-tiny; (b) Yolov5n;
(c) Yolov7; (d) Yolov7-tiny; (e) DSG-Yolov7; (f) DSG-Yolov7-tiny; (g) DSGSI-Yolov7-tiny; (h) DSGβSI-
Yolov7-tiny.

Electronics 2024, 13, 4573 22 of 26

Electronics 2024, 13, x FOR PEER REVIEW 22 of 26

(g) (h)

Figure 18. The precision–recall curve for the object detection model. (a) Yolov4-tiny; (b) Yolov5n; (c)
Yolov7; (d) Yolov7-tiny; (e) DSG-Yolov7; (f) DSG-Yolov7-tiny; (g) DSGSI-Yolov7-tiny; (h) DSGβSI-
Yolov7-tiny.

After the model training is complete, we can use visualization tools to present the
results of the loss plot. Under a batch size setting of 16, the loss plot for the DSGβSI-
Yolov7-tiny model after 120 training epochs is shown in Figure 19. During the 120 training
epochs, this study produced six plots to display the loss curves of the training precision.
In Figure 19, the first, second, and third rows represent the localization loss, confidence
loss, and matching loss between predictions and ground truth. The first and second col-
umns also represent the training loss and validation loss. In the second column, the ab-
breviation “val” indicates validation.

(a) (b) (c)

Electronics 2024, 13, x FOR PEER REVIEW 23 of 26

(d) (e) (f)

Figure 19. Loss plot of DSGβSI-Yolov7-tiny. (a) Box loss; (b) objectivity loss; (c) classified losses;
(d) verify box loss; (e) verify objectivity loss; (f) verify classification losses.

4.4. Performance Evaluation
Equation (10) calculates frames per second (FPS) to show the execution speed of ob-

ject detection. According to Equation (10), it computes 𝐹𝑃𝑆௝, the FPS obtained from dif-
ferent object detection models, where 𝐼𝑅𝐴𝐼𝑇௝ represents the time required for each image
in real-time video input using the different object detection models, 𝐽 stands for the total
number of object detection models, and 𝑗 denotes the calculation for the 𝑗-th object de-
tection model. 𝐹𝑃𝑆௝ = ଵூோ஺ூ்ೕ , 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, 2, … , 𝐽 (10)

Equation (11) evaluates object detection precision using mean Average Precision
(mAP), calculated by finding the average precision for each category and then computing
the overall average. Equation (11) estimates the 𝑚𝐴𝑃௟ for different object detection mod-
els, where 𝑙 represents the 𝑙 object detection model used for calculating 𝑚𝐴𝑃௟ , 𝐿
stands for the total number of object detection models, 𝐶௟ indicates the number of cate-
gories that a specific model needs to identify, 𝑘௟ denotes a specific category of the model,
and 𝐴𝑃௞೗ refers to the precision for that specific category within the model.

𝑚𝐴𝑃௟ = ∑ ஺௉ೖ೗಴೗ೖ೗సభ஼೗ , 𝑤ℎ𝑒𝑟𝑒 𝑘௟ = 1, 2, … ,𝐶௟ , 𝑙 = 1,2, … , 𝐿 (11)

Next, we evaluate the execution speed and precision of different object detection
models. After training various object detection models with the same parameters, we
tested them using a set of 474 images and plotted the results of the PR curve. Based on
Equations (10) and (11), we calculated the execution speed (FPS) and precision (mAP)
from the tests, as shown in Table 7.

Table 7 compares the performance of different versions of Yolo-related models, in-
cluding Yolov4-tiny, Yolov5n, Yolov7, and Yolov7-tiny, as well as the lightweight models
DSG-Yolov7, DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny. The perfor-
mance evaluation metrics include FPS, precision, recall, F1-score, and accuracy. Table 7
also displays the performance of these models across these metrics. The experimental re-
sults indicate that the DSGβSI-Yolov7-tiny model achieved the best FPS, precision, recall,
F1-score, and accuracy performance.

Figure 19. Loss plot of DSGβSI-Yolov7-tiny. (a) Box loss; (b) objectivity loss; (c) classified losses;
(d) verify box loss; (e) verify objectivity loss; (f) verify classification losses.

4.4. Performance Evaluation

Equation (10) calculates frames per second (FPS) to show the execution speed of object
detection. According to Equation (10), it computes FPSj, the FPS obtained from different
object detection models, where IRAIT j represents the time required for each image in real-
time video input using the different object detection models, J stands for the total number
of object detection models, and j denotes the calculation for the j-th object detection model.

FPSj =
1

IRAIT j
, where j = 1, 2, . . . , J (10)

Equation (11) evaluates object detection precision using mean Average Precision
(mAP), calculated by finding the average precision for each category and then computing
the overall average. Equation (11) estimates the mAPl for different object detection models,
where l represents the l object detection model used for calculating mAPl , L stands for
the total number of object detection models, Cl indicates the number of categories that a
specific model needs to identify, kl denotes a specific category of the model, and APkl

refers
to the precision for that specific category within the model.

mAPl =
∑Cl

kl=1 APkl

Cl
, where kl = 1, 2, . . . , Cl , l = 1, 2, . . . , L (11)

Electronics 2024, 13, 4573 23 of 26

Next, we evaluate the execution speed and precision of different object detection
models. After training various object detection models with the same parameters, we
tested them using a set of 474 images and plotted the results of the PR curve. Based on
Equations (10) and (11), we calculated the execution speed (FPS) and precision (mAP) from
the tests, as shown in Table 7.

Table 7. Performance indexes.

Metric Yolov4-Tiny Yolov5n Yolov7 Yolov7-Tiny DSG-Yolov7 DSG-
Yolov7-Tiny

DSGSI-
Yolov7-Tiny

DSGβSI-
Yolov7-Tiny

FPS 39.8 53.8 51.8 54.9 61.3 185.2 175.4 192.3
Precision 98.5 98.8 99.0 99.1 99.1 98.2 98.6 99.1

Recall 95.2 95.1 95.2 95.0 95.3 95.1 95.3 95.4
F1-score 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Accuracy 98.7 98.9 98.9 98.5 99.0 98.0 98.5 98.5

Note: the precision, recall, and accuracy values are given as percentages.

Table 7 compares the performance of different versions of Yolo-related models, in-
cluding Yolov4-tiny, Yolov5n, Yolov7, and Yolov7-tiny, as well as the lightweight models
DSG-Yolov7, DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny. The perfor-
mance evaluation metrics include FPS, precision, recall, F1-score, and accuracy. Table 7
also displays the performance of these models across these metrics. The experimental
results indicate that the DSGβSI-Yolov7-tiny model achieved the best FPS, precision, recall,
F1-score, and accuracy performance.

4.5. Discussion

First, regarding speed metrics (FPS), the Yolov7-tiny model achieved a fast inference
speed of 54.9 FPS. However, the inference speeds of the other four models—DSG-Yolov7,
DSG-Yolov7-tiny, DSGSI-Yolov7-tiny, and DSGβSI-Yolov7-tiny—were significantly higher
than that of the Yolov7-tiny model, with ratios of 1.12, 3.25, 3.19, and 3.5, respectively.
These results indicate that the DSG approach can significantly enhance inference speed.
Secondly, regarding the precision metric, the results for the four models mentioned above
were almost identical. The above suggests that the DSG approach did not significantly alter
the precision levels.

Additionally, regarding the accuracy metric, there were only slight differences among
the four models. The above indicates that the DSG method does not negatively impact
image recognition accuracy. Thus, the lightweight improvements made through DSGCONV
significantly enhance the inference speed of the models while maintaining a consistent
level of prediction precision and image recognition accuracy.

The DSGSI-Yolov7-tiny model, which employs the SIReLU activation function, achieved
the fastest inference speed, considerably boosting overall performance. However, to ensure
that the model maintains precision above 99%, the DSGβSI-Yolov7-tiny model was developed,
achieving optimal yield rates and reducing loss costs in the die bond process.

Hsu et al. [10] mention depthwise separable convolution layers, which can increase
the model’s computation speed and achieve better prediction results while maintaining a
smaller model size. Additionally, Zhang et al. [11] highlight the challenges of deploying
convolutional neural networks (CNNs) on embedded devices with limited memory and
computational resources. Therefore, combining the smaller neural networks of Yolov5
and GhostNet is more suitable for deployment on FPGAs and other memory-constrained
embedded devices. This experiment integrates the Yolo-related models with GhostNet to
replace traditional convolution, eliminating redundant blocks in the original architecture
or replacing them with improved convolution layers. This approach significantly reduces
convolution calculations, leading to a marked increase in computing speed while sustaining
high predictive precision.

Lang et al. [13] pointed out that the Yolov7-tiny architecture is streamlined from the
original Yolov7’s backbone, neck, and head to achieve a lighter design. This experiment

Electronics 2024, 13, 4573 24 of 26

realizes a more lightweight DSG-Yolov7-tiny, making the model more suitable for operation
on resource-constrained devices and highlighting the significance of Yolov7-tiny. Both
Sun et al. [12] and Lang et al. [13] mentioned that combining Yolov7 or Yolov7-tiny with
the Ghost module allows the improved Yolov7-Ghost to maintain the original Yolov7
detection precision while also increasing inference speed, which is even more pronounced
in Yolov7-tiny. This experiment implements DSG-Yolov7-tiny following the same approach
to significantly enhance execution speed. Yang et al. [14] proposed improving the activation
function of Yolov7-tiny to FReLU, explaining its benefits. This experiment introduces the
SiLU activation function to enhance the precision of the DSG-Yolov7-tiny model, resulting
in DSGSI-Yolov7-tiny. Furthermore, to improve model precision, DSGβSI-Yolov7-tiny was
introduced for real-time and efficient application in die bond production machines.

This experiment also has some limitations. A single image containing multiple die
bonds may lead to variations in die bond types. During the training phase, the model may
not effectively learn the features of each die bond type, affecting inference precision. The
best approach would be to cut a single image with multiple die bonds into separate die
bond images for independent inference, but this is time-consuming. Furthermore, although
the improved DSGSI-Yolov7-tiny model is swift, there is a slight decline in precision and
accuracy. Maintaining the same speed as the original Yolov7-tiny model may impact
these metrics.

Additionally, the performance of the GPU is a crucial factor influencing precision,
accuracy, and speed. Currently, the GPU model used is the NVIDIA GeForce RTX 4070
Ti. Upgrading to a higher model, such as the NVIDIA RTX 4090, which has 24 GB of
GDDR6X video memory, would enable it to handle larger deep learning models, making it
particularly suitable for high utilization and throughput tasks in rapid die bond detection
and prediction.

5. Conclusions

The DSGβSI-Yolov7-tiny model proposed in this study achieves the highest perfor-
mance metrics for real-time and efficient prediction, making it an optimal solution for die
bond detection and prediction applications. Fab can rapidly deploy our method on factory
production machines for die bond detection and prediction. By analyzing the model’s
judgments on the classification of die bond images, we can identify the most frequently
occurring defects and subsequently adjust critical parameters of the machines in real-time.
This process enhances the yield of the die bond manufacturing process while significantly
reducing manufacturing cost losses. For semiconductor manufacturers, this increases
production yield and minimizes production losses.

Future work will extend the proposed approach to other applications, such as chip
contour detection, street view analysis, mask-wearing detection, operator attire compliance,
and product detection on factory production lines. Moreover, we will continue to seek a
better prediction model, for example, the Yolov11n model, to replace or modify the DSGβSI-
Yolov7-tiny architecture. This improvement will allow for optimizing or enhancing our
proposed model, facilitating the development of more efficient die bond detection and
prediction methods.

Author Contributions: B.R.C. and W.-S.C. conceived and designed the experiments; H.-F.T. collected
the dataset and proofread the manuscript; and B.R.C. wrote the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: The Ministry of Science and Technology Council fully supports this work in Taiwan,
Republic of China, under grant numbers NSTC 113-2622-E-390-003 and NSTC 113-2221-E-390-015.

Data Availability Statement: The Sample Programs used to support the findings of this study can be
found at the following link: https://drive.google.com/file/d/1--JXy7tgrUj0fjAphe3dsi5tTjs0Ee6j/
view?usp=sharing (accessed on 22 October 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://drive.google.com/file/d/1--JXy7tgrUj0fjAphe3dsi5tTjs0Ee6j/view?usp=sharing
https://drive.google.com/file/d/1--JXy7tgrUj0fjAphe3dsi5tTjs0Ee6j/view?usp=sharing

Electronics 2024, 13, 4573 25 of 26

References
1. Chen, M.-F.; Chen, C.-W.; Chen, C.-Y.; Hwang, C.-H.; Hwang, L.-Y. An AOI system development for inspecting defects on

6 surfaces of chips. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference
Proceedings, Taipei, Taiwan, 23–26 May 2016; pp. 1–6.

2. Yang, Y.; Wang, X. An improved YOLOv7-tiny-based lightweight network for the identification of fish species. In Proceedings
of the 2023 5th International Conference on Robotics and Computer Vision (ICRCV), Nanjing, China, 15–17 September 2023;
pp. 188–192.

3. Chang, B.R.; Tsai, H.-F.; Chang, F.-Y. Applying advanced lightweight architecture DSGSE-Yolov5 to rapid chip contour detection.
Electronics 2024, 13, 10. [CrossRef]

4. Chang, B.R.; Tsai, H.-F.; Chang, F.-Y. Boosting the response of object detection and steering angle prediction for self-driving
control. Electronics 2023, 12, 4281. [CrossRef]

5. Li, C.; Tan, G.; Wu, C.; Li, M. YOLOv7-VD: An algorithm for vehicle detection in complex environments. In Proceedings
of the 2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI), Guiyang, China,
15–17 December 2023; pp. 743–747.

6. Alam, L.; Kehtarnavaz, N. A survey of detection methods for die attachment and wire bonding defects in integrated circuit
manufacturing. IEEE Access 2022, 10, 83826–83840. [CrossRef]

7. Phan, Q.-H.; Nguyen, V.-T.; Lien, C.-H.; Duong, T.-P.; Hou, M.T.-K.; Le, N.-B. Classification of tomato fruit using YOLOv5 and
convolutional neural network models. Plants 2023, 12, 790. [CrossRef] [PubMed]

8. Hsiao, S.-F.; Tsai, B.-C. Efficient computation of depthwise separable convolution in MobileNet deep neural network models.
In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Penghu, Taiwan, 15–
17 September 2021; pp. 1–2.

9. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

10. Wang, T.; Ray, N. Compact Depth-Wise Separable Precise Network for Depth Completion. IEEE Access 2023, 11, 72679–72688.
[CrossRef]

11. Zhang, Y.; Cai, W.; Fan, S.; Song, R.; Jin, J. Object detection based on YOLOv5 and GhostNet for orchard pests. Information 2022,
13, 548. [CrossRef]

12. Sun, D.; Zhang, L.; Wang, J.; Liu, X.; Wang, Z.; Hui, Z.; Wang, J. Efficient and accurate detection of herd pigs based on
Ghost-YOLOv7-SIoU. Neural Comput. Appl. 2024, 36, 2339–2352. [CrossRef]

13. Lang, C.; Yu, X.; Rong, X. LSDNet: A lightweight ship detection network with improved YOLOv7. J. Real-Time Image Process.
2024, 21, 60. [CrossRef]

14. Wu, Y.; Tang, Y.; Yang, T. An improved nighttime people and vehicle detection algorithm based on YOLOv7. In Proceedings of
the 2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE), Guangzhou,
China, 24–26 February 2023; pp. 266–270.

15. Shafiee Sarvestani, A.; Zhou, W.; Wang, Z. Perceptual Crack Detection for Rendered 3D Textured Meshes. arXiv 2024,
arXiv:2405.06143.

16. Song, X.; Chen, L.; Zhang, L.; Luo, J. Optimal proposal learning for deployable end-to-end pedestrian detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023;
pp. 3250–3260.

17. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

18. Madhuri, P.; Akhter, N.; Raj, A.B. Digital implementation of depthwise separable convolution network for AI applications. In
Proceedings of the 2023 IEEE Pune Section International Conference (PuneCon), Pune, India, 14–16 December 2023; pp. 1–5.

19. Lee, J.H.; Kong, J.; Munir, A. Arithmetic coding-based 5-bit weight encoding and hardware decoder for CNN inference in edge
devices. IEEE Access 2021, 9, 166736–166749. [CrossRef]

20. Mou, C.; Zhu, C.; Liu, T.; Cui, X. A novel efficient wildlife detecting method with lightweight deployment on UAVs based on
YOLOv7. IET Image Process. 2024, 18, 1296–1314. [CrossRef]

21. Li, B.; Liu, L.; Wang, S.; Liu, X. Research on object detection algorithm based on improved YOLOv7. In Proceedings of the
9th International Conference on Computer and Communication (ICCC), Chengdu, China, 8–11 December 2023; pp. 1724–1727.

22. Sun, H.-R.; Shi, B.-J.; Zhou, Y.-T.; Chen, J.-H.; Hu, Y.-L. A Smoke Detection Algorithm Based on Improved YOLO v7 Lightweight
Model for UAV Optical Sensors. IEEE Sens. J. 2024, 24, 26136–26147. [CrossRef]

23. Sai, T.A.; Lee, H. Weight initialization on neural network for neuro pid controller-case study. In Proceedings of the 2018
International Conference on Information and Communication Technology Robotics (ICT-ROBOT), Busan, Republic of Korea,
6–8 September 2018; pp. 1–4.

https://doi.org/10.3390/electronics13010010
https://doi.org/10.3390/electronics12204281
https://doi.org/10.1109/ACCESS.2022.3197624
https://doi.org/10.3390/plants12040790
https://www.ncbi.nlm.nih.gov/pubmed/36840138
https://doi.org/10.1109/ACCESS.2023.3294247
https://doi.org/10.3390/info13110548
https://doi.org/10.1007/s00521-023-09093-9
https://doi.org/10.1007/s11554-024-01441-9
https://doi.org/10.1109/ACCESS.2021.3136888
https://doi.org/10.1049/ipr2.13027
https://doi.org/10.1109/JSEN.2024.3422509

Electronics 2024, 13, 4573 26 of 26

24. Wong, K.; Dornberger, R.; Hanne, T. An analysis of weight initialization methods in connection with different activation functions
for feedforward neural networks. Evol. Intell. 2024, 17, 2081–2089. [CrossRef]

25. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12065-022-00795-y

	Introduction
	Related Work
	Literature Review
	The Yolov4-Tiny Model
	The Yolov5n Model
	The Yolov7 Model
	The Yolov7-Tiny Model
	The DSG-Yolov7 Model

	Methods
	Data Collection and Preprocessing
	Recognition Data
	Judgment of Detection Results and Types of Die Bonding
	Model Improvement
	Model Enhancement
	Build a Model
	The Workflow of the System

	Experimental Results and Discussion
	Experimental Environment
	Data Collection and Model Evaluation
	Experimental Results
	Performance Evaluation
	Discussion

	Conclusions
	References

